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Abstract

Fish schools show a high degree of polarization in absence of a leader or external
stimuli. An attempt is made to model the schooling on the basis of dynamics of
fish swimming, and to describe the collective motion of schooling kinematicaUy.
Mechanics for motion of schooling fish is formulated similarly to gas molecules with
locomotion, inbuilt response of organisms to each other, and fluctuation of motion.
The question addressed is how polarized patterns or structures arise spontaneously.
Transient behavior and onset of the polarized schooling structure are discussed.

1. Introduction

The schooling of fish is one of the most familiar forms of animal social behavior.
Many species of ichthyoid including crustacean form either schools, in which the con-
stituent individuals swim with similar orientation, or swarms, in which the individuals,
though forming a group, have a lesser degree of uniformity in orientation, depending
on their activities or environmental conditions. For examples, herring schools are po-
larized in the daytime but form nonpolarized and loose aggregation at night (Buerkle,
1983); the anchovy schools increase the inter-fish distance at night compared to daytime,
with forming swarms, and the nearest neighbor distance shows very great variation (Aoki
&Inagaki, 1988); the threespine sticklebacks form a nonpolarized school which remain
stationary as each fish forages, and spacing and orientation among the individuals are
variable, however, if alarmed, the same fish quickly move away from the source of distur-
bance, for instance predator, as a cohesive unit, the individuals closely and parallel to each
other, external stimuli force sticklebacks to organize the polarized school (Keenleyside,
1955); mysid shrimps can also exhibit schooling and swarming behavior (Clutter, 1969).
Moreover Partridge (1980) made time series analysis with European minnows and showed
that correlation between instantaneous velocities of fish increased with school size and as
inter-fish distance decreased.
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One of most striking quantities of a school of fish is its synchronization: hundreds of
small fish glide in unison, more like a single organism than a collection of individuals,
and the distance between individuals is uniform (Hunter, 1966; van Olst&Hunter, 1970).
Fish do not need a leader or external stimuli to form polarized structure. Each fish, having
established its position, uses its eyes and its lateral lines simultaneously to measure the
speed of all the other fish in a school (Pitcher, 1979; Partridge, 1982). The correlation
between the velocity of a particular fish and those of other fish in a school is not strong
(Aoki, 1980; Partridge, 1980). The results show that the school has no leader: speed and
direction are not closely related to those of any other single fish. The strong correlations
are observed between the velocity of the individual and average velocity of the entire
school. It then adjusts its own speed to match an average. Thus in a sense the entire
school is the leader and individual is a follower. This leads us to the question of self-
organization (Haken, 1983).

In this paper, the question addressed is how patterns or structures of fish school arise
spontaneously in a setting of collective motion. An attempt is made to reveal mechanisms
underlying self-organization in the fish school. Individual fish are regarded as a particles,
with locomotion and inbuilt response of organisms to each other. The inbuilt response
is supposed to work as two-body interaction, which is internal force acting on one body
due to another body in a group, following Newton’s laws of motion (Okubo, 1980, 1986).
The total internal force produced on one body by a number of the other bodies placed
around it is the vector sum of the individual two-body forces. It should be noted that no
implemented command structure exists between individual and a school, i.e. hierarchical
levels. Let us assume that the system consists of individuals which have all the same
properties and which intend in the same way. Then we wish to show that even such a
system can organize itself into a new macroscopic state with a well-defined structure or,
in other words, a well-defined organization.

2. Dynamics of Fish Swimming

A fish can swim forward by pushing its environmental water backward; the surrounding
in turn reacts to provide thrust to the fish. Performance depends on the balance between
thrust and drag. Since unavoidably the temporal behavior of fish swimming appears to
be random, the motion is supposed to be deterministic in a statistical sense and the
swimming velocity $v$ is regarded as a random variable. Hence the temporal evolution
of the probability density $P(v, t)$ of the process $v(t)$ is assumed to be governed by the
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Fokker-Planck equation

$\frac{\partial}{\partial t}P(v, t)=-\frac{\partial}{\partial v}\cdot(fP)+\epsilon\frac{\partial^{2}P}{\partial v^{2}}$ , (1)

where $f$ describes the systematic evolution of $v(t)$ , and $\epsilon$ the fluctuation around it.
The faster fish swims, the greater the resistance. Thus in the steady state fish moves

at the most probable speed $v_{s}$ such that this propulsion just equals resistance. Hence the
steady state distribution of the velocity $P_{s}(v)$ has maxima at $|v|=v_{s}$ , and a minimum
at $|v|=0$ . Let us express the stationary solution as the following form

$P_{s}(v)=\mathcal{N}\exp\{-U(v)/\epsilon\}$ , (2)

where the function $U(v)$ is defined by $f=- \frac{\partial U}{\partial v}$ , and $\mathcal{N}$ is normalization constant. Then
the function $U(v)$ has minima at $|v|=v_{s}$ , and a local maximum at $|v|=0$ . In order
to facilitate our investigation we will formulate a cumulant expansion around $v=0$ .
Supposing the symmetry of the space, the first and third order terms of a Taylor series
vanish. Thus we will represent $U(v)$ as

$U(v)=- \frac{\kappa}{2}v^{2}+\frac{\kappa\beta}{4}v^{4}$ , (3)

where $v_{s}=\beta^{-\frac{1}{2}}$ , and $\kappa$ is a positive constant. This functional form of $U(v)$ represents
that $P_{s}(v)$ is the non-Gaussian distribution, which arise from the finite steady swimming
speed.

If the stochastic process $v(t)$ is regarded as the Gaussian process, we have the Langevin
equation corresponding to the Fokker-Planck equation (1);

$\frac{dv}{dt}=f+\eta(t)=\kappa(1-\beta v^{2})v+\eta(t)$ , (4)

where $\eta(t)$ is a fluctuating force, and a parameter $\kappa$ represents the rapidity attaining
equilibrium. This equation corresponds to the Newton’s second law of $mo$tion. The first
term on the right is the vector sum of the exerted forces; locomotory force or forward
thrust, and hydrodynamic drag.

3. Dynamical Model for Fish Schooling

Consider a school composed of $N$ fish individuals. Shaw (1969) suggested that school-
ing should be considered as a two order system: the first order is mutual attraction which
is an elementary factor in schooling; the second order is polarization which is different in
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its degree depending on activities of fish, environmental conditions, or among schooling
species. So the interaction between individuals can be divided into two components; $f_{ij}^{(g)}$

for the grouping force, and $f_{ij}^{(p)}$ for the arrayal force, where $f_{ij}$ stands for an internal force
acting on ith body due to $jth$ body in a school. Hence, for a free system (no external
forces), the kinetic equation for the ith individual fish in the school is expressed as

$\frac{dv_{i}}{dt}=\kappa(1-\beta v_{i}^{2})v_{i}+\sum_{j=1}^{N}f_{\dot{x}j}^{(g)}+\sum_{j=1}^{N}f_{ij}^{(p)}+\eta_{i}(t)$ . (5)

All fish in the school are considered equivalent and individual differences between members
are neglected.

Let us assume that the attractive interaction only works in not so long range of the
distance between two individuals. For a large school, $N\gg 1$ , the number-density distri-
bution of grouping organisms is supposed to be uniform almost everywhere, so the same

surroundings are found almost everywhere in the school. Then $\sum_{j=1}^{N}f_{ij}^{(g)}=0$ holds. Partly

because of a limited number of individuals in a school and partly because of nonunifor-

mity in their spatial distribution, the resultant internal force $\sum_{j=1}^{N}f_{ij}^{(g)}$ on an individual also

produces a fluctuating force.
Two neighboring fish tend to swim parallel with each other and to equalize their ve-

locities. Since each individual effectively interacts with a mean field produced by all the
other individuals, that is, the average velocity of the entire school, the arrayal interac-
tion is supposed to depend only on the relative velocity between two individuals. We
approximately express the arrayal force as the first-order term in a Taylor series;

$\sum_{j=1}^{N}f_{ij}^{(p)}=\frac{J}{N}\sum_{j=1}^{N}(v_{j}-v_{i})$ , (6)

where $J$ is the coefficient of arrayal force.
The equation of motion for ith body thus reads

$\frac{dv_{i}}{dt}=\kappa(1-\beta v_{i}^{2})v_{i}+\frac{J}{N}\sum_{j=1}^{N}(v_{j}-v_{i})+\eta_{i}(t)$ . (7)

Here we can regard a parameter $\beta$ as nonlinearity of the system, and $\kappa^{-1}$ as sensitivity
of individual behavior to surrounding companions or environment. The fluctuating force
$\eta_{i}(t)$ will of course have a certain influence on the collective motion of fish schooling. Thus
the system is considered to be coupled to an environment as a noise source. We assume
that the correlation time of the fluctuating force is very short on the typical macroscopic
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time scale of the equations of motion. This allows us to pass to the idealization of the
Gaussian white noise. So we set mean value and variance matrix

\langle $\eta_{i}(t)$ } $=0$ , $\langle\eta_{i}(t)\eta_{j}^{T}(t’)\rangle=2\epsilon\delta_{ij}\delta(t-t’)I$ (8)

respectively, where $\epsilon$ denotes the strength of the fluctuating force, $I$ is the 3 $\cross 3$ unit
matrix, and $\{$ . . . $\}$ describes the ensemble average.

Summing eq.(7)over all individuals in the school and defining the velocity of the center
of mass by

$V \equiv\frac{1}{N}\sum_{j=1}^{N}v_{i}$ , (9)

we reduce eq.(7) to

$\frac{dV}{dt}=\kappa(1-\frac{5}{3}\beta\sigma^{2}(t))V-\kappa\beta V^{2}V+F(t)$ , (10)

where the variance $\sigma^{2}(t)\equiv\{(v_{i}-V)^{2}\}$ , and the Gaussian stochastic force $F(t)$ satisfies
the relation

\langle $F(t)F^{T}(t’)$ } $= \frac{2\epsilon}{N}\delta(t-t’)I$ . (11)

In order to analyze the variance, we investigate eq.(7) with a simple dynamical molec-
ular field theory. The simple dynamical molecular field treatment may be to replace the
nonlinear term $v^{2}(t)v(t)$ by \langle $v^{2}(t)$ } $v(t)$ , where the average \langle $v^{2}(t)$ } is determined self-
consistently using the solution of linearized equation. Thus we arrive at the following
equation

$\frac{d\sigma^{2}}{dt}=-2(J-\kappa+\kappa\beta\langle v^{2}\rangle)\sigma^{2}+6\epsilon$ . (12)

In general the microvariables which exhibit the movement of the constituents vary much
more rapidly the macrovariables which exhibit the collective property. Hence we can
assume that { $v^{2}\rangle$ attains equilibrium faster than { $v\rangle^{2}$ , so supposing $\langle v^{2}$ } $\cong\beta^{-1}$ , we
obtain

$\frac{d\sigma^{2}}{dt}=-2J\sigma^{2}+6\epsilon$, (13)

and the solution is then given by

$\sigma^{2}(t)=\frac{3\epsilon}{J}(1-e^{-2Jt})+\sigma^{2}(0)e^{-2Jt}$ . (14)

Aoki (1980) observed this relaxation phenomenon in experiments, using Gnathopogon
elongatus elongatus school composed of eight individuals. In Fig.1 is shown the comparison
between the theory and observation.
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Consequently we have the asymptotic form of the equation governing the collective
motion of schooling;

$\frac{dV}{dt}=\kappa(1-5\frac{\beta\epsilon}{J})V-\kappa\beta V^{2}V+F(t)$ . (15)

It is seen that for $1-5 \frac{\beta\epsilon}{J}>1$ , fish as a whole tend to perform a rectilinear movement,

thus forming a polarized school structure; on the other hand, for $1-5 \frac{\beta\epsilon}{J}<1$ , the center of
mass of school hardly moves and the unpolarized school performs an amoebic movement
due to the fluctuating force. We can see that the fluctuation can deeply modify the
collective property of the system, i.e. noise induced transition.

We now consider the transient behavior of fish schooling. In the initial region of the
schooling process, since $V\approx O$ , we can linearize the governing equation (10);

$\frac{dV}{dt}=\kappa(1-\frac{5}{3}\beta\langle v^{2}\rangle)V+F(t)$ . (16)

Supposing $\{v^{2}\}\approx\frac{1}{\beta}(1+\frac{5}{4}\frac{\beta\epsilon}{\kappa})$ , which is the equilibrium solution of eq.(4), we obtain

$\langle V^{2}(0)\rangle=\frac{}{1+\frac{25}{8}\frac{\beta\epsilon}{\kappa}}\frac{9}{2}\frac{\epsilon}{\kappa N}$ (17)

Since the variance is written as $\sigma^{2}(t)=(v^{2}(t)\rangle$ $-\langle V^{2}(t)\rangle$ by using the dynamical molecular
field $\{V^{2}(t)\}$ , we can estimate the variance for small $t$ ,

$\sigma^{2}(0)=\frac{1}{\beta}(1+\frac{5}{4}\frac{\beta\epsilon}{\kappa})-\frac{}{1+\frac{25}{8}\frac{\beta\epsilon}{\kappa}}\frac{9}{2}\frac{\epsilon}{\kappa N}$ (18)

This means that the growing rate of the system, $\kappa(1-\frac{5}{3}\beta\sigma^{2})$ , is negative in the initial
time region, $t\approx 0$ . Hence it can be said that \langle $V^{2}(t)$ } expresses the fluctuation of the
velocity of the center of school, V $(t)$ , for rather small $t$ , but that when the fluctuation
grows in amplitude and the order of magnitude of $\langle V^{2}(t)\rangle$ becomes quite different from
initial value of the order of $\epsilon/N$ , symmetry of the system then spontaneously breaks down
at time $t_{1}$ such that 1 $- \frac{5}{3}\beta\sigma^{2}(t_{1})=0$ , namely the transition from initial nonpolarized
form to polarized schooling structure occurs.

Thus the enhancement of the fluctuation is regarded as the essential mechanism of the
formation of polarized schooling structure. The time for this onset of schooling structure
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(19)

is given by $t_{1}$ , then we have

$t_{1}$ $=$ $\frac{1}{2J}\ln(\frac{}{1-5\frac{\beta\epsilon}{J}}\frac{5}{3}[1-3\frac{\beta\epsilon}{J}+\frac{5}{4}\frac{\beta\epsilon}{\kappa}-\beta\{V^{2}(0)\rangle$ $])$

$=$ $\frac{1}{2J}\ln(\frac{}{1-5\frac{\beta\epsilon}{J}}\frac{5}{3}[1-3\frac{\beta\epsilon}{J}\{1-\frac{5}{12}\frac{J}{\kappa}(1-\frac{18}{5}\frac{}{1+\frac{25}{8}\frac{\beta\epsilon}{\kappa}}\frac{1}{N})\}])$ .

The onset time $t_{1}$ has a qualitative meaning around which the nature of fluctuation
changes from microscopic order to macroscopic one. It gives a characteristic time for
the formation process of macroscopic order or structure. It should be noted that the
mechanism for fluctuation enhancement is found to be synergism (or cooperative effect)
of initial fluctuation, random force and nonlinearity of the system. The onset time $t_{1}$

becomes larger, as the initial fluctuation $\{V^{2}(0)\}$ becomes small, or as the strength of the
random force $\epsilon$ and the nonlinearity $\beta$ become large. In addition this time becomes larger,
as the interaction coefficient $J$ becomes small, or the sensitivity $\kappa^{-1}$ and the school size
$N$ become large.

The asymptotical form (15) for the governing equation qualitatively describes a global
feature of the transient behavior of the system. We can systematically investigate the
transient phenomena in the non-equilibrium system near the asymptotically unstable
point on the basis of eq.(15) with the Suzuki’s theory (Suzuki, 1978, 1981; Niwa, $1991a$),
and the solution takes the following asymptotic form;

$\{V^{2}(t)\rangle=\langle V^{2}\}_{st}\frac{\tau}{1+\tau}$ , (20)

where the scaling variable

$\tau=\frac{\beta}{1-5\frac{\beta\epsilon}{J}}\{\begin{array}{l}3\epsilon\{V^{2}(0)\rangle+\frac{\overline{N}}{\kappa(1-5\frac{\beta\epsilon}{J})}\end{array}\}\exp[2\kappa(1-5\frac{\beta\epsilon}{J})t]$ , (21)

and the mean square of the velocity in the stationary state

{ $V^{2} \rangle_{st}\approx\frac{1}{\beta}(1-5\frac{\beta\epsilon}{J})+\frac{}{\kappa(1-5\frac{\beta\epsilon}{J})}\frac{5}{4}\frac{\epsilon}{N}$ (22)

The characteristic time for this onset of schooling structure is then given by $\tau=1$ , thus
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we have the scaling time of the system;

$t_{0}=- \frac{1}{2\kappa(1-5\frac{\beta\epsilon}{J})}\ln[\frac{\beta}{1-5\frac{\beta\epsilon}{J}}\{\begin{array}{ll} 3\epsilon\{V^{2}(0)\rangle+ \frac{\overline{N}}{\kappa(l-5\frac{\beta\epsilon}{J})}\end{array}\}]$ . (23)

The mechanism of school organization is found again to be synergism of initial fluctuation,
random force and nonlinearity of the system.

Fig.2 shows the comparison between the theory and observation for transient behavior
of self-organizing the polarized school structure.

4. Discussion

In this paper we have discussed collective properties of the fish school, where the
constituent individuals are treated similarly to gas molecules following Newton’s laws of
motion. We extracted the dynamic features of self-organization of schooling formation,
namely structural transition and transient behavior of the onset of schooling, by using
nonlinear Langevin equation near the asymptotically instability point. The transient pro-
cess from initial nonpolarized aggregation to polarized school is shown as follows (Sakai,
1973; Aoki, 1980): First, individuals do not yet move as a whole but gather; acciden-
tally removed individuals from companions are appeared; then the other individuals are
quickly attracted toward and follow them, and fish as a whole gradually perform a rec-
tilinear movement; thus forming a polarized structure. These agree with what we have
discussed here; the essential mechanism of the onset of polarized schooling structure is
the macroscopic enhancement of fluctuation from the initial microscopic one, where syn-
ergism or cooperative effect of initial fluctuation, random force and nonlinearity of the
system plays an important role.

Instead of the mutual attractive interaction of short range supposed here, when con-
sidering the long range interaction of a type of Newtonian gravitational attraction, the

resultant internal attraction $\sum_{j=1}^{N}f_{ij}^{(g)}$ produces, as the average, a centrally attractive force

acting on an individual dependent only on the distance from the center. The dynamical
features of collective motion of fish school with the long range grouping force correspond-
ing to Parr-Breader’s model (Breader, 1954) is, however, equivalent to those of school
with the short range interaction, and the same governing equation is also obtained (Niwa,
$1991a)$ . Moreover, it can be shown that in the equilibrium the inter-fish distance in a
school depends on the school size $N$ , and the number-density is deeply affected by the
fluctuating force.
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So far we have assumed the similarity in the swimming ability of schooling members
which depends on body length (Wu, 1977), so that there were not differences between
individuals. This simplified procedure was convenient to extract a basic mechanism of fish
schooling. However, the schools usually consist of individuals within a certain size range
(Aoki&Inagaki 1988), hence a certain permitted limit of the swimming ability. Thus we
are interested in quantitatively determining this permitted limit of swimming ability, with
which individuals adjust their cruising speeds to each other, and form a stable schooling
structure.

In this investigation on schooling, we also supposed that each individual efficiently
interacts with an average velocity of the entire school. However the average which is most
strongly correlated is not the simple arithmetic mean of the speeds and headings of the
members of the school. A fish is much more strongly influenced by the nearest neighbors
than the distant members of the school. The contribution of each fish to the average is
inversely proportional to either the square due to vision, or the cube due to the lateral
line’s sensitivity to water displacement, of the distance (Partridge,1980,1982).

These are another important character of fish schooling. The general theory on their
behavior must take into consideration this situation.

Fish schools, such as Pacific mackerel migrating over enormous distances, are much
more highly organized than those of tropical fishes that inhabit a coral reef. In spatial
heterogeneous environmental condition (for example, the temperature, the concentration
of chemical substance such as salinity), how do such migrant fish organizing a school
swim to find out comfortable place, and then what distribution pattern of the assembly of
schools does resultantly arise in the sea? It is desirable to connect the individual properties
and the stationary distribution of the assembly of schools under a gradient of the marine
environmental condition. Rising temperature causes the chemical machinery of a cold-
blooded vertebrate to turn fast. Thus the environment influences the swimming activity
of a fish via its metabolism (Brett,1964). Whereas the behavior of fish is deterministic
in a statistical sense, so that the environment has also influences on the strength of
its fluctuating movement. If fish swim in a bad environment with stress factor, the
fluctuating movement of the constituents of a school may be enhanced. Hence not only
the swimming activity but also the fluctuation of the individual behavior determines
the features of migration in heterogeneous environment. Furthermore the fluctuation is
important to randomly search the comfortable environment. We are interested in the
influences of the fluctuating movement on the resultant distribution of the assembly of
migratory fish schools in the sea. It can be shown that the fluctuating movement of the
member of a school determines the features of the migrating behavior and the pattern of
resultant distribution of schools in a spatial gradient of the environment, on the basis of
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the nonlinear Langevin equation (15) describing the motion of fish school (Niwa, $1991b$ ).
It is interesting that this model is regarded as a metaphor of the self-organization

of public opinion. Then the parameters may be supposed as follows: $J$ represents the
communicability in a group, $\kappa$ the rapidity with which a person forms his own idea,
and $\beta^{-1}$ the stubborn nature or tenacity for his own opinion. Thus the conditions for
self-organization and global features of forming public opinion are similarly considered.
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Fig.1 Shown is the time dependence of variance of individual velocity in the Gnatho-
pogon school. The curve is based on eq.(14), and points are data from Aoki (1980). Time $t$

and variance $\sigma^{2}(t)$ are normalized with the scaling time of onset of the schooling structure,
$t_{0}=0.85sec$ , and the initial variance, $\sigma^{2}(0)=49.7cm^{2}\sec^{-2}$ .
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Fig.2 Transient behavior of formation of polarized school structure. Shown is the mean
squared velocity of the center of Gnathopogon school based on eq.(20), $Z(t)\equiv\langle V^{2}(t)$ }.
The experimental points are data from Aoki (1980). Time $t$ and mean squared velocity
$Z(t)$ are normalized with the scaling time of onset of the schooling structure, $t_{0}=0.85sec$ ,

and the steady swimming speed squared, $Z_{st}=22.0cm^{2}\sec^{-2}$ .


