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On the multiplicity of periodic solutions
for semilinear parabolic equations

Norimichi Hirano
(横浜国立大学・工)

Abstract.
In the present paper, we consider the multiple existence of T-

periodic solutions of semilinear parabolic equations.

1. Introduction.

Let $\Omega\subset R^{N}$ be a bounded domain with a smooth boundary $\partial\Omega$ . Let
$L$ be a second order uniformly strongly elliptic operator of the form

$Lu=- \sum_{i,j=1}^{N}\frac{\partial}{\partial x_{i}}(a_{ij}(x)\frac{\partial u}{\partial x_{\dot{j}}})$

where the cofficient functions $a_{ij}=a_{ji}$ are real valued functions in
$L^{\infty}(\Omega)$ and satisfies

$\sum_{i,j}a_{ij}(x)\xi_{i}\xi\supset\geq C|\xi|^{2}$
for all $\xi\in R^{n}$ and $x\in\Omega$

for some $C>0$ . We impose the Dirichlet boundary condition on $L$ .
That is

$D(L)=$ { $u\in L^{2}(\Omega):Lu\in L^{2}(\Omega)$ , $u(x)=0$ on $\partial\Omega$ }

Our purpose in note is to report on the multiple existence result
of solutions for the problem of the form
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$\frac{du}{dt}+Lu-g(u)=f(t)$ , $t>0$
$(P)$

$u(0)=u(T)$ ,

Here $T>0,$ $f$ : $[0, \infty$ ) $arrow L^{2}(\Omega)$ is a T-periodic function and $g$ : $Rarrow$

$R$ is a continuous function with $g(O)=0$ .
The existence of periodic solutions for problems of this kind has

been studied by many authors.(See Amann[l] which also contains
many references.) For the multiple existence of the periodic solu-
tions, Amann[l] established a multiplicity result for the problem (P).
To find a solution of (P), we can make use of two approaches. One
way is to work with Poincare map and find fixed points. Another way
is to find sub-and supersolutions of the problem (P). If one can find a
subsolution $\underline{u}$ and a supersolution tt of (P) satisfying $\underline{u}<\overline{u}$, there ex-
ists a solution of (P) between $\underline{u}$ and $\overline{u}$. The method employed in [1] is
based on the super-subsolution method. In [6], the author considered
the multiple exitstence of solutions of (P) by usig the Schauder’s fixed
point theorem and results for multiple solutions of nonlinear elliptic
equations(cf. [2], [3], and [4]). In the present paper, we study the
multiplicity of solutions for (P) by using the argument in [6] and the
degree theory for compact mappings.

To state our result, we need some notations. We denote by $|\cdot|$

the norm of $L^{2}(\Omega)$ . $0<\lambda_{1}<\lambda_{2}\leq\cdots$ stand for the eigenvalues of the
self-adjoint realization in $L^{2}(\Omega)$ of $L$ . The norm of $H_{0}^{1}(\Omega)$ is given by

$||v||^{2}=\langle Lv, v\rangle$ for $v\in H_{0}^{1}(\Omega)$ .

The norm defined above is an equivalent norm with the usual norm
of $H_{0^{1}}(\Omega)$ . $W^{1,p}(0, T;X)(1\leq p\leq\infty)$ stands for the space of func-
tions $u\in L^{p}(0, T;X)$ with $du/dt\in L^{p}(0, T;X)$ , where $du/dt$ is the
derivative in the sence of distribution.

We can now state our main result.

Theorem. Suppose that $g$ satisfes the following $con$ ditions:

(g1) $\sup_{t\in R}g’(t)<\lambda_{2}$ ,
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(g2) $g’(\pm\infty)<\lambda_{1}<g’(0)<\lambda_{2}$ ,

where $g’( \pm\infty)=\lim_{tarrow\pm\infty}g’(t)$ . Then ther$e$ exis$tsM>0$ such that
for each T-periodic function

$f\in W^{1,\infty}(0, T;L^{2}(\Omega))$ satisfyin$g$ $\sup\{|f(t)|:t\in[0, T]\}\leq M$ ,

problem $(P)$ possesses at leas $t$ three $solu$tions in $W^{1,\infty}(0, T;L^{2}(\Omega))$ .

Remark. For the existence of a perioidic solution of (P), we do not
need (g2). In fact, the existence of periodic solution of (P) is known
under much more weaker conditions than (g1).

2. Preliminaries.

In the following we assume that (g1) and (g2) hold. we set $H=L^{2}(\Omega)$ ,
$V=H_{0}^{1}(\Omega)$ , and $V^{*}=H^{-1}(\Omega)$ . We denote by $\langle\cdot, \cdot\rangle$ the pairing of $V$

and $V^{*}$ . $||\cdot||_{*}$ stands for the norm of $H^{-1}(\Omega)$ . For each subset $A\subset V$ ,
int $(A)$ denotes the set of interior point of $A$ . For each $i\geq 1,$ $V_{i}$ denotes
the subspace of $H_{0^{1}}(\Omega)$ spanned by the eigenfunctions corresponding
to the eigenvalues $\{\lambda_{1}, \cdots, \lambda_{i}\}$ , and $\varphi_{i}$ is a normalized eigenfunction
corresponding to $\lambda_{i}$ . Then $\varphi_{1}\in L^{\infty}(\Omega)$ and $V_{1}=\{k\varphi_{1} : k\in R\}$ . $P_{i}$

is the projection from $H$ onto $V_{i}$ for each $i\geq 1$ .

We define a functional $F:Varrow R$ by

$F(v)= \frac{1}{2}\{Lv,$ $v\rangle$ $- \int_{\Omega}\int_{0}^{v(x)}g(\tau)d\tau dx$ for each $v\in V$.

We set

$A_{c}=\{v\in H_{0}^{1}(\Omega):F(v)\leq c\}$ for each $c\in R$ .

Then the problem (P) can be rewritten as

$u_{t}+F’(u)=f(t)$ , $u(O)=u(T)$ . (2.1)

Lemma 1.
(1)

The set $\{s\in R:F(s\varphi_{1})<0\}consists$ of at le$ast$ two intervals :
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(2) The$re$ exis$ts\omega>0$ such that for each $w\in V_{1}$ ,

$<F’(v_{1}+w)-F’(v_{2}+w),$ $v_{1}-v_{2}>\geq\omega||v_{1}-v_{2}||^{2}$ (2.2)

for all $v_{1},$
$v_{2}\in V_{1}^{\perp}$ .

Proof. Since $\lambda_{1}<g’(O)$ , we can see from the definition of $F$ that
if I $s|$ is sufficiently small, $F(s\varphi_{1})<0(=F(O))$ . This implies that
the set $A_{0}=\{s\in R : F(s\varphi_{1})<0\}$ is nonempty. It is easy to see
from the continuity of $F$ that $D$ consists of open intervals. Then since
$F(O)=0$ , the assertion (1) follows.

We put $\omega=1-g’(0)/\lambda_{2}$ . Then since I $v\Vert\geq\lambda_{2}|v|$ for $v\in V_{1}^{\perp}$ ,
we have that

$<F’(v_{1}+w)-F’(v_{2}+w),$ $v_{1}-v_{2}>\geq||v_{1}-v_{2}||^{2}-g’(O)|v_{1}-v_{2}|^{2}$

$\geq\omega||v_{1}-v_{2}||^{2}$

for all $v_{1},$
$v_{2}\in V_{1}^{\perp}$ . 1

Remark. The inequality (2.2) implies that for each $w\in V_{1}$ , the
functional $F(\cdot+w)$ : $V_{1}^{\perp}arrow R$ is strictly convex.

Let $u$ -and $u_{+}$ be elements of $H_{0}^{1}(\Omega)$ such that

$F(u_{-})= \min\{F(v) : v\in V, <P_{i}v, \varphi_{1}><0\}$ ,

and
$F(u_{+})= \min\{F(v):v\in V, <P_{i}v, \varphi_{1}>>0\}$ .

From Lemma 1, $u$ -and $u_{+}$ are well defined and there exist open
intervals $(a_{-}, b_{-})$ and $(a_{+}, b_{+})$ such that

$P_{1}u_{-}\in\{c\varphi_{1} : a_{-}<c<b_{-}\}$ , $P_{1}u_{+}\in\{c\varphi_{1} : a_{+}<c<b_{+}\}$

and

$F(c)<0$ for $c\in\{c\varphi_{1} : a_{-}<c<b_{-}\}\cup\{c\varphi_{1} : a_{+}<c<b_{+}\}$ .
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Here we define subsets $A^{\pm}$ of $V$ by

$A^{\pm}=\{v\in V : F(v)<0, <P_{1}v, \varphi_{1}>\in(a\pm, b\pm)\}$ , (2.3)

respectively. We put

$c \pm=\min$ { $F(s\varphi_{1})$ : sgns $=\pm 1$ }.

For each $i\geq 1$ , we denote by $F_{i}(v)$ the restriction of $F$ to $V_{i}$ , and by
$A(i)_{c}$ the intersection of level set $A_{c}$ with $V_{i}$ . That is

$A(i)_{c}=\{v\in V_{i} : F(v)\leq c\}$ .

We put
$A_{c}^{\pm}=\overline{A\pm}\cap A_{c}$ for each $c>0$ .

Lemma 2. Let $c<0$ such that $c\pm<c$ . Then

$A_{c}^{\pm}$ are non$empty$ bounded an$d$ closed.

Proof. Since $g’(\pm\infty)<\lambda_{1}$ , we have that $F(v)arrow\infty$ , as Il $v||arrow\infty$ .
This implies that $A_{c}$ is bounded. It is obvious from the definition of
$A_{c}^{\pm}$ that $A_{c}^{\pm}$ are closed. 1

For each $i\geq 1$ , we denote by $A(i)_{c}^{\pm}$ the restriction of $A_{c}^{\pm}$ to the
subspace $V_{i}$ . We set

$K(i)_{\pm}=\overline{co}A(i)_{c}^{\pm}$ and $K\pm=\overline{co}A_{c}^{\pm}$ .

Since $A(i)_{c}^{\pm}\subset A^{\pm}$ , we have by (2.3) that

$K(i)_{+}\cap K(i)_{-}=\phi$ .

Then we have that

Lemma 3. There exis$tc\pm,\overline{c}\pm<0wi$th $c\pm<\overline{c}\pm andd>0$ such that

Il Lv–g(v) $||_{*}\geq d$ for all $v\in A_{\overline{c}}^{+_{+}}\backslash A_{c}^{+_{+}}\cup A_{\overline{c}}^{+_{-}}\backslash A_{c-}^{-}$ . (2.4)
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Proof. We choose $c\pm and\overline{c}\pm such$ that $cl(A_{\overline{c}\pm}^{\pm}\backslash A_{c}^{\pm_{\pm}})$ are disjoint from
the set of critical points of $F$ . It is well known that the functional
$F$ satisfies Palais-Smale condition, i.e., any sequence $\{x_{n}\}$ satisfying
$\{F(x_{n})\}$ is bounded and $F’(x_{n})arrow 0$ contains a convergent subse-
quence. If (2.4) does not hold for any $d>0$ , there exists a sequence
$\{x_{n}\}$ such that

$x_{n} \in D=A\frac{+}{c}\backslash A_{c}^{+}\cup A_{\overline{c}}^{-}\backslash A_{c}^{-}$

and $F’(x_{n})arrow 0$ , as $narrow\infty$ . Since $A \frac{\pm}{c}$ are bounded, by Palais-Smale
condition, we have that there exists a convergence subsequence $\{x_{m}\}$

of $\{x_{n}\}$ . Let $v\in V$ such that $x_{m}arrow v$ . Then we have that $v\in D$ and
$\nabla F(v)=0$ . This contradicts the definition of $c\pm and\overline{c}\pm\cdot$ 1

For simplicity of notations, we put $c=c\pm and\overline{c}=\overline{c}\pm\cdot$

Lemma 4. For each $i\geq 1$ , there exist mappings $Q(i)_{\pm}$ : $K(i)_{\pm}arrow$

$A(i)_{c}^{\pm}$ such that $Q(i)_{\pm}$ are continuous an$d$

$Q(i)_{\pm}x=x$ for each $x\in A(i)_{c}^{\pm}$ . (2.5)

Proof. Fix $i\geq 1$ . Let $x\in K(i)_{+}$ . Then $x$ is uniquely decomposed
as $x=x_{1}+x_{2}$ , where $x_{1}\in V_{1}$ and $x_{2}\in V_{1}^{\perp}\cap V_{i}$ . Then since

$C_{x_{1}}=\{v\in V_{1}^{\perp}\cap V_{i} : F(x_{1}+v)\leq c\}$

is nonempty and strictly convex by Lemma 2, we have that there
exists an unique element $\overline{x}\in C_{x_{1}}$ such that

$||x_{2}- \overline{x}||=\min\{||x_{2}-y||:y\in C_{x_{1}}\}$ .

We put $Q(i)_{+}x=x_{1}+\overline{x}$ . Then from the definition, it is obvious
that $Q(i)_{+}x\in A(i)_{c}^{+}$ and that (2.5) holds. The mapping $Q(i)_{-}$ is
defined by the same way. It is easy to see that $Q(i)_{\pm}$ are continuous
on $K(i)_{\pm}$ . 1

3. Proof of Theorem.
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We consider initial value problems of the form

$\frac{du}{dt}-\triangle u-g(u)=f(t)$ , $t>0$
(I)

$u(0)=u_{0}$ , $(u_{0}\in V)$ ,

and

$\frac{dv}{dt}-\triangle v-P_{i}g(v)=P_{i}f(t)$ , $t>0$
$(I_{i})$

$v(0)=v_{0}$ ,

where $i\geq 1$ and $v_{0}\in V_{i}$ .

We define mappings $T_{f}$ : $Varrow V$ and $T_{f^{i}}$, : $V_{i}arrow V_{i}$ by

$T_{f}(u_{0})=u(T)$ , and $T_{f^{i}},(v_{0})=v(T)$

Then it is easy to verify that $T_{f}$ and $T_{f^{i}}$, and continuous on $V$ and
V. From the definition of $T_{f}$ , each fixed point $u$ of $T_{f}$ is a periodic
solution of (P). To prove Theorem, we need a few lemmas.

Lemma 5. There exists a positive number $M$ and such that if $\sup\{|$

$f(t)|:t\in[0, T]\}<M$ , then

$F_{i}(v_{i}(t))<F_{i}(v_{i})$

for all $i\geq 1,$ $v_{i}\in D$ and $t>0$ satisfying

$v_{i}(s)\in D$ for all $s\in[0, t]$ ,

where $v_{i}(\cdot)$ is the solution of $(I_{i})$ with $v_{0}=v_{i}$ . an $dD=A \frac{+}{c}\backslash A_{c}^{+}\cup$

$A_{\overline{c}}^{-}\backslash A_{c}^{-}$ .

Proof. We choose $M>0$ such that $M<d/2$ . Let $i\geq 1$ an $dv_{i}$ be
the solution of $(I_{i})$ with $v_{i}(0)=v;\in D$ an $d$ suppose that ther$e$ exis $ts$
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$t>0$ an$dv_{i}(s)\in D$ for all $s\in[0, t]$ . Then by Lemma 4, we have

$F_{i}(v_{i}(s))-F_{i}(v_{i})$

$= \int_{0}^{s}<F’(v_{i}(\tau)),$ $u_{t}(\tau)>d\tau$

$= \int_{0}^{s}<Lv_{i}(\tau)-g(v_{i}(\tau)),$ $-Lv_{i}(\tau)+g(v_{i}(\tau))+f(\tau)>d\tau$

$\leq\int_{0}^{s}(-|Lv_{i}(\tau)-g(v_{i}(\tau))|^{2}+|Lv_{i}(\tau)-g(v_{i}(\tau))||f(\tau)|)d\tau$

$\leq\int_{0}^{s}|Lv_{i}(\tau)-g(v_{i}(\tau))|(-|Lv_{i}(\tau)-g(v_{i}(\tau))|+|f(\tau)|)d\tau$

$\leq\int_{0}^{s}||Lv_{i}(\tau)-g(v_{i}(\tau))||_{*}(-||Lv_{i}(\tau)-g(v_{i}(\tau))||_{*}+|f(\tau)|)$

$\leq-(d/2)^{2}s+(d/2)\cdot\sup\{|f(t)|:t\in[0, T]\}s<0$

1

From Lemma 5, we have the following lemma.

Lemma 6.

$T_{f^{i}},(A(i)_{c}^{\pm})\subset int(A(i)_{c}^{\pm})$ , for each $i\geq 1$ . (3.1)

Proof. Let $i\geq 1$ and $v\in A(i)_{c}^{+}$ . Let $v_{i}$ be the solution of the
problem $(I_{i})$ with $v_{0}=v$ . If there exists an interval $[0, t]$ such that

$v_{i}(s)\in D\cap V_{i}$ for all $s\in[0, t]$ ,

then by Lemma 5,

$F_{i}(v_{i}(s))<F_{i}(v)\leq c$ for all $s\in[0, t]$ . (3.2)

From the definition of $A(i)_{c}^{+}$ , this implies that $v_{i}(s)\in A(i)_{c}^{+}$ for all
$s\in[0, t]$ . Recalling that the boundary $\{v\in V_{i} : F_{i}(v)=c\}\cap A(i)_{c}$ of
$A(i)_{c}$ is contained in $D$ , we obtain from the observation above that

$F_{i}(v_{i}(s))<F_{i}(v)\leq c$ for all $s>0$ .
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Thus we find that $v_{i}(s)\in int(A(i)_{c}^{+})$ for all $s>0$ . Then from the
definition of $T_{-f^{i}},$ , this implies that $T_{f^{i}},v\in int(A(i)_{c}^{+})$ . By the same
argument, we have that $T_{f^{i}},(A(i)_{c}^{-})\subset int(A(i)_{c}^{-})$ . 1

Lemma 7. For each $i\geq 1$ ,

$deg(I-T_{f^{i}},, K(i)_{\pm}, 0)=1$ .

Proof. Fix $i\geq 1$ . We set

$G_{\pm}(v)=T_{f},;Q(i)_{\pm}v$ for $v\in K(i)_{\pm}$ .

Then by Lemma 6, we have that

$G_{\pm}(v)\in int(A(i)_{c}^{\pm})$ for all $v\in K(i)_{\pm}$

Since $G_{\pm}$ are continuous mappings on bounded closed convex sets in a
finite dimensional space and $G\pm have$ no fixed point on the boundary
of $K(i)_{\pm}$ ,

$deg(I-G_{\pm}, K(i)_{\pm},$ $0$ ) $=1$ .

From the definition of $c_{\pm}$ and Lemma 6, we have that the sets of
fixed points of $G\pm are$ contained in int $(A(i)_{c}^{\pm})$ , respectively. Then it
follows that

$deg(I-G\pm, A(i)_{c}^{\pm},$ $O$ ) $=deg(I-G_{\pm}, K(i)_{\pm},$ $0$ ) $=1$ .

Since $c_{\pm}=T_{f,i}$ on $A(i)_{c}^{\pm}$ , we find that

$deg(I-T_{f};, A(i)_{c}^{\pm},$ $O$ ) $=deg(I-G_{\pm}, A(i)_{c}^{\pm},$ $0$ ) $=1$ .

This completes the proof. 1

Lemma 8. There exis$tse>0$ such that $A_{c}^{+}\cup A_{c}^{-}\subset A_{e}$ an $d$

$deg(I-T_{f,;}, A(i)_{e},$ $0$ ) $=1$ for all $i\geq 1$ .

Proof. Let $e>0$ such that the set of critical points of $F$ is contained
in the interior of $A_{e}$ . Fix $i\geq 1$ . Then since $A_{c}^{+}\cup A_{c}^{-}\subset A_{e}$ , we have
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by Lemma 5 that $T_{f^{i}},(A(i)_{e})\subset int(A(i)_{e})$ . On the other hand, by the
same argument as in Lemma 4, we can define a continuous mapping
$Q_{e}$ : $\overline{co}A(i)_{e}arrow A(i)_{e}$ such that $Q_{e}v=v$ for all $v\in A(i)_{e}$ . Then from
the same argument as in Lemma 7 with $Q\pm replaced$ by $Q_{e}$ , we can
see that the assertion follows. 1

Proof of Theorem. Let $i\geq 1$ . Then by Lemma 7, there exist fixed
points $v_{i}^{+}\in A(i)_{c}^{+}$ and $v_{i}^{+}\in A(i)_{c}^{+}$ . On the other hand, by Lemma 7
and Lemma 8, we have that

$deg(I-T_{f^{i}}, A(i)_{e}\backslash (A_{c}^{+}\cup A_{c}^{-}),$ $0$ ) $=-1$ .

This implies that there exists a fixed point $v_{i}^{0}\in A(i)_{e}\backslash (A_{c}^{+}\cup A_{c}^{-})$ .
Now let $\{v_{i}^{\pm}\}$ and $\{v_{i}^{0}\}$ be sequences obtained by the argument above.
Then since $\{v_{i}^{\pm}\}$ and $\{v_{i}^{0}\}$ are bounded in $V$ , we may assume that $v_{i}^{\pm}$

and $v_{i}^{0}$ converge weakly to $v\pm andv_{0}\in V$ , respectively. Then it is
easy to verify that $v\pm\in K\pm andv_{0}\in V\backslash (K_{+}\cup K_{-})$ are fixed points
of $T_{f}$ . This completes the proof. 1
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