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FLOATING-POINT NUMBER SOLUTIONS
IN A SIMPLE LINEAR EQUATION
WITH ADDITION ALGORITHM

辻 久美子 (Kumiko Tsuji) 九州帝京短期大学経営情報科

Abstract

A model of a floating-point addition $u\oplus v=c$ is established in FORTRAN language. Here the
exponent of $u$ is greater than the exponent of $v$ . The two kinds of simple linear equations $y\oplus v=c$

and $u\oplus x=c$ are solved theoretically. Here $u,$ $v$ and $c$ are given floating-point numbers and $y$ and $x$

are unknown floating-point numbers. The affection of round-off error arising from algorithm is analysed
to the error of the solutions for two kinds of the linear equations. It is shown that the solution $y$ is
machine precision accuracy and $x$ is not always machine precision accuracy.

MODEL OF A FLOATING-POINT ADDITION AND DOMAIN FOR INPUTS
Let $d[e-1,$ $e-t>denote$ a floating-point number with exponent $e$ which has the positions

from $e-1$ to $e-t$ with the bit $d(k)$ at $k$ position for $k=e-1,$ $\ldots,$ $e-t$ . Here $d(e-1)=1$
and $d(k)=1$ or $0$ for $k=e-2,$ $\ldots,$ $e-t$ . Let $T$ be a set of floating-point numbers of
length $t\geq 3$ : $T=\{d[e-1, e-t>;-\infty<e<\infty, d>0\}$ . A model algorithm of $u\oplus v$ is
defined as a mapping from $T\cross T$ to $T$ for a pair $(u, v)$ in $T\cross T$ . The algorithm is defined
as follows: (1) $v$ is correctly rounded so as to the last significant position is $e(u)-t$ and
this value is denoted as $v_{c}:v_{c}=v[e(v)-1,$ $e(u)-t))+v(e(u)-t-1)b^{e(u)-t}$ . (2) $u$ and $v_{c}$

are added: $u+v_{c}=$

$u[e(u)-1,$ $e(u)-t>+v[e(v)-1,$ $e(u)-t))+v(e(u)-t-1)b^{e(u)-t}$ .

Here $v[e(v)-1,$ $e(u)-t))$ is the sub power series in positions from $e(v)-1$ to $e(u)-t$ . Our
algorithm is the case that $e(u+v_{c})=e(u)+1$ . $u+v_{c}$ is $t+1length,$ $u+v_{c}$ is chopped to $t$

length. The floating-point addition is given as
$u\oplus v=u[e(u)-1,$ $e(u)-t+1))+v[e(v)-1,$ $e(u)-t+1))$

$+C(u(e(u)-t), v(e(u)-t),$ $v(e(u)-t-1))b^{e(u)-t+1}$ ,

where $C(x, y, z)$ is the carry to heigher poisition in $x+y+z$ defined as $xy\vee(x\oplus y)z$ . Here
$xy,$ $x\vee y$ and $x\oplus y$ denote respectively AND, OR and Exclusive-OR operations in Boolean
functions.

The algorithm is introduced for one case such that

$e(u+v_{c})=e(u)+1,$ $e(v)+t-2\geq e(u)\geq e(v)+1,$ $uv>0$ .

Let $E$ denote the domain for inputs $u$ and $v$ , and then

$E=\{(u, v) : e(u+v_{c})=e+1,2\leq i\leq t-1, uv>0\}$ ,

putting $e(u)=e,$ $e(c)=e+1$ and $e(v)=e-i+1$ .
ROUND-OFF ERROR OF THE FLOATING-POINT ADDITION
The round-off error of the floating-point addition is defined as $u+v-u\oplus v$ and denoted

as $\delta(u, v)$ . $\delta(u, v)$ is calculated as

$\delta(u, v)=v((e-t,$ $e-i+1-t>$
$-C(u(e-t), v(e-t),$ $v(e-t-1))b^{e-t+1}+u(e-t)b^{e-t}$ .

$v((e-t,$ $e-i+1-t>denote$ a sub power series of $v$ in positions from $e-t$ to $e-i+1-t$ .
Since $\delta(u, v)$ depends only on $u(e-t),$ $\delta(u, v)$ is also denoted as $\delta’(u(e-t), v)$ .
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TRANSPOSED EQUATION $y\oplus v=c$

The linear equation $y+v=c$ is transposed on a computer as $y\oplus v=c$ . The transposed
equation $y\oplus v=c$ has two solutions:

$y[e-1,$ $e-t>=c-v[e-i, e-t+1$ )) $+y(e-t)b^{e-t}$

$-C(y(e-t), v(e-t),$ $v(e-t-1))b^{e+1-t}$ ,

corresponding to the bits $y(e-t)=0,1$ in the least significant position of $y$ . Here $(v, c)$ is
in the trapezoid

$S(i, 0)=\{b^{e-i+1}-b^{e-i+1-t}\geq v\geq b^{e-i}$ ,
$b^{e}-b^{e+1-t}+G(0, v)\geq c\geq b^{e}\}$ .

$G(j, v)$ is a rounding step function in $v$ which is a monotone increasing step function with
step width $p=b^{e+1-t}$ for $j=0,1$ :

$G(j, v)=v[e-i, e-i-t+1))+C(j, v(e-t),$ $v(e-t-1))b^{e+1-t}$ .

For $(v, c)$ in the set
$S(i, 1)-S(i, 0)$

$=\{v(e-t)\oplus v(e-t-1)=1, c=b^{e}+v[e-i, e-t+1))\}$ ,

the equation $u\oplus v=c$ has one solution corresponding to $y(e-t)=1$ .
TRANSPOSED EQUATION $u\oplus x=c$

The linear eqution $u+x=c$ is transposed on a computer as $u\oplus x=c$ . The transposed
equation $u\oplus x=c$ has at most $2^{i-t}$ solutions corresponding to the ways of choosing the
bits in $x((e-t,$ $e-i+1-t>$ ;

$x[e-i,$ $e-i+1-t>=c[e,$ $e+1-t>-u[e-1, e+1-t$))

$-C(u(e-t), x(e-t),$ $x(e-t-1))b^{e-t+1}+x((e-t,$ $e-i+1-t>$ .
The following theorem shows the number of solutions $x$ for $u\oplus x=c$ .
Theorem 1 Let $i$ and $n$ be integers such that

$c[e,$ $e-t+1>-u[e-1, e-t+1$ )) $=b^{e-i}+nb^{e-t+1}$ .

Let IN be an integer such that

$IN=b^{t-2}-u((e-2, e+1-t))b^{-e-1+t}-b^{t-i-1}$ .

Let $NUM$ denote the number of the solutions of $u\oplus x=c$ . Then $NUM$ is given as follows.
1. If $(u, c)\in S_{1}’(i)$ then $0\leq n\leq b^{t-i-1}$ and

$NUM=(1-j)b^{i-1}+b^{i-2}$ for $n=0$ ;

$NUM=b^{i}$ for $1\leq n\leq b^{t-i-1}-1$ ;
$NUM=b^{i-2}+jb^{i-1}$ for $n=b^{t-i-1}$ .

Here S\’i(i) is the trapesoid

$S_{1}’(i)=\{b^{e-i+1}\geq c-u[e-1, e-t+1))\geq b^{e-i}$,

$b^{e}-b^{e-t}\geq u\geq b^{e}-b^{e-i}\}$
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2. If $(u, c)\in S_{2}’(i)$ then $IN\leq n\leq b^{t-i-1}$ and
$NUM=b^{i}$ for $b^{t-i-1}-1\geq n\geq IN$ ;
$NUM=b^{i-2}+jb^{i-1}$ for $n=b^{t-:-1}$ .

Here $S_{2}’(i)$ is the trapesoid
$S_{2}’(i)=\{b^{e-i+1}+u[e-1, e-t+1))\geq c\geq b^{e}$ ,

$b^{e}-b^{e-i}-b^{e-t}\geq u\geq b^{e}-b^{e-i+1}+b^{e+1-t}\}$ .
3. If $c=b^{e}$ and $u=b^{e}-b^{e-i+1}+jb^{e-t}$ with $j=0$ or $j=1$ , then $IN=b^{t-i-1}$ and

$NUM=b^{i-2}+jb^{:-1}$ .
COMPARISON OF ROUND-OFF ERROR FOR TWO SOLUTIONS FOR $u\oplus x=c$ and
$y\oplus v=c$

Since $u\oplus x=c$ ,
$\epsilon(u, x)=(c-u)-x=(u\oplus x-u)-x$

$=-\delta’(u, x)=-\delta’(u(e-t), x)$ .
Since $y\oplus v=c$,

$\epsilon(y, v)=(c-v)-y=(y\oplus v-v)-y$

$=-\delta(y, v)=-\delta’(y(e-t), v)$ .
The following theorem shows that the maximum round-off error of the solutions for

$u\oplus x=c$ and $y\oplus v=c$ ,
is the same $b^{e-t}+b^{e-t-1}-b^{e-t-i+1}$ . Let $D’(t)$ be a set defined as

$D’(t)=\{v[e-i, e-i+1-t>\}$ .
Theorem 2 1. The error function $\epsilon(y, v)$ in $v$ and the error function $\epsilon(u, x)$ in $x$ are

expressed as the same $functions-\delta’(j, \cdot)$ if $y(e-t)=u(e-t)=j$.
2. The function $\delta’(j, v)$ is a piecewise linear periodic function as follows with period $p=$

$b^{e-t+1_{I}}$

$(a)\delta’(j, v)$ is a periodic function with period $p$ :
$\delta’(j, v+p)=\delta’(j, v)$ .

$(b)$ The figure of $\delta’(j, v)$ on the initial half-open interval I is given as follows:
$\delta’(j, v)=v-b^{e-i}+jb^{e-t}$

on $\{b^{e-i}\leq v\leq s_{1}(j, i)-b^{e-i+1-t}\}$ ;
$\delta’(j, v)=v-s_{1}(j, i)-b^{e-t-1}$

on $\{s_{1}(j, i)\leq v\leq b^{e-i}+p-b^{e-i+1-t}\}$ .
Here the initial switching point is

$s_{1}(j, i)=b^{e-i}+b^{e-t-1}+jb^{e-t}$ .
3. Let $e(v)=e(x)=e-i$ . The maximum $of|\delta’(j, v)|$ in $v$ is given as follows:

$\max_{v\in D’(t)}|\delta’(j, v)|=b^{e-t}+b^{e-l-1}-b^{e-t-:+1}$ ,
which is attained at $v=s_{n}(j, i)-b^{e-t-i+1}$ . Here the switching points are

$s_{n}(j, i)=s_{1}(j, i)+(n-1)p$ .
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$0$ Floating-point number solution (bit is 1 at-3 position), $\cross$ Floating-point number s\‘Olution
(bit is $0$ at-3 position)
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By theorem 2, the following results are obtained.

Theorem 3 1. The maximum error is $b^{e-t}+b^{e-t-1}-b^{e-t-:+1}$ .
2. The maximum error is monotone increasing from $b^{e-t}$ to $b^{e-t}+b^{e-t-1}-b^{e-2t+2}$ as $i$

increases from $i=2$ to $i-t-1$ .
3. The $ISP$ is $s_{1}(j, i)=b^{e-i}+b^{e-t-1}+jb^{e-t}$ . The distance of $ISP$ and the initial point

$v=b^{e-i}$ is independent in $i$ .
4. The period is $b^{e-t+1}$ and is independent in $i$ .
5. The number of oscillations in $D’(t)$ is $b^{t-i-1}$ and decreases as $i$ increases.
MA CHIN PRECISION A CCURA $CY$

The machine precision accuracy means that the error takes the positions less than the
least significant position $e(X)-t+1$ for the exact solution $X$ .
Definition 1 The error $\epsilon$ of the solution is called “machine precision accuracy”, if the error
$\epsilon$ satisfies

1 $\epsilon|<b^{e(X)-t+1}$ for the exact solution $X$ .

Theorem 4 1. The error of the solution $y$ is machine precision accuracy for any $v$ and
$c: \max_{x\in D’(t)}$ I $\epsilon(j, v)|<b^{e-t+1}$ .

2. The error of the solution $x$ is not always machine precision accuracy for given $c$ and $u$

The maximum of the round-off error is

$\max_{x\in D’(t)}|\epsilon(j, x)|\geq b^{e-*-t+2}=b^{e(\dot{x})-t+1}$

for the exact solution $\hat{x}$ .

MA$XIM$UM RELA $TIVE$ ERROR
The relative error function $r(y, v)$ in $v$ is defined as

$r(y, v)= \frac{-\epsilon(y,v)}{c-v}$

The relative error function $r(u, x)$ in $x$ is defined as

$r(u, x)= \frac{-\epsilon(u,x)}{c-u}$

In order to use the linearity of the function $\delta’(j, x)$ in $x,$ $r(u, x)$ is rewritten as

$r(u, x)= \frac{\delta’(j,x)}{x-\delta(j,x)}$

Theorem 5 1. The relative error function $r(y, v)$ has the following properties:
$(a)r(y, v_{1})<r(y, v_{2})$ for $v_{2}=v_{1}+p$ .
$(b)$ On $I(n)$ , the relative error function $r(y, v)$ is a piecewise monotone increasing

convex function given as

$r(y, v)= \frac{v-(n-1)p-b^{e-i}+jb^{e-t}}{c-v}$ on $I_{0}^{j}(n)$ ;

$r(y, v)= \frac{v-s_{n}(j,i)-b^{e-t-1}}{c-v}$ on $I_{1}^{j}(n)$ ;
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2. The relative error function $r(u, x)$ has the following properties:
$(a)r(u, x_{1})>r(u, x_{2})$ for $x_{2}=x_{1}+p$ .
$(b)$ On $I(n)$ , the relative error function $r(u, x)$ is a piecewise increasing linear function

given as
$r(u, x)= \frac{x-(n-1)p-b^{e-i}+jb^{e-t}}{(n-1)p+b^{e-i}-jb^{e-t}}$ on $I_{0}^{j}(n)$ ;

$r(u, x)= \frac{x-s_{n}(j,i)-b^{e-t-1}}{s_{n}(j,\dot{\iota})+b^{e-t-1}}$ on $I_{1}^{j}(n)$ ;

The maximum of the relative error function $r(y, v)$ with respect to $v$ is defined as

$mr(y)= \max_{v\in D’(t)}|r(y, v)|$ .

The maximum of relative error function $r(u, x)$ with respect to $x$ is defined as

$mr(u)= \max_{x\in D’(t)}|r(u, x)|$ .

In the following theorem, two maximum of relative errors $mr(y)$ and $mr(u)$ are compared.

Theorem 6 1. The maximum relative error of the solution $y$ is attained at $v=s_{N}(j, i)-$

$b^{e-i+1-t}$ . Here $s_{N}(j, i)$ is the last switching point and $N=b^{t-:-1}$ .
2. The maximum relative error of $y$ is evaluated as

$mr(y)=r(y, s_{N}-b^{e-i+1-t})$

$= \frac{b^{e-t}+b^{e-t-1}-b^{e-t-i+1}}{c-s_{1}(j,i)-(N-1)p+b^{e-:+1-t}}$

$<b^{-t+1}(1-b^{-t+j})$ for $j=0,1$ .

3. The maximum relative error of $x$ is attained at $x=s_{1}(j, i)-b^{e-i+1-t}$ for the initial
switching point $s_{1}(j, i)$ .

4. The maximum relative error of $x$ is evaluated as

$mr(u)=r(u, s_{1}-b^{e-i+1-t})= \frac{b^{1-\ell}(1+b^{-1})-b^{-t+1}}{1-jb^{1-t}}$ .

The following theorem shows that the maximum relative error $mr(u)$ is monotone in-
creasing as the difference $i-1$ of exponents $e(u)=e$ and $e(x)=e-i+1$ increases.

Theorem 7 Put the maximum relative error of $x$ as $mr$

$mr= \frac{b^{i-t}(1+b^{-1})-b^{-t+1}}{1-jb^{1-t}}$

Then $mr$ is monotone increasing from

$\frac{b^{2-t}}{1-jb^{2-t}}$ to $\frac{b^{-1}+b^{-2}-b^{-t+1}}{1-jb^{-1}}$

as $i$ increases from $i=2$ to $i=t-1$ .
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FIGURES OF RELATIVE ERROR FUNCTION
The following figures Fig.3, Fig.4, Fig.5 and Fig. 6 show the relative error functions

$r(j, v)$ of the solution $y$ for the equation $y\oplus v=c$ for $j=0,1_{f}i=2,3$ and $t=4$ . The
results in theorems 4, 5, and 6 are visualized by the figures.

1. The relative error functions are the piecewise monotone increasing convex functions.
2. The switching points are coincide with those of the round-off error functions (see the

figures of round-off error functions in $\Gamma$]).
3. The maximum of relative error is taken in the last interval $I(N)$ with period $p$ . Here

the point of the maximum relative error is denoted by “
$\bullet$

$f$

4. The point which attains the maximum relative error is the left side point adjacent to
the switching point $s_{N}(i,j)$ .

5. The round-off errors are all machine precision accuracy. Here the relative error such
that the round-off error is machine precision accuracy, is denoted by ;;\dagger ‘‘.

$r$

$1000(- 2)1001(- 2)1010(- 2).1011(- 2)1100(- 2)1101(- 2)1110(- 2).1111(- 2)$

$Eu_{Fig^{0}.3}\cdot\ovalbox{\tt\small REJECT}_{eativee’rrorfunctionr(0,v)fori}^{v=c\cdot Periodp=b^{-3}\cdot N=2}=2$ and $t=4$

$s_{1}(1,2)$ $s_{2}(1,2)$

$1000(- 2)1001(- 2).1010(- 2).1011(- 2).1100(- 2).1101(- 2).1110(- 2).1111(- 2)$

$y:solution$ of $y\oplus v=c;p=b^{-3};N=2$
Fig.4 $Relat\iota ve$ error function $r(1, v)$ for $i=2$ and $t=4$
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$0- 2/50$

Equation $y\oplus v=c;p=b^{-2};N=1$

$r(O, v)$ for $i=3$ and $t=4$

Fig.5 Relative error function
\dagger $- 8/50$ \dagger $- 8/49$
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$r$

The following figures Fig.7, Fig.8 , Fig. 9 and Fig. 10 show the relative error functions
$r(j, x)$ of the solution $x$ for the equation $x\oplus v=c$ for $j=0,1_{f}i=2,3$ and $t=4$ . The
results in theorems 4; 5, 6 and 7, are visualized by the figures.

1. The relative error functions are the piecewise increasing linear functions.
2. The switching points are coincide with those of the round-off error functions (see the

figures of round-off error functions in (? ]).
3. The maximum of relative error is taken in the initial interval $I(1)$ with period $p$ .

4. The point which attains the maximum relative error is the point of left side adjacent to
the initial switching point $s_{1}(i, j)$ by one.

5. The round-off errors are not always machine precision accuracy. Here the relative error
such that the round-off error is machine precision accuracy, is expressed by the line “-

$—$

6. The maximum relative error $mr(u)$ is monotone increasing as the difference $i-1$
increases. The maximum relative error 1/4 in Fig. 7 increases to 5/8 in Fig. 9 as $i$

increases from 2 to 3. The maximum relative error 1/3 in Fig. 8 increases to 5/4 in
Fig. 10 as $i$ increases from 2 to 3.
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$r$

Fig.7 Relative error function $r(O, x)$ for $i=2$ and $t=4$

x:solution of $u\oplus x=c;p=b^{-3};N=2$

The above graph shows that 6 points are machine precision accuracy and the other are
not.

$r$

$- 1/15$ $0$

$- 1/10$ $0$

$- 1/5$

Fig.8 Relative error function $r(1, x)$ for $i=2$ and $t=4$

x:solution of $u\oplus x=c$ . $p=b^{-3},$ $N=2$

The above graph shows that 6 points are machine precision accuracy and the other are
not.
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-.0010 $0$

x:solution of $u\oplus x=c,$ $p=b^{-2},$ $N=1$

The above graph shows that only initial point is machine precision accuracy and the other
are not.
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$- \frac{1}{6}$ 0———

In Fig.10, the maximum relative error is the vaue 5/4 which is more than 1. This
phenomenon is analysed as follows. In this case, for given

(1) $u[-1,$ $-4>=.1111$ and $c[0,$ $-3>=1.000$ ,

$u\oplus x=c$ is solved as
$x[-3,$ $-6>=$ . 1001 $(-2)$ ,

since
$u\oplus x=u[-1, -3))+x[-3, -3))+C(u(-4), x(-4),$ $x(-5))b^{-3}$

$=.111+.100(-2)+C(1,0,0)b^{-3}=1.000$ .
For given $u$ and $c$ in (1) $u+x=c$ is solved as $\hat{x}=b^{-4}$ . The error is $\hat{x}-x[-3,$ $-6>=$
$-.101(-3)$ and the relative error is $\frac{101(-3)}{b^{-4}}=5/4$ . The exact solution $\hat{x}$ is extraordinally
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small. In the calculation of $c-u$ , the catastrophic cancellation occurs. In the calculation
of $u+x$ , the carry propagates from the least significant position to the leading position of $c$ .
Thus the round-off error becomes more than the exact solution.
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