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Introduction.

Let $G$ be a connected semisimple Lie group with finite center, and $K$ be a maximal
compact subgroup of $G$ . The corresponding complexified Lie algebras are denoted re-
spectively by $g$ and $f$ . We assume Harish-Chandra’s rank condition rank $G=$ rank $K$ ,
which is necessary and sufficient for $G$ to have a non-empty discrete series, consisting of
square-integrable irreducible unitary representations of $G$ ([4]).

Concrete geometric realizations of discrete series representations have been obtained
in several ways (see e.g., the survey article [3] and the papers cited there). Among others,
Hotta and Parthasarathy [6] realize such representations on the kernel spaces of certain
G-invariant differential operators $\mathcal{D}_{\lambda}$ of gradient-type, defined on vector bundles over the
symmetric space $G/K$ , by using some elementary differential calculas on $G/K$ (see \S 5).
Here $\lambda$ denotes the lowest highest weight of corresponding discrete series. As we have
shown in [12], the operators $\mathcal{D}_{\lambda}$ allow us to determine the embeddings of discrete series
into various important induced G-modules.

In this paper, we describe the associated varieties of Harish-Chandra ( $g$ , K)-modules
of discrete series, by quite an elementary method based on the above work of Hotta-
Parthasarathy. Our description is as in

Theorem. (Theorem 3.1) If $H_{\Lambda}$ is the $(g, K)$ -module of discrete series with Harish-
Chanda parameter $\Lambda=\lambda+\rho_{c}-\rho_{\tau\iota}$ (see \S 2), then its associated variety $\mathcal{V}(H_{\Lambda})\subset g$ (see
\S 1 for the definition) coincides with the (Zariski) closure of the nilpotent cone $K_{C}\mathfrak{p}_{-}$ .
Here $K_{C}$ is the analytic subgroup of adjoint group $G_{C}$ $:=Int(g)$ of $g$ , with Lie algebra $t$ ,
and $\mathfrak{p}_{-}$ denotes the sum of root subspaces of $g$ corresponding to the non-compact roots
which are negative with respect to $\Lambda$ (see (3.1)).

This theorem enables us to deduce that the variety $\mathcal{V}(U(g)/I_{\Lambda})$ associated to primitive
ideal $I_{\Lambda}$ $:=Ann_{U(\mathfrak{g})}(H_{\Lambda})$ in the enveloping algebra $U(g)$ of $g$ is just the closure of the
cone $G_{C}\mathfrak{p}_{-}$ (Theorem 3.2). We further derive an explicit (recursion) formula for the
Gelfand-Kirillov dimensions $d(H_{\Lambda})$ $:=\dim \mathcal{V}(H_{\Lambda})$ of discrete series in the case of unitary
groups $G=SU(p, q)$ (Theorem 8.1 and Corollary 8.1).

To prove the above Theorem 3.1, we pass to the space of coefficients of Taylor ex-
pansions of analytic sections in $KerD_{\lambda}$ . This space of coefficients admits a natural $S(g)-$

module structure, where $S(g)\simeq grU(g)$ denotes the symmetric algebra of $g$ . By using
Theorem 1 and Lemma 5.2 of [6], we can show that, if the parameter $\lambda$ is sufficiently
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regular, the corresponding annihilator ideal in $S(g)$ defines the associated variety of dis-
crete series as the set of common zero points. With in mind the Zuckerman translation
principle, Theorem 3.1 follows by examining this annihilator a little more closely.

One may say that the above description of $\mathcal{V}(H_{\Lambda})$ is known among the specialists
of D-module theory. This is because: (a) the associated variety of a Harish-Chandra
module is gained, through the moment map, as the image of characteristic variety of
corresponding D-module over the complexified flag variety $X$ of $G$ (see [2, III]), and (b)
the characteristic variety of a discrete series D-module can be specified as a conormal
bundle on $X$ .

However, we can not find good and self-contained references for Theorem 3.1. More-
over these (a) and (b) rely on several deep results about the classification of irreducible
G-representations through D-modules, $K_{C}$-orbit structure of the variety $X$ , etc., al-
though the associated variety is a very simple object defined for each finitely generated
$U(g)$-module in a purely algebraic context (see \S 1).

From this reason, we make here a short-cut and describe directly our variety $\mathcal{V}(H_{\Lambda})$

only by using some basic facts on realization of discrete series. Here are placed our
motivation and emphasis of this presentation.

The organization of this paper is as follows. We begin with introducing in \S \S 1-2 three
principal objects of our concern: the associated variety, Gelfand-Kirillov dimension for
$U(g)$-module; and the discrete series for $G$ . In \S 3, our main theorem for the variety
$\mathcal{V}(H_{\Lambda})$ is given as Theorem 3.1, and then we deduce from it two important consequences
(Theorem 3.2 and Proposition 3.2). The succeeding four sections, \S \S 4-7, are devoted to
proving Theorem 3.1, where we are based on the excellent work [6]. The last section,
\S 8, gives an explicit formula for the Gelfand-Kirillov dimensions $d(H_{\Lambda})$ . We concentrate
on the groups $G=SU(p, q)$ , where $p$ and $q$ range over non-negative integers such that
$(p, q)\neq(0,0)$ . Our formula obtained in Theorem 8.1 is recursive with respect to the
parameter $n=p+q$ .

An enlarged version of this article, with complete proofs, will appear elsewhere.
ACKNOWLEDGEMENTS. The author is grateful to Professor Y.Benoist for the com-

munication concerning the above mentioned facts (a) and (b).

1. Associated varieties for U(g)-modules.

Let $g$ be a finite-dimensional complex Lie algebra, and $U(g)$ be the universal enveloping
algebra of $g$ . We begin with introducing two important invariants: the associated variety
and Gelfand-Kirillov dimension, for finitely generated U(g)-modules.

Denote by $(U_{k}(g))_{k=0,1},.$ . the natural increasing filtration of $U(g)$ , where $U_{k}(g)$ is the
subspace of $U(g)$ generated by elements $X_{1}\cdots X_{m}(m\leq k)$ with $X_{j}\in g(1\leq j\leq m)$ .
By the Poincar\’e-Birkhoff-Witt theorem, we can and do identify the associated graded
ring

gr $U( g)=\bigoplus_{k\geq 0}U_{k}(g)/U_{k\cdot-1}(g)(U_{-1}(g) :=(0))$
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with the symmetric algebra $S(g)=\oplus_{k}S^{k}(g)$ of $g$ in the canonical way. Here $S^{k}(g)$

denotes the homogeneous component of $S(g)$ of degree $k$ .
Let $H$ be a finitely generated $U(g)$ -module. Take a finite-dimensional subspace $H_{0}$ of

$H$ such that $H=U(g)H_{0}$ . Setting $H_{k}=U_{k}(g)H_{0}(k=1,2, \ldots)$ , one gets an increasing
filtration $(H_{k})_{k}$ of $H$ and correspondingly a finitely generated, graded $S(g)$-module

(1.1) $M=gr(H;H_{0})$
$:= \bigoplus_{k\geq 0}M_{k}$

with $M_{k}=H_{k}/H_{k-1}$ .

The annihilator $Ann_{S(\mathfrak{g})}M:=\{D\in S(g)|Dv=0(\forall v\in M)\}$ of $M$ is a graded ideal
of $S(g)$ , and it defines an algebraic cone in the dual space $g^{*}$ of $g$ :

$\mathcal{V}(M):=\{\lambda\in g^{*}|f(\lambda)=0(\forall f\in Ann_{S\langle \mathfrak{g})}M)\}$ ,

as the set of common zeros of elements of $Ann_{S(g)}M$ . Here $S(g)$ is looked upon as the
polynomial ring over $g^{*}$ in the canonical way. It is then easily seen that the variety $V(M)$

does not depend on the choice of a generating subspace $H_{0}$ . So, hereafter we write $\mathcal{V}(H)$

for this invariant $\mathcal{V}(M)$ of $H$ .

Definition. (Cf. [9], [13]) For a finitely generated $U(g)$ -module $H$ , the variety $\mathcal{V}(H)\subset$

$g^{*}$ and its dimension $d(H)$ $:=\dim \mathcal{V}(H)$ are called respectively the associated variety and
the Gelfand-Kirillov dimension of $H$ .

It should be noticed that, by the Hilbert-Serre theorem (cf. [13, Th.1.1]), the map
$karrow\dim H_{k}$. coincides with a polynomial in $k$ of degree $d(H)$ for sufficiently large $k$ .

2. Discrete series for a semisimple Lie group.

Let $G$ be a connected semisimple Lie group with finite center, and $K$ be a maximal
compact subgroup of $G$ . The corresponding Lie algebras are denoted respectively by 90
and $t_{0}$ . Then one has a Cartan decomposition $g_{0}=t_{0}+Po$ of $g_{0}$ . We always assume
the rank condition rank $G=rankK$, which is necessary and sufficient for $G$ to have a
non-empty discrete series. In this section we collect some basic facts and fix notations
on the discrete series representations of $G$ .

Take a maximal abelian subalgebra $t_{ii}$ of $t_{0}$ , which is, by the above assumption on
$G$ , a compact Cartan subalgebra of $g_{0}$ . Let $g$ denote the complexification of $g_{0}$ , and we
write $\mathfrak{h}\subset g$ for the complexification of a real vector subspace $\mathfrak{h}_{0}$ of 90 by dropping the
subscript $0’$ . If $\alpha\in t^{*}$ is a root of $g$ with respect to $t$ , the corresponding root subspace

$g_{\alpha}$ $:=\{X\in g|[H, X]=\alpha(H)X(\forall H\in t)\}$

is contained either in $t$ or in $\mathfrak{p}$ . A root $\alpha$ is said to be compact or non-compact according
as $g_{\alpha}\subset t$ or $g_{\alpha}\subset \mathfrak{p}$ . We denote the totality of roots (resp. compact roots, non-compact
roots) by $\Delta$ (resp. $\Delta_{c},$ $\Delta_{n}$ ).

Now fix a positive system $\Delta_{c}^{+}$ of $\Delta_{c}$ . Let $\Xi$ be the set of linear forms $\Lambda$ on $t$ satisfying
the following three conditions:
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(2.1) $(\Lambda, \alpha)\geq 0$ for any $\alpha\in\Delta_{c}^{+}$ , i.e., $\Lambda$ is $\Delta_{c}^{+}$-dominant.

(2.2) $(\Lambda, \alpha)\neq 0$ for any $\alpha\in\Delta$ , i.e., $\Lambda$ is $\Delta$-regular,

(2.3) the map $Harrow\exp<\Lambda+\rho,$ $H>(H\in t_{0})$ defines a well-defined unitary character
of the Cartan subgroup $T:=\exp t_{0}$ , i.e., $\Lambda+\rho$ is T-integral.

Here $(\cdot, \cdot)$ denotes the bilinear form on $t^{*}$ induced canonically from the Killing form of
$g$ restricted to $t$ , and $\rho$ is half the sum of positive roots in $\Delta$ with respect to any fixed
positive system of $\Delta$ . Notice that the condition (2.3) does not depend on the choice of
positive system which defines $\rho$ .

By Harish-Chandra, there exists a bijective correspondance, say $\Lambdaarrow\pi_{\Lambda}$ , from $\Xi$

onto the set of (equivalence classes) of discrete series representations of $G$ (see e.g., [12,
I, Prop.1.1]). We say that the discrete series representation $\pi_{\Lambda}$ has Harish-Chandra
pammeter $\Lambda$ .

What is more important in this article is however the lowest K-type property which
characterizes the discrete series $\pi_{\Lambda}$ . To be precise, for a $\Delta_{c}^{+}$ -dominant, T-integral linear
form $\mu\in t^{*}$ , let $(\tau_{\downarrow\iota}, V_{\iota})$ denote the finite-dimensional irreducible K-module with highest
weight $\mu$ . We set for a $\Lambda\in\Xi$ ,

(2.4) $\lambda$ $:=\Lambda-\rho_{c}+\rho_{\tau\prime}=(\Lambda-2\rho_{c})+\rho=(\Lambda+2\rho_{n})-\rho$,

where half the sum $\rho$ of positive roots is defined by the positive system $\Delta^{+}$ $:=\{\alpha\in$

$\Delta|(\Lambda, \alpha)>0\}$ , and $\rho_{c}$ $:=(1/2)\Sigma_{\alpha\in\Delta_{c}^{+}}\alpha$ , $\rho_{?l}$ $:=\rho-p_{c}$ .

Proposition 2.1. (See e.g., [3]) (i) The discrete series representation $\pi_{\Lambda}$ , looked upon
as a K-module, has lowest K-type $\tau_{\lambda}$ :

(a) $\pi_{\Lambda}$ contains $\tau_{\lambda}$ with multiplicity one,
(b) the highest weight of any irreducible K-representation occuring in $\pi_{\Lambda}$ is of the

form
$\lambda+\sum_{\alpha\in\Delta+}n_{\alpha}\alpha$

with non-negative integers $n_{\alpha}$ .
(ii) Conversely, if an irreducible unitary representation $\pi$ of $G$ satisfies (a) and (b),

then $\pi$ is unitarily equivalent to $\pi_{\Lambda}$ .

Suggested by this proposition, we call $\lambda=\Lambda-\rho_{c}+\rho_{n}$ the lowest highest weight (or
the Blattner parameter) of $\pi_{\Lambda}$ .

3. Description of the associated varieties for discrete series.

We now present the main result (Theorem 3.1) of this paper and deduce from it two
important consequences (Theorem 3.2 and Proposition 3.2), concerning the associated
varieties and Gelfand-Kirillov dimensions for the discrete series.
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3.1. Varieties $\mathcal{V}(H_{\Lambda})$ and $\mathcal{V}(U(g)/I_{\Lambda})$ . For a $\Lambda\in\Xi$ , let $H_{\Lambda}$ be the Harish-Chandra
$(g, K)$-module corresponding to $\pi_{\Lambda}$ , which is gained by passing to the K-finite part of
$\pi_{\Lambda}$ . It follows that $H_{\Lambda}$ is irreducible as a $U(g)$-module because of the irreducibility of
the corresponding G-representation $\pi_{\Lambda}$ . See e.g., $[11, I, 2.4]$ for the definition and basic
facts on Harish-Chandra ( $g$ , K)-modules.

Now we put
(3.1) $\mathfrak{p}_{\pm}$

$;= \bigoplus_{\alpha\in\Delta^{+}}g_{\neq\alpha}$

,

where $\Delta_{n}^{+}=\{\alpha\in\Delta_{n}|(\Lambda, \alpha)>0\}$ denotes the set of non-compact positive roots with
respect to $\Lambda$ . Notice that the subspaces $\mathfrak{p}_{\pm}$ depend only on the chamber in which the
Harish-Chandra parameter $\Lambda$ lives. Let $G_{C}$ be the adjoint group of $g$ , and $K_{C}$ be the
analytic subgroup of $G_{C}$ corresponding to the Lie subalgebra $g$ .

We can describe the associated variety $\mathcal{V}(H_{\Lambda})$ of $H_{\Lambda}$ by means of the subspace $\mathfrak{p}_{-}$ ,
as in

Theorem 3.1. The associated variety $\mathcal{V}(H_{\Lambda})$ of discrete series Harish-Chandra module
$H_{\Lambda}$ coincides with the Zariski closure of the nilpotent cone $K_{C}\mathfrak{p}_{-}$ . Here $\mathcal{V}(H_{\Lambda})$ is regarded
as a variety in $g$ by identifying $g^{*}$ with $g$ through the Killing form of $g$ .

We will prove this theorem in the succeeding sections, \S \S 4-7, by using the gradient-
type differential operators on $G/K$ whose kernels realize the discrete series representa-
tions of $G$ (cf. [6]).

The above theorem allows us to describe also the variety $\mathcal{V}(U(g)/I_{\Lambda})$ associated to
the primitive ideal $I_{\Lambda}$ $:=Ann_{U(\mathfrak{g})}H_{\Lambda}$ , as follows.

Theorem 3.2. One has the equality $\mathcal{V}(U(g)/I_{\Lambda})=\overline{G_{C}\mathfrak{p}-}$ , where $\overline{A}$ denotes the Zariski
closure of a subset $A$ of $g$ , and $U(g)$ acts on $U(g)/I_{\Lambda}$ by left multiplication.

This theorem is a direct consequence of Theorem 3.1 together with the following
proposition.

Proposition 3.1. Let $H$ be an irreducible $(g, K)$ -module and $I=Ann_{U(g)}H$ be the
corresponding primitive ideal of $U(g)$ . Then variety $\mathcal{V}_{I}$ $:=V(U(g)/I)$ is related to the
associated variety $\mathcal{V}(H)$ of $H$ as

(3.2) $\mathcal{V}_{I}=\overline{G_{C}\mathcal{V}(H)}$ .

3.2. The proof of Proposition 3.1 requires four fundamental facts concerning the
nilpotent $G_{C^{-}}$ or $K_{C}$-orbits, associated varieties and primitive ideals, which we are going
to list up.

Lemma 3.1. (Cf. [13, Lemma 3.1]) Let $\mathcal{N}$ be the variety of all nilpotent elements of
$g$ , and put $\mathcal{N}(\mathfrak{p})$ $:=\mathcal{N}\cap \mathfrak{p}$ . If $H$ and $I=Ann_{U\{\mathfrak{g})}H$ are as in Proposition 3.1, the
variety $\mathcal{V}_{I}$ (resp. $\mathcal{V}(H)$ ) is a $G_{C}$ -stable (resp. $K_{C}$ -stable) cone contained in $\mathcal{N}$ (resp. $in$

$\mathcal{V}_{I}\cap \mathfrak{p}\subset \mathcal{N}(\mathfrak{p}))$ .
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Lemma 3.2. (Joseph, cf. [8, Th.3.1]) For the above $H$ and $I$ , one has the equality
$\dim \mathcal{V}_{I}=2\dim \mathcal{V}(H)$ .

Lemma 3.3. (See e.g., [2, III]) The variety $\mathcal{V}_{I}$ associated to a $p$nmitive ideal $I=$
$Ann_{U(\mathfrak{g})}H\subset U(g)$ is the closure of a single nilpotent $G_{C}$ -orbit $\mathcal{O}_{1}$ in $g:\mathcal{V}_{I}=\overline{\mathcal{O}_{1}}$ .

Lemma 3.4. If $\mathcal{O}$ is a nilpotent $K_{C}$ -orbit in $\mathfrak{p}$ , the dimension of $G_{C}$ -orbit $\mathcal{O}_{1}$ $:=G_{C}\mathcal{O}$

containing $\mathcal{O}$ , equals 2 $\dim \mathcal{O}$ .

Remark. The varieties $\mathcal{V}(H),$ $\mathcal{V}_{I}$ are closely related to the asymptotic support and wave
front set of the distribution character of $H$ ([1]; see also [10]).

Proof of Proposition 3.1. The inclusion $\overline{G_{C}\mathcal{V}(H)}\subset \mathcal{V}_{I}$ in (3.2) is clear from Lemma
3.1. To show the converse inclusion, take a nilpotent $K_{C}$-orbit $\mathcal{O}$ in $\mathfrak{p}$ such that
$\dim \mathcal{V}(H)=\dim \mathcal{O}$ . Such an $\mathcal{O}$ actually exists since the number of nilpotent $K_{C}$ -orbits
in $\mathfrak{p}$ is finite (see [5, Chap.III, Th.4.8]). Set $\mathcal{O}_{1}=G_{C}\mathcal{O}(\subset \mathcal{V}_{I})$ . Then it follows from
Lemmas 3.2 and 3.4 that

$\dim \mathcal{O}_{1}=2\dim \mathcal{O}=2\dim \mathcal{V}(H)=\dim \mathcal{V}_{I}$ .

Hence $\mathcal{O}_{1}$ is an open subset of $\mathcal{V}_{I}$ . By virtue of Lemma 3.3, we conclude that $\mathcal{V}_{I}=\overline{\mathcal{O}_{1}}\subset$

$\overline{G_{C}\mathcal{V}(H)}$. This completes the proof of Proposition 3.1. Q.E.D.

3.3. Theorem 3.2, combined with Lemmas 3.2 and 3.3, gives the following proposition,
which will be useful for computing explicitly the Gelfand-Kirillov dimensions for the
discrete series (see \S 8).

Proposition 3.2. For a $\Lambda\in\Xi$ , define a subspace $\mathfrak{p}_{-}\subset \mathcal{N}(\mathfrak{p})$ as in (3.1).
(i) If $\Omega_{\mathfrak{p}_{-}}$ denotes the set of nilpotent $G_{C}$ -orbits $\mathcal{O}_{1}$ in $g$ such that $\mathcal{O}_{1}\cap \mathfrak{p}_{-}\neq\emptyset$, there

exists a unique orbit $\mathcal{O}_{\mathfrak{p}_{-}}\in\Omega_{\mathfrak{p}_{-}}$ for which $\overline{\mathcal{O}_{\mathfrak{p}_{-}}}\supset \mathcal{O}_{1}$ holds for any $\mathcal{O}_{1}\in\Omega_{\mathfrak{p}_{-}}$ .
(ii) The Gelfand-Kirillov dimension $d(H_{\Lambda})$ of discrete series $U(g)$ -module $H_{\Lambda}$ coin-

cides with (1/2) $\dim \mathcal{O}_{\mathfrak{p}_{-}}$ .

4. Associated varieties and realization of Harish-Chandra modules on $G/K$.
For a finite-dimensional representation $(\tau, V_{\tau})$ of $K$ , let $\mathcal{A}(\tau)$ be the space of real analytic
functions $f$ : $Garrow V_{\tau}$ satisfying

(4.1) $f(gk)=\tau(k)^{-1}f(g)(g\in G, k\in K)$ .

The group $G$ acts on $\mathcal{A}(\tau)$ by left translation, and $\mathcal{A}(\tau)$ admits a $U(g)$ -module structure
through differentiation. We call $\mathcal{A}(’\tau)$ the G- and $U(g)$ -module analytically induced from
$\tau$ .

This section develops a general method for describing the associated variety $\mathcal{V}(H)$ of
a Harish-Chandra module $H$ in relation with a realization of its K-finite dual module
$H^{*}$ in $\mathcal{A}(\tau)$ . This is a preliminary step for the proof of Theorem 3.1.
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4.1. $(S(g), K)$-module Gr $\mathcal{A}(\tau)$ . At first, we define subspaces $\mathcal{A}_{(k)}(k\in Z)$ of $\mathcal{A}(\tau)$

by
(4.2) $\mathcal{A}_{(k)}$ $:=\{f\in \mathcal{A}(\tau)|(X^{m}f)(1)=(O)(\forall X\in \mathfrak{p}, 0\leq\forall m\leq k)\}$

for $k\geq 0$ , and $\mathcal{A}_{\langle k)}$ $:=\mathcal{A}(\tau)$ for $k<0$ , where 1 denotes the identity element of $G$ . Then
$(\mathcal{A}_{(k)})_{k\in Z}$ is a decreasing filtration of $\mathcal{A}(\tau)$ such that

(4.3) each $\mathcal{A}_{\langle k)}$ is a K-stable subspace of $\mathcal{A}(\tau)$ ,

(4.4) $\dim \mathcal{A}(\tau)/\mathcal{A}_{\langle k)}<\infty$ and $\bigcap_{k}\mathcal{A}_{(k)}=(0)$ ,

(4.5) $U_{m}(g)\mathcal{A}_{(k)}\subset \mathcal{A}_{(k-m)}$ for all integers $k,$ $m\geq 0$ .
Correspondingly, one obtains a graded $S(g)$-module

(4.6) Gr $\mathcal{A}(\tau)$

$:= \bigoplus_{k}\mathcal{A}_{(k)}/\mathcal{A}_{\langle k+1)}$
,

which admits by (4.3) a K-module structure, compatible with the $S(g)$-action.
It is not difficult to analyze this $(S(g), K)$-module. To do this, let $(X_{i})_{i=0}^{s}$ and $(X_{i^{*}})_{i=0}^{s}$

be two bases of the vector space $\mathfrak{p}$ such that $B(X_{i}, X_{j}^{*})=\delta_{ij}$ (the Kronecker $\delta$ ) for the
Killing form $B$ of $g$ . We put

(4.7) $\iota_{k}(f)$ $:= \sum_{|\alpha|=k\cdot+1}\frac{1}{\alpha!}(X^{*})^{\alpha}\otimes(X^{\alpha}f)(1)\in S^{k+1}(\mathfrak{p})\otimes V_{\tau}(f\in \mathcal{A}_{\langle k)})$,

where $X^{\alpha}$ $:=X_{1}^{\alpha_{1}}\cdots X_{s}^{\alpha_{s}}$ and $(X^{*})^{\alpha}$ $:=(X_{1}^{*})^{\alpha_{1}}\cdots(X_{s^{*}})^{\alpha_{s}}$ for multi-indices $\alpha=(\alpha_{1}, \ldots , \alpha_{s})$

of length $|\alpha|$ $:=\alpha_{1}+\cdots+\alpha_{s}=k+1$ . Observe that the assignment $\mathcal{A}_{\langle k)}\ni farrow\iota_{k}(f)\in$

$S^{k+1}(\mathfrak{p})\otimes V_{\tau}$ is independent of the choice of of dual bases $(X_{i})_{i}$ and $(X_{i^{*}})_{i}$ , and $\iota_{k}$ naturally
gives rise to a K-isomorphism:

(4.8) $\iota_{k}\sim.$ : $\mathcal{A}_{(k)}/\mathcal{A}_{\{k+1)}\simeq S^{k+1}(\mathfrak{p})\otimes V_{\tau}$,

where $S^{k+1}(\mathfrak{p})$ is looked upon as a K-module by the adjoint action.
Through the Killing form $B$ , we identify the symmetric algebra $S(\mathfrak{p})=\oplus_{k}S^{k}(\mathfrak{p})$ of

$\mathfrak{p}$ with the ring of polynomial functions on $g$ which vanish identically on $g$ . Let $S(g)$ act
on $S(\mathfrak{p})$ canonically as the ring of constant coefficient differential operators on the vector
space $g$ .

Summing up the isomorphisms $\overline{\iota}_{k}$. $(k\in Z)$ in (4.8), one obtains the following lemma
which describes the structure of Gr $\mathcal{A}(\tau)$ in a simpler way.

Lemma 4.1. The map $\overline{\iota}$ $:=\oplus_{k}\overline{\iota}_{k}$. gives a graded $(S(g), K)$ -module isomorphism from
Gr $\mathcal{A}(\tau)$ onto the tensor product $S(\mathfrak{p})\otimes V_{\tau}$ , where $S(g)$ acts on $V_{\tau}$ trivially.
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4.2. Variety $\mathcal{V}(H)$ in reIation with $Gr_{\gamma}(H^{*})$ . Now let $H$ be an irreducible $(g, K)-$

module. Then the full dual space $H’$ of $H$ , consisting of all linear forms on $H$ , has a
$(g, K)$-module structure contragredient to $H$ . The K-finite part of $H’$ , say $H^{*}$ , is an
irreducible ( $g$ , K)-submodule of $H’$ .

If $(\tau, V_{\tau})$ is a finite-dimensional K-module occuring in $H^{*}$ , there exists, by a reci-
procity theorem of Frobenius type, a $(g, K)$-module embedding $\gamma$ from $H^{*}$ into the
analytically induced module $\mathcal{A}(\tau)$ . Setting

(4.9) $H_{\langle k),\gamma}^{*}:=\gamma(H^{*})\cap \mathcal{A}_{(k)}(k\in Z)$

with $\mathcal{A}_{(k)}\subset \mathcal{A}(\tau)$ in (4.2), we get a decreasing filtration $(H_{(k),\gamma}^{*})_{k}$ of $\gamma(H^{*})\simeq H^{*}$ with
properties $(4.3)-(4.5)$ . Write $Gr_{\gamma}(H^{*})$ for the corresponding $(S(g), K)$-module:

(4.10) $\bigoplus_{k}H_{\langle k),\gamma}^{*}/H_{(k+1),\gamma}^{*}\subset Gr\mathcal{A}(\tau)$
.

On the other hand, the filtration $(H_{\langle k),\gamma}^{*})_{k}$ of $H^{*}$ gives rise to an increasing filtration
$(H_{k,\gamma})_{k}$ of $H$ with

(4.11) $H_{k,\gamma}$ $:=\{v\in H|<w^{*}, v>=0(\forall w^{*}\in H_{(k),\gamma}^{*})\}$ ,

by passing to the orthogonal in $H$ . If

(4.12) $gr_{\gamma}(H)$
$:= \bigoplus_{k}H_{k+1,\gamma}/H_{k,\gamma}$

denotes the corresponding graded $(S(g), K)$-module, the dual pairing $<.,$ $\cdot>onH^{*}\cross H$

naturally induces a non-degenerate ( $S(g)$ , K)-invariant pairing on $Gr_{\gamma}(H^{*})\cross gr_{\gamma}(H)$ . By
using the latter pairing, one easily finds that

(4.13) $Ann_{S(\mathfrak{g})}Gr_{\gamma}(H^{*})=Ann_{S(\mathfrak{g})}gr_{\gamma}(H)$ ,

and that
(4.14) $gr_{\gamma}(H)=gr(H;H_{0,\gamma})$ (see (1.1)).

We have thus obtained the following proposition, which enables us to describe the
associated variety $\mathcal{V}(H)$ of Harish-Chandra module $H$ by means of the annihilator of
$Gr_{\gamma}(H^{*})$ .

Proposition 4.1. Under the above notation one has the equality

(4.15) $\mathcal{V}(H)=$ { $X\in g|$ $f(X)=0$ for all $f\in Ann_{S(\mathfrak{g})}(Gr_{\gamma}(H^{*}))$ }.
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5. Graded modules Gr $H_{\Lambda}$ and differential operators $D_{\lambda}$ of gradient-type.

Let $H_{\Lambda}$ be the $(g, K)$-module of discrete series $\pi_{\Lambda}$ with Harish-Chandra parameter $\Lambda\in\Xi$ .
Since the lowest K-type $(\tau_{\lambda}, V_{\lambda}),$ $\lambda=\Lambda-\rho_{c}+\rho_{ll}$ , appears in $H_{\Lambda}$ with multiplicity one (see
Proposition 1.1), there exists a unique,up to scalar multiples, $(g, K)$-module embedding

$\gamma_{\lambda}$ from $H_{\Lambda}$ into the analytically induced module $\mathcal{A}(\tau_{\lambda})$ .
This section interprets after Hotta-Parthasarathy [6], the $(S(g), K)$-module Gr $H_{\Lambda}$ $:=$

$Gr_{\gamma_{\lambda}}(H_{\Lambda})$ defined in 4.2, by means of the gradient-type differential operator $D_{\lambda}$ whose
kernel realizes $\pi_{\Lambda}$ . Here we treat $H_{\Lambda}$ itself instead of its dual $(g, K)$-module $H_{\Lambda}^{*}$ , by
noting that
(5.1) $H_{\Lambda}^{*}\simeq H_{-w_{0}\Lambda}$ as ( $g$ , K)-modules,
for the longest element $w_{0}$ of the Weyl group of $\Delta_{c}$ .

5.1. Operator $\mathcal{D}_{\lambda}$ and realization of discrete series. Let $(X_{i})_{i=1}^{s}$ and $(X_{i^{*}})_{i=1}^{s}$ be
dual basis of $\mathfrak{p}$ as in 4.1. We set for $f\in \mathcal{A}(\tau_{\lambda})$ ,

(5.2) $\nabla_{\lambda}f(g)$ $:=\dot{\sum_{=1}^{s}}R_{X_{i}}f(g)\otimes X_{i}^{*}$ $(g\in G)$ ,

where $R_{X}$ denotes the left G-invariant vector field on $G$ defined by

$R_{X}f(g)$ $:= \frac{d}{dt}(f(g\exp tY)+\sqrt{-1}f(g\exp tZ))_{|t=0}$

for $X=Y+\sqrt{-1}Z$ with $Y,$ $Z\in g_{0}$ . It is then easy to see that $\nabla_{\lambda}$ is independent of the
choice of dual bases and that it defines a first order, left G-invariant differential operator
from $\mathcal{A}(\tau_{\lambda})$ to $\mathcal{A}(\tau_{\lambda}\otimes Ad_{\mathfrak{p}})$ . Here $Ad_{\mathfrak{p}}$ denotes the adjoint representation of $K$ on $\mathfrak{p}$ .

Notice that the tensor product K-representation $\tau_{\lambda}\otimes Ad_{\mathfrak{p}}$ decomposes into irreducibles
as
(5.3)

$\tau_{\lambda}\otimes Ad_{\mathfrak{p}}\simeq\bigoplus_{\beta\in\Delta,},[m_{\beta}]\cdot\tau_{\lambda+\beta}$
,

and that the multiplicity $m_{\beta}$ of $\tau_{\lambda+\beta}$ is either 1 or $0$ for every $\beta\in\Delta_{n}$ . Let $(\tau_{\lambda^{\pm}}, V_{\lambda}^{\pm})$ be
the subrepresentations of $\tau_{\lambda}\otimes Ad_{\mathfrak{p}}$ such that $\tau_{\lambda^{\pm}}\simeq\oplus_{\beta\in\Delta^{+}},,$ $[m_{\beta}]\cdot\tau_{\lambda\pm\beta}$ , and $P_{\lambda}$ : $V_{\lambda}arrow V_{\lambda^{-}}$

be the projection along the decomposition $V_{\lambda}=V_{\lambda^{-}}\oplus V_{\lambda^{+}}$ .
We now put

(5.4) $\mathcal{D}_{\lambda}f(g)$ $:=P_{\lambda}(\nabla_{\lambda}f(g))$ $(f\in \mathcal{A}(\tau_{\lambda}))$ .
Then $\mathcal{D}_{\lambda}$ gives a G-invariant differential operator from $\mathcal{A}(\tau_{\lambda})$ to $\mathcal{A}(\tau_{\lambda^{-}})$ .

It follows immediately from the lowest K-type property of $H_{\Lambda}$ that

(5.5) $\gamma_{\lambda}(H_{\Lambda})\subset Ker\mathcal{D}_{\lambda}$ .
Moreover, the following result, due to Hotta-Parthasarathy, Schmid and Wallach, says
that the $L^{2}$-kernel of $\mathcal{D}_{\lambda}$ realizes the discrete series $\pi_{\Lambda}$ .

Proposition 5.1. (Cf. [12, $I$ , Th.1.5]) For any $\Lambda\in\Xi$ , the $(g, K)$ -module $\gamma_{\lambda}(H_{\Lambda})$ ,
isomorphic to $H_{\Lambda}$ , consists exactly of all functions $f\in Ker\mathcal{D}_{\lambda}$ which are left K-finite
and square-integrable on $G$ .
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5.2. A result of Hotta-Parthasarathy. Let $(\mathcal{A}_{(k)})_{k\in Z}$ (resp. $(\mathcal{A}_{\langle k)}^{-})_{k\in Z}$ ) be the
decreasing filtration of $\mathcal{A}(\tau_{\lambda})$ (resp. $\mathcal{A}(\tau_{\lambda^{-}})$ ), defined by (4.2). Since $D_{\lambda}$ sends $\mathcal{A}_{(k)}$ into
$\mathcal{A}_{(k\cdot-1)}^{-}$ , the operator $\mathcal{D}_{\lambda}$ induces an ( $S(g)$ , K)-homomorphism, say $Gr[\mathcal{D}_{\lambda}]$ , from Gr $\mathcal{A}(\tau_{\lambda})$

to Gr $\mathcal{A}(\tau_{\lambda^{-}})$ . Through the isomorphism $\iota\sim$ in Lemma 4.1, we regard this homomorphism
as a map
(5.6) $Gr[\mathcal{D}_{\lambda}]$ : $S(\mathfrak{p})\otimes V_{\lambda}arrow S(\mathfrak{p})\otimes V_{\lambda^{-}}$ .
Observe that $Gr[\mathcal{D}_{\lambda}]$ is given as

(5.7) $( Gr[\mathcal{D}_{\lambda}]f)(Y)=P_{\lambda}(\sum_{i}(X_{i}f)(Y)\otimes X_{i}^{*})$
$(Y\in g)$

for $f\in S(\mathfrak{p})\otimes V_{\lambda}$ . Here $S(\mathfrak{p})\otimes V,$ $V=V_{\lambda}$ or $V_{\lambda^{-}}$ , is identified in the canonical way with
the space of V-valued polynomial functions on $g$ , vanishing identically on $t$ .

By virtue of (5.5), one can easily deduce the inclusion

(5.8) Gr $H_{\Lambda}=Gr_{\gamma\lambda}(H_{\Lambda})\subset Ker(Gr[\mathcal{D}_{\lambda}])$

for every Harish-Chandra module $H_{\Lambda}$ of discrete series. Furthermore, Theorem 1 of [6]
combined with the Blattner multiplicity formula (cf. [12, $I$ , Prop.1.2]) gives immediately
the following theorem.

Theorem 5.1. (Hotta-Parthasarathy) The equality Gr $H_{\Lambda}=Ker(Gr[\mathcal{D}_{\lambda}])$ holds in (5.8)
provided that the lowest hightest weight $\lambda=\Lambda-\rho_{c}+\rho_{\tau\iota}$ of $H_{\Lambda}$ is far from the walls:

(5.9)
$\lambda-\sum_{\beta\in Q}\beta$

is $\Delta_{c}^{+}$ -dominant for any subset $Q$ of $\Delta_{0\iota}^{+}$ .

Combining this theorem with Proposition 4.1, we make an essential step forward the
proof of Theorem 3.1, as in

Theorem 5.2. Let $H_{\Lambda}(\Lambda\in\Xi)$ be a Harish-Chandm module of discrete series, and
$H_{\Lambda}^{*}\simeq H_{-w_{0}\Lambda}$ (see (5.1)) be its dual $(g, K)$ -module. If $\lambda=\Lambda-\rho_{c}+p_{n}$ is far from the
walls, the associated variety $\mathcal{V}(H_{\Lambda}^{*})$ of discrete series $H_{\Lambda}^{*}$ is determined by the annihilator
of operator $Gr[\mathcal{D}_{\lambda}]$ in (5.6):

(5.10) $\mathcal{V}(H_{\Lambda}^{*})=\{X\in g|f(X)=0\forall f\in Ann_{S(\mathfrak{g})}Ker(Gr[\mathcal{D}_{\lambda}])\}$ .

Remark. By (5.8) and Proposition 4.1, the $inclusion\subset is$ always true in (5.10) without
any assumption on the regulality of $\lambda$ .

6. ( $S(g)$ , K)-modules $Ker(Gr[\mathcal{D}_{\lambda}])$ and the corresponding annihilator ideals.

We now go into more detailed structure of graded ( $S(g)$ , K)-modules $Ker(Gr[\mathcal{D}_{\lambda}])\subset$

$S(\mathfrak{p})\otimes V_{\lambda}$ defined in 5.2, and their annihilators $Ann_{S\langle \mathfrak{g})}(Ker(Gr[\mathcal{D}_{\lambda}]))\subset S(g)$ .
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6.1. Generating subspace of $Ker(Gr[\mathcal{D}_{\lambda}])$ as a K-module. Let $f=X^{m}\otimes v$ be
an element of $S(\mathfrak{p})\otimes V_{\lambda}$ with $X\in \mathfrak{p},$ $v\in V_{\lambda}$ and an integer $m\geq 0$ . In view of (5.7) one
can compute $Gr[\mathcal{D}_{\lambda}]f\in S(\mathfrak{p})\otimes V_{\lambda^{-}}$ as

(6.1) $Gr[D_{\lambda}]f=mX^{m-1}\otimes P_{\lambda}(v\otimes X)$ ,

where $P_{\lambda}$ is, as in 5.1, the projection from $V_{\lambda}=V_{\lambda}^{+}\oplus V_{\lambda^{-}}$ onto $V_{\lambda^{-}}$ . This implies that $f$

lies in $Ker(Gr[\mathcal{D}_{\lambda}])$ if and only if $v\otimes X\in V_{\lambda}^{+}$ . Notice that, if $v_{\lambda}$ is a non-zero highest
weight vector of $V_{\lambda}$ , the vector $v_{\lambda}\otimes X_{+}$ belongs to $V_{\lambda^{+}}$ for every $x_{+}\in \mathfrak{p}_{+}=\Sigma_{\alpha\in\Delta_{n}^{+}}g_{\alpha}$ .

This discussion leads us immediately to

Proposition 6.1. The kernel $Ker(Gr[\mathcal{D}_{\lambda}])$ contains the K-submodule $\{S(\mathfrak{p}_{+})\otimes v_{\lambda}\}_{K}$ of
$S(\mathfrak{p})\otimes V_{\lambda}$ generated by subspace $S(\mathfrak{p}_{+})\otimes v_{\lambda}$ .

Conversely, we can prove, by using Lemma 5.2 of [6], that $\{S(\mathfrak{p}_{+})\otimes v_{\lambda}\}_{K}$ exhausts
$Ker(Gr[\mathcal{D}_{\lambda}])$ in the following sense.

Theorem 6.1. For each integer $m\geq 0$ , there exists a constant $c_{m}>0$ such that

(6.2) $Ker^{m}(Gr[\mathcal{D}_{\lambda}])=\{S^{m}(\mathfrak{p}_{+})\otimes v_{\lambda}\}_{K}$

holds if the lowest highest weight $\lambda$ satisfies the condition

(6.3) $(\lambda, \alpha)\geq c_{7n}$ for all $\alpha\in\Delta_{c}^{+}$ .

Here $Ker^{m}(Gr[\mathcal{D}_{\lambda}])$ $:=Ker(Gr[\mathcal{D}_{\lambda}])\cap(S^{m}(\mathfrak{p})\otimes V_{\lambda})$ denotes the homogeneous component
of $Ker(Gr[\mathcal{D}_{\lambda}])$ of degree $m$ .

This theorem plays a definitive role in proving Theorem 3.1.

6.2. Annihilator $Ann_{S(\mathfrak{g})}Ker(Gr[\mathcal{D}_{\lambda}])$ For a subset $A$ of $g$ , let $\mathcal{I}(A)$ denote the ideal
of $S(g)$ determined by $A$ :

(6.4) $\mathcal{I}(A)$ $:=\{f\in S(g)|f(X)=0\forall X\in A\}$ .

Two results in 6.1 allow us to establish the following

Theorem 6.2. Let $\lambda=\Lambda-\rho_{c}+\rho_{\tau\iota}$ be the lowest highest weight of discrete series $H_{\Lambda}$ .
Then one has
(6.5) $Ann_{S(\mathfrak{g})}Ker(Gr[\mathcal{D}_{\lambda}])\subset \mathcal{I}(K_{C}\mathfrak{p}_{+})$ .

Moreover there exists a positive constant $c$ such that the equality holds in (6.5) provided
that $(\lambda, \alpha)\geq c$ for all $\alpha\in\Delta_{c}^{+}$ .

This theorem together with Theorem 5.1 immediately yields
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Corollary 6.1. If the lowest highest weight $\lambda$ is sufficiently $\Delta_{c}^{+}$ -regular, the annihilator
ideal of graded $S(g)$ -module Gr $H_{\Lambda}$ (see 5.1) coincides with its mdical.

Proof of Theorem 6.2. The inclusion (6.5) follows immediately from Proposition
6.1. To prove the second assertion, note at first that $\mathcal{I}(K_{C}\mathfrak{p}_{+})$ is a graded ideal of
$S(g)$ containing $tS(g)$ . Since $S(g)$ is a Noetherian ring, there exists a finite number of
homogeneous elements $D_{j}\in S(\mathfrak{p})(1\leq j\leq r)$ such that

$\mathcal{I}(K_{C}\mathfrak{p}_{+})=fS(g)+S(g)D_{1}+\cdots+S(g)D_{r}$ .

Let $c_{j}$ be the positive constants in Theorem 6.1 associated to $d_{j}$ $:=\deg D_{j}(1\leq j\leq r)$ ,
and put $c:= \max_{j}(c_{j})$ . Then (6.2) tells us that, if $(\lambda, \alpha)\geq c(\forall a\in\Delta_{c}^{+})$ , then each $D_{j}$

is identically zero on $Ker^{d_{j}}(Gr[\mathcal{D}_{\lambda}])$ . One easily sees from this fact that $D_{j}$ annihilates
all the vectors in $Ker(Gr[\mathcal{D}_{\lambda}])$ . We thus conclude $\mathcal{I}(K_{C}\mathfrak{p}_{+})=Ann_{S(\mathfrak{g})}Ker(Gr[\mathcal{D}_{\lambda}])$ as
desired. Q.E.D.

7. Completion of the proof of Theorem 3.1.

By virtue of Theorems 5.2 and 6.2, we find that

(7.1) $\mathcal{V}(H_{\Lambda}^{*})=\overline{K_{C}\mathfrak{p}_{+}}$,

if the corresponding lowest highest weight $\lambda$ is sufficiently $\Delta_{c}^{+}$ -regular. A standard ar-
gument of Zuckerman’s translation principle (cf. [12, $I,$ $3.4]$ ) shows that (7.1) is always
true for any $\Lambda\in\Xi$ . In view of (5.1), our theorem is now completely proved. Q.E.D.

8. A recursion formula for the Gelfand-Kirillov dimensions of discrete series.

We finish this article with giving an explicit formula for the Gelfand-Kirillov dimensions
$d(H_{\Lambda})=\dim \mathcal{V}(H_{\Lambda})$ of discrete series. Proposition 3.2 gives us a method for computing
$d(H_{\Lambda})$ . We concentrate here on the case of unitary groups $G=SU(p, q)$ with integers
$p,$ $q\geq 0,$ $(p, q)\neq(O, 0)$ . Our formula for $d(H_{\Lambda})$ is recursive with respect to the parameter
$n$ $:=p+q$.

8.1. The function GKD. Realize our group $G$ as

(8.1) $G=\{g\in SL(n, C)|{}^{t}\overline{g}I_{p,q}g=I_{p,q}\}$ $(n=p+q)$

with
$I_{p,q}=(\begin{array}{ll}I_{p} 0O -I_{q}\end{array})$ ( $I_{r}$ the identitiy matrix of degree $r$ ),

where ${}^{t}g$ (resp. $\overline{g}$ ) denotes the transposed (resp. the complex conjugate) of a matrix $g$ .
Then the Lie algebras $g,$ $f,$ $t$ and subspace $\mathfrak{p}$ can be written as follows.

(8.2) $g=\epsilon \mathfrak{l}(n, C):=$ {$X\in M(n,$ $n)|$ tr $X=0$ },
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(8.3) $f=\{(\begin{array}{ll}Y 00 Z\end{array})\in g|Y\in M(p,p),$ $Z\in M(q, q)\}$ ,

(8.4) $t=$ { $H=diag(t_{1},$
$\ldots,$

$t_{\iota})|t_{:}\in C$ , tr $H=0$},

(8.5) $\mathfrak{p}=\{(\begin{array}{ll}0 VW 0\end{array})\in g|V\in M(p, q),$ $W\in M(q,p)\}$ .

Here $M(p, q)$ denotes the space of complex matrices of size $p\cross q$ . The root system $\Delta$

(resp. $\Delta_{c}\subset\Delta$) of $g$ (resp. e) with respect to $t$ is of type $A_{n-1}$ (resp. $A_{p-1}\cross A_{q-1}$ ), and
it is described respectively as

(8.6) $\Delta=\{e_{ij}|1\leq i,j\leq n, i\neq j\}$ , $\Delta_{c}=$ { $e_{ij}\in\Delta|1\leq i,j\leq p$ or $p<i,j\leq n$}
with $e_{ij}(H):=t_{i}-t_{j}(H\in t)$ . We fix as in \S 2 a positive system of $\Delta_{c}$ :

(8.7) $\Delta_{c}^{+}:=\{e_{ij}\in\Delta_{c}|i<j\}$ .
Let $\Pi_{p,q}$ be the totality of maps $h$ from $F(n)$ $:=\{1,2, \ldots , n\}$ to the set $\{a, b\}$ of two

elements $a$ and $b$ , such that

$\#(h^{-1}(a))=p$ , and $\#(h^{-1}(b))=q$ ,

where $\#(S)$ denotes the cardinal number of a set $S$ . For an $h\in\Pi_{p,q}$ , arrange the
elements of $h^{-1}(a)$ and $h^{-1}(b)$ respectively as

$(w_{1}, w_{2}, \ldots, w_{p})$ with $w_{1}<w_{2}<\ldots<w_{p}$ ,

$(w_{p+1}, w_{p+2}, \ldots, w_{n})$ with $w_{p+1}<w_{p+2}<\ldots<w_{n}$ ,

and we put
(8.8) $\Delta^{+}(h):=\{e_{ij}|w_{i}<w_{j}\}$ .

It is then elementary to verify

Lemma 8.1. The assignment $harrow\Delta^{+}(h)$ gives a bijective correspondance from $\Pi_{p,q}$ to
the totality of positive systems of $\Delta$ including $\Delta_{c}^{+}$ in (8.7).

Now let $H_{\Lambda}$ be the discrete series module with Harish-Chandra parameter $\Lambda\in\Xi$ .
By definition this parameter set $\Xi$ is written as a disjoint union of subsets $\Xi(h)$ $:=\{\Lambda\in$

$\Xi|\Lambda$ is $\Delta^{+}(h)$-dominant} $(h\in\Pi_{p,q})$ . Noting that the Gelfand-Kirillov dimension $d(H_{\Lambda})$

is constant on each $\Xi(h)$ (cf. Theorem3.1), one can define a well-defined mapping:

(8.9) $GKD_{p,q}$ : $\Pi_{p,q}\ni harrow d(H_{\Lambda})\in\{0,1,2, \ldots\}$ ,

where $\Lambda\in\Xi(h)$ . W\’e call $GKD_{p,q}$ the Gelfand-Kirillov dimension map for $G=SU(p, q)$ .
Put $\Pi$ $:= \bigcup_{p,q}\Pi_{p,q}$ (disjoint union) by varying the non-negative integers $p$ and $q$ . Then

$GKD_{p,q}$ extends naturally to a function on $\Pi$ with values in $\{0,1,2, \ldots\}$ which we denote
by
(8.10) GKD $= \bigoplus_{p,q}GKD_{p,q}$

.

It should be noticed that, for an integer $n>0$ , the subset $\Pi(n)$ $:=\oplus_{p+q=n}\Pi_{p,q}\subset\Pi$

consists of all mappings from $F(n)$ to $\{a, b\}$ .
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8.2. Recursion formula for GKD. We now define an assignment $R$ on $\Pi$ and de-
scribe the function GKD recursively, by means of $R$ .

Let $h$ be in $\Pi(n)$ with an integer $n>0$ . We say that two elements $i,j\in F(n)$ are
connected with respect to $h$ , or $i\sim j$ for short, if the function $h$ is constant on the segment
$[i,j]\subset F(n)$ . This $\sim$ clearly gives an equivalence relation on $F(n)$ . Each equivalence
class of $(F(n), \sim)$ , viewed as a subset of $F(n)$ , is called an h-connected component of
$F(n)$ .

Take a complete system $J\subset F(n)$ of representatives of the set of h-connected com-
ponents, and let $\zeta$ be the unique bijection

(8.11) $\zeta$ : $F(n)\backslash Jarrow F(n-|h|)$ ,

characterized by
$i<j\Leftrightarrow\zeta(i)<\zeta(j)$ for $i,j\in F(n)\backslash J$.

Here $|h|$ denotes the number of h-connected components.
We define $Rh\in\Pi(n-|h|)$ by

(8.12) $Rh:=ho\zeta^{-1}$ .
Note that $Rh$ is independent of the choice of a set of representatives $J$ . Since $\Pi=$

$\bigcup_{\tau\iota>0}\Pi(n)$ (disjoint union), $R$ : $\Pi(n)arrow\Pi(n-|h|)$ naturally extends to an assingment
defined on $\Pi$ , which we denote by the same letter $R$ .

Based on Proposition 3.2, we can derive the following explicit recursion formula for
the Gelfand-Kirillov dimension map GKD by means of the above map $R$ .

Theorem 8.1. One has for $h \in\Pi(n)=\bigcup_{p+q=\tau},\Pi_{p,q}(n>0)$ ,

(8.13) $GKD(h)=GKD(Rh)+(2n-|h|)(|h|-1)/2$ ,

where we set $GKD(Rh)=0$ for $h’ s$ such that $|h|=n$ .

Corollary 8.1. The Gelfand-Kirillov dimension of an $h\in\Pi(n)$ is given as

(8.14) $GKD(h)=\frac{1}{2}\sum_{k\cdot=0}^{l}(2n_{k}(h)-|R^{k}(h)|)(|R^{k}(h)|-1)$

in terms of the finite sequences of positive integers: $(|R^{k}h|)_{1\leq k\leq l}$ and $(n_{k}(h))_{1\leq k\leq l}$ with
$R^{k}(h)\in\Pi(n_{k}(h))$ . Here $l>0$ is the integer such that $|R^{l}(h)|=n_{l}(h)$ .
Remarks. (i) An $h\in\Pi(n)$ satisfies the condition $|h|=n$ if and only if the Gelfand-
Kirillov dimension $d(H_{\Lambda})$ of corresponding discrete series equals $\#(\Delta_{+})$ , i.e., $H_{\Lambda}$ is large
in the sense of [8, \S 6].

(ii) The sequence $(R^{k}(h))_{k}$ in the above corollary gives a partition of $n$ . It defines
the nilpotent orbit $\mathcal{O}_{\mathfrak{p}_{-}}$ in Proposition 3.2 for the corresponding discrete series, as the
$G_{C}$-orbit through the matrix

(8.15) $J(|h|)\oplus J(|Rh|)\oplus\cdots\oplus J(|R^{l}(h)|)$ ,

where $J(m)$ denotes the Jordan matrix of degree $m$ .
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