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Order Three May Imply 'Order’

Tl L5 8, AR A (Takao Fujimoto)

Abstract. A nonlinear difference equation which diverges cyclically may be
stabilized when time-lag is introduced in a certain way. It is shown by using a
numerical example that while stabilization is impossible when the resulting
difference equation is of order two, it can be made stable when the order is not less
than three. One application is made to stabilize the examples of global instability of
competitive equilibrium by Scarf. Some suggestions are made concerning the

computation of a fixed point, and the shrinkage of chaotic areas.

1. Introduction
Let us consider a linear differential equation in the n-dimensional real Euclidean
space, dx/dt = Ax, where x is an n-column vector and A4 is a given n by n real
matrix. We suppose that each eigenvalue of A4 has a negative or zero real part, and
at least one pair of eigenvalues are pure imaginary numbers, thus in general
exhibiting cyclical movements. When this equation is discretized, we may have
x(t+1) = () + aAdx(t), (1.1)
where a is a positive scalar, and may be called the speed of adjustment. However
small a may be, (1.1) remains unstable.
Now we introduce time-lags into (1.1) as
2(t+1)= (kz(t) + (1 —k)z(t-1)) + aAdx(?), (1.2)

where k is a positive scalar such that 0 < k < 1 . Unfortunately, this device does
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not work in most cases. So, we generalize (1.2) as
w(t+1) = (ol ksx(t-i)) + ada(t), (1.3)
where k;’s are positive scalars such that Zf,okixl, and r=p-+1 shows the order
of eq.1.3). When r is not less than three, (1.3) may be stable with a suitable
choice of k;.
In section 2, we present a simple numerical example which cannot be stabilized
in the form (1.2),i.e.,of order two, but can be stable in the form (1.3) with r=3. A
proof is given that the example cannot be stable when the order is two. In section 3,
our method is applied to nonlinear difference equations. Specifically, we take up the
discrete version of unstable examples by Scarf[2]. In the final section other possible

applications are suggested.

2. An Example

Consider the Euclidean space of dimension two, R? and let 4 be

0 —1
A =
1 0
Then,
2(@+1)= (kx(t) +Lx(t-1) +ma(t-2)) + aAx(t) (2.1)

can be stable with a suitable choice of k, €, m, and a. This is to be confirmed by
way of a simple program bn a computer.
We can prove that (1.2) or
z(t+1) = (kz(t) + fx(t-1)) + aAx(t), (2.2

where k-+£€=1, cannot be stable for any choice of k and £. That is, the matrix
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0 0 1 0T
0 0 0

B =
4 0 k —a
0 ¢ a k

has at least one pair of eigenvalues on the unit circle or outside. To prove this we
use a theorem due to Cohnll,p.115).
Cohn’s Theorem: Suppose the equation f(z)= aoz"+a,2" '+ --4+a»=0 (ays%) has
all its roots within the unit circle, then the equation f(2)4Af*(z)=0 with \|<1
also has all its roots within the unit circle, where
@)= a=z" + a,—12" " ' +---+ao.

{ a is the conjugate of a.) '

The eigenequation of B is

f@y=z"—2kz® +® —2(1 —k) +-a®)z® +2k(1 —k)z +(1 —k)*=0.
Putting A= —(1 —k)?, we form f(z)+\f*(z) and divide this by x to obtain
g(z) =1+ —k))z° -2 —k +1)z° +(k* +2k —2 +a*)z +2(1 —k) =0
Then, divide g(z) by (1+(1—k)°), and putting A=2(1—k)/(1+(1—k)*), we form
g(z) +A\g*(z) and arrange it to have
h(z)=k"(k —2)°z" —2L...Jz+ {k*(k —2)* +(k —1)* 41la’} =0.

Since the coefficient of z° is smaller than the constant term, this quadratic
equation h(z) cannot have its two roots within the unit circle. Thus, at least one
pair of eigenvalues of B cannot lie within the unit circle.

When we consider the case of order three, an interesting phenomenon takes
place. Eq.(2.2) is now changed to

x(t+1) = (kx(t) 4+ Lx(t-1) + mx(t-2)) + aAdx(i), (2.3)

where the coefficients &k, £, and m are all nonnegative, and their sum is unity.
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The associated matrix is

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0
B =

0 0 0 0 0 1

m 0 e 0 k -a

0 m O £ a k

Let us fix m=0.3, and we have the following eigenequation.
a®— 2kz®+ (k*+ 2k— 1.4+ adz’+ 20 k( 0.7— k)— 0.3)%°

+ (k*—0.8k+0.49)z° + 0.6(0.7—k)x+ 0.09 = 0. (2.4)
When a < 1, the modulus of each solution of (2.4) is less than unity whatever value
k may take between 0 and 0.7, implying the asymptotic stability of the difference
equation (2.3) of order 3. Once the speed of adjustment a becomes greater than 1.4
or so, at least one pair of solution is outside(or on) the unit circle regardless of the
value of k. The ‘quickest’(in a loose sense) convergence seems to be realized when a

is around 1.26 and k is roughly between 0.5 and 0.7.

3. Stabilization of Scarf’s Examples

In this section, we again consider R?. One of the unstable examples in Scarfl2] is,
when discretized and normalized(by choosing commodity 3 as the numeraire), is
described as

21(t+1) = x(8) + aE(z(t),x,(1)),

Zo(t+1) = x(8) + aEx(x(t),x,(t)),
where FE = (—x)/(x,+x,) + x3/(x3+2xy), and E, = x/(x,+x2) + (—x3)/ (2, -+23), and
a is the speed of adjustment. Several authors have devised out more elaborate

methods to calculate equilibrium prices because a simple tatonnement process fails
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to converge in this Scarf’s example.See Smale[3]). Using our ’conservative’
mechanism to employ the past prices and average them, the above system can be
stabilized in a simple and ’natural’ way. That is,

z(t+1) = (kx, () +8x(t-1)+mx;(t-2)) + aE(x,(t),x.(8)) for i=1,2.
By selecting k, €, m, a, and an initial vector properly, a solution path converges.
Through a suitable choice, convergence is quite rapid, and the region of initial
vectors which guarantees stability is large enough.

Let us define b(x;3)= ((kz(t)+Lx(t-1)+ma,(t-2), (kx (1) +E€x(t-1) +mx,(t-2)Y,
and call b{(x;3) the benchmark vector of order 3. In the framework of competitive
adjustment of tatonnement process, the benchmark vector provide a basis to conduct
a conservative revision of prices on the side of auctioneer.

The second group of unstable examples in Scarf[2] can be handled in a similar

way. In these examples, however, it seems that we need a system of order four.

4. Remarks

(1) Our simple method can be applied to compute a fixed point in a simple way.

{(2) When the above lagging approach is applied to a system which yields chaotic
movements in a certain region of parameters, the region producing chaos shrinks.

(3) Nonlinear difference equations of the type x(i+1)=x(f)+aF(x(t)), can be
classified according to the minimum order r of the benchmark vector by introducing
which they can be made stable. If any orbit which starts within a compact region is
bounded, can we say the minimum order is finite ?

(4) In the nonlinear case, even when stabilized, we have to ask how large the area is
within which the initial vector is designated and the solution orbit converges to an

equilibrium.
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