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FLOATING-POINT NUMBER SOLUTIONS
IN A SIMPLE LINEAR EQUATION
WITH ADDITION ALGORITHM

i AETF (Kumiko Tsuji) JUNRFUTBASE EFHAY

Abstract

A model of a floating-point addition u@ v = c is established in FORTRAN language. Here the
exponent of u is greater than the exponent of v. The two kinds of simple linear equations y@Pv = ¢
and u @ « = c are solved theoretically . Here u, v and c are given floating-point numbers and y and «
are unknown floating-point numbers. The affection of round-off error arising from algorithm is analysed
to the error of the solutions for two kinds of the linear equations. It is shown that the solution y is
machine precision accuracy and z is not always machine precision accuracy.

MODEL OF A FLOATING-POINT ADDITION AND DOMAIN FOR INPUTS

Let d[e—1,e—t > denote a floating-point number with exponent e which has the positions
from e — 1 to e —t with the bit d(k) at k position for k =e—1,...,e—¢t. Hered(e—1) =1
and d(k) =1 or 0 for k =e—2,...,e —t. Let T be a set of floating-point numbers of
lengtht >3: T = {dle—1,e—1t>;—0c0 <e <oo,d>0}. A model algorithm of u@ v is
defined as a mapping from T' x T to T for a pair (u,v) in T x T'. The algorithm is defined
as follows: (1) v is correctly rounded so as to the last significant position is e(u) — t and
this value is denoted as v.: v, = v[e(v) — 1,e(u) —t)) + v(e(u) — t — 1)b<*)~¢. (2) u and v,
are added: u 4+ v, = '

ule(u) — 1, e(u) —t > +vfe(v) — 1,e(u) = t)) + v(e(u) — t — 1)6=)~,

Here v[e(v) — 1, e(u) —t)) is the sub power series in positions from e(v) — 1 to e(u) —¢. Our
algorithm is the case that e(u + v.) = e(u) + 1. u+ v, is ¢ + 1 length, u + v, is chopped to ¢
length. The floating-point addition is given as

u@v = ule(u) — 1,e(u) —t + 1)) + v[e(v) — 1,e(u) —t + 1))

+C(u(e(u) —t),v(e(u) —t), v(e(u) —t — 1))b€(“)'t+l,

where C(z,y, z) is the carry to heigher poisition in z + y + z defined as zy V (z ® y)z. Here
zy, z Vy and z & y denote respectively AND, OR and Exclusive-OR operations in Boolean
functions.

The algorithm is introduced for one case such that

e(utv) =e(u)+ Le(v)+t—2>e(u) >e(v)+ 1,uv > 0.
Let F denote the domain for inputs u and v, and then
E={(u,v):e(utv)=e+1,2<i<t—1uv >0}

putting e(u) = e, e(c) =e+1and e(v) =e—1+ 1.

ROUND-OFF ERROR OF THE FLOATING-POINT ADDITION

The round-off error of the floating-point addition is defined as u+ v — u @ v and denoted
as 6(u,v). 6(u,v) is calculated as

S(u,v) =v((e—t,e—t+1—1t>
—C(u(e —t),v(e —t),v(e =t — 1))~ 4 u(e — t)b~".

v((e —t,e —i+1—1t > denote a sub power series of v in positions frome —t toe —i+1—1.
Since 6(u, v) depends only on u(e —t), 6(u,v) is also denoted as §'(u(e — t), v).
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TRANSPOSED EQUATION y@uv=c
The linear equation y + v = c is transposed on a computer as y @ v = c¢. The transposed
equation y @ v = ¢ has two solutions:

ye—le—t>=c—vle—i,e—t+ 1))+ yle — )"

—C(y(e —t),v(e —t),v(e —t = 1))b 7,

corresponding to the bits y(e — t) = 0,1 in the least significant position of y. Here (v,c) is
in the trapezoid ' _ ' _
S(Z,O) — {be—t+1 _ be—l+1—t 2 ) Z be—:’

b — b1t + G(0,v) > ¢ > b°}.

G(j,v) is a rounding step function in v which is a monotone increasing step function with
step width p = b**1"t for 7 =0,1:

G(j,v) =v[e —i,e —i—t+ 1)) + C(j,v(e — t),v(e —t — 1))b=T1".

For (v,c) in the set

={U(e—t)®v(e-—-t—-1)=1,C"—‘be+U[€_i>e_t+1))}a

the equation u @ v = ¢ has one solution corresponding to y(e —t) = 1.
TRANSPOSED EQUATION u@®z =c
The linear eqution u + z = ¢ is transposed on a computer as u@ z = ¢. The transposed

equation u@ ¢ = ¢ has at most 2"~ solutions corresponding to the ways of choosing the
bits in z((e —t,e — i+ 1—1t >:

zle—de—i+1—-t>=cle,e+1—t> —ufe—le+1—1))
~C(u(e —t),z(e —t),z(e -t = 1)) + (e —t,e—i+1—1t>.
The following theorem shows the number of solutions z for u@® z = c.
Theorem 1 Let i and n be integers such that
cle,e—t+1>—ufe—1,e—t+1))=b"+nb"*,
Let IN be an i‘nteger such that
| IN = b2 — u((e — 2,e + 1 — £))bme4t — pi=i=1,
Let NUM denote the number of the solutions of u@® z = c. Then NUM 1s given as follows.
1. If (u,c) € Si(i) then0 < n < b and
NUM = (1 - )b 4+ b2 for n=0;
NUM =¥ for1<n<b™ 11,
NUM =b"2 4 jb! for n= b1,
Here Si(3) is the trapesoid
Si(i) = {b" T >c—ule—1,e —t+1)) > b=,
b — bt > u> bt — b}
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2. If (u,c) € S4(3) then IN < n < b*"! and

NUM =V for b1 —1>n>IN;
NUM =b"2 4 jb for n= b1,
Here Si(1) is the trapesoid
Sy = {0 tufe —Le—t4+1)) > c> b,
B — b — b > > bt — pei+l + bt
8. Ifc=10°and u=0b°— b=+ 4 jbet with =0 or j =1, then IN = b1 gnd
NUM = b2 4 b1,
COMPARISON OF ROUND-OFF ERROR FOR TWO SOLUTIONS FOR u@z = ¢ and

ybv=c
Since u@P z = c,

e(uy,z)=(c—u)—z=(u®z—u)—=z

= —8'(u,z) = —=8'(u(e — 1), z).
Since yP v = c,

ev)=(c—-v)-y=(y®v-v)-y
, = —6(y,v) = =6'(y(e — 1), v).
The following theorem shows that the maximum round-off error of the solutions for
uPz=cand yPv =c,
is the same b°~* 4 b==t~1 — pe=t=*+1 Let D'(t) be a set defined as

D'(t)={v[e—1,e—1+1—1t >}
Theorem 2

1. The error function (y,v) in v and the error function e(u,z) in z are
expressed as the same functions —6'(j,-) if y(e —t) = u(e —t) = j.

2. The function §'(j,v) is a piecewise linear periodic function as follows with period p =
be-—t+1..
(a) §'(j,v) is a periodic function with period p:

§'(j,v +p) = §'(5, ).
(b) The figure of §'(§,v) on the initial half-open interval I is given as follows:
8'(j,v) = v — bt + jb=t

on {6 < v < s1(4, 8) — b

§'(J,v) =v—s1(j,1) = b1
on {s1(j,i) < v < b 4 p— b7

Here the instial switching point is
Sl(j, Z) — be—i + pe—t-1 + jbe_t.
3. Let e(v) = e(rc) = e — t. The mazimum of | §'(j,v) | in v is given as follows:

mazeepie | 81, v) |= bt 4 bemt=t — pemt=i+

)
which is attained at v = s,(j,3) — b7+, Here the switching points are

sn(4,8) = s1(4,4) + (n — 1)p.
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Fig.1 Exact solution

= =.1011(2
oryt+v=c y=1111( c (2)
=.1110(1
y (1) =.1010(2)
=.1001(2
y=.1101( @
y=.1100(1) =.1000(2)

o:Exact solution, e: Exact solution which coincides with floating-point number solution.

c=.1011(2)

ory@uv=c

Fig.2. Floatin%-poin number solution !C

y=.1111(%
y=.1110(1)> =.1010(2)
© o4
y=.1101(% |
y=1100(1)x % =.1000(2)
o v
X
y=.1011(1)4%=
y=.1010(1) 72 =100
o _,‘161'6
( v=.101
| )
y=.1001(1 YTid

y=.1000(1)/v=.11i1

¢ Floating-point number solution (bit is 1 at -3 position), x Floating-point number solution
(bit is 0 at -3 position)
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By theorem 2, the following results are obtained.
Theorem 3 1. The mazimum error is b=t 4 bet~1 — pe—t—i+1,

pe—t-1 _ pe—2t+2

2. The mazimum error is monotone increasing from bt to bt + as i

increases fromi =2 to1—t— 1.

3. The ISP is 51(j,%) = be~t + be~t1 4 jbe~t. The distance of ISP and the initial point
v = b°* s independent in 1.

4. The period is b*~t*1 and is independent in 1.

5. The number of oscillations in D'(t) is b**~! and decreases as i increases.
MACHIN PRECISION ACCURACY
The machine precision accuracy means that the error takes the positions less than the
least significant position e(X) —t + 1 for the exact solution X.

Definition 1 The error € of the solution is called "machine precision accuracy”, if the error

€ satisfies
| € |< b=t for the exact solution X.

Theorem 4 1. The error of the solution y is machine precision accuracy for any v and
c: mazzepie) | €(7,v) |< b

- 2. The error of the solution z 1s not always machine precision accuracy for given ¢ and u
. The mazimum of the round-off error is

MaTzeD/(t) | e(5, ) |> pe—i—t+2 — pe(#)-t+1

for the exact solution .

MAXIMUM RELATIVE ERROR
The relative error function r(y,v) in v is defined as

~"E(ya U) .

r(y,v) = ——,

The relative error function r(u,z) in z is defined as

_ -—E(U, IL‘)
r(u,z) = -
In order to use the linearity of the function 6'(j,z) in z, r(u,z) is rewritten as
8'(5,z)
z—6(jz)
Theorem 5 1. The relative error function r(y,v) has the following properties:
(a) r(y,v1) < r(y,v2) for va=v; +p.
(b) On I(n), the relative error function r(y,v) is a piecewise monotone increasing
convez function given as

r(y,v) =

r(u,z) =

v—(n—1)p—b""+ jbt
cC—v

Sn(ja z) - be_t_l

c—v

on Ij(n);

r(y,v) = on I (n);
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2. The relative error function r(u,z) has the following properties:

(a) r(u,z1) > r(u,z2) for z2 =121 +p.
(b) On I(n), the relative error function r(u,z) is a piecewise increasing linear function

given as ‘
_e—(n—Dp-bTigbt
r(uax) - (n _ 1)P+ pe—t — jbe_t on Io(”);
- Y2 be—t—l )
r(u,z) = 2 = $(J, 1) on Ii(n);

$n(J, 1) + bet-1

The mazimum of the relative error function r(y,v) with respect to v is defined as
mr(y) = maz..epie) | r(y,v) | .
The mazimum of relative error function r(u,z) with respect to z is defined as
mr(u) = maz..epre) | r(u, z) | -
In the following theorem, two mazimum of relative errors mr(y) and mr(u) are compared.

Theorem 6 1. The mazimum relative error of the solution y is attained at v = sy(j, ) —
be~*+1=t. Here sy(J,1) 1s the last switching point and N = bt~
2. The mazimum relative error of y is evaluated as

mr(y) = r(y, sy — b ¥

pe—t 4 pe—t=1 _ pe—t—i+1
T o=a(i,) — (N - Dp+ bt
< b1 — b)) for 5 =0,1.
3. The mazimum relative error of z is attained at z = s,(j,1) — b7+~ for the initial
switching point s1(J, ).

4. The mazimum relative error of = is evaluated as

bi—t(l + b-—l) — it
1— jbit '

mr(u) = r(u,s; — be""H_t) =

The following theorem shows that the marimum relative error mr(u) is monotone in-
creasing as the difference i — 1 of exponents e(u) = e and e(z) = e — i + 1 increases.
Theorem 7 Put the mazimum relative error of z as mr

B bi—-t(l + b-—l) _ b—t+1

mr

1— bt
Then mr is monotone increasing from
p2-t b1 4 p=2 — pt+l
. to -
1— jb%t 1— 4671

as i increases fromi =2 toi =1t —1.
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FIGURES OF RELATIVE ERROR FUNCTION

The following figures Fig.8, Fig.4, Fig.5 and Fig. 6 show the relative error functions
r(J,v) of the solution y for the equation y@v = c for j = 0,1, ¢ = 2,3 and ¢t = 4. The
results in theorems 4, 5, and 6 are visualized by the figures.

1. The relative error functions are the piecewise monotone increasing convez functions.

2. The switching points are coincide with those of the round-off error functions (see the
figures of round-off error functions in [7]).

3. The mazimum of relative error is taken in the last interval I(N) with period p. Here
the point of the mazimum relative error is denoted by "e”. A

4. The point which attains the mazimum relative error is the left side point adjacent to
the switching point sy(i,7).

5. The round-off errors are all machine precision accuracy. Here the relative error such
that the round-off error is machine precision accuracy, is denoted by "t”.

r
1/6 1 4/23 {2/11 t 4/20 T 4/19 §2/9
Oi / 11123 Il/11 . o119 * Y0
o -1771 sl
f 4/ t-4n7
=1(0,2) 53(0,2)

.1000(-2) .1001(-2) .1010(-2) .1011(-2) .1100(-2) .1101(-2) .1110(-2) .1111(-2)

E uatzon v=c;Period p=b"3:N
1 3%6?atwe error functzon r(O v) fori=2andt=

3

1/6 2/11 T 4/21 § 4/20 129 1407
1;12 i o2 ® 1/10 A o 1/17
o -1/73 ° REVITIR v
1 -4/23 b 419
31(1)2) 32(1,2)

.1000(-2) .1001(-2) .1010(-2) .1011(-2) .1100(-2) .1101(-2) .1110(-2) .1111(-2)

:solution o v=c;p=b"3N=2
v Fig.4 Rglgt%a)e error functzon r( v) fori=2andt=4
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8/51

bosse  f8/55 1/5t ts/s3 T8/ T8/
05/51
04/52
03/53
02/54
) 01/55 51(0,1) ,
1000(-2) .1001(-2) .1010(-2) .1011(-2) .1100(-2) .1101(-2) .1110(-2) .1111(-2)
o -1/49
o -2/50

Equation y@Quv=c; p=b"2, N=1
r(0,v) fori=3 andt =4
Fig.5 Relative error function

t -8/50 T -8/49
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r
ts/se  18/55
®5/55
$4/56
o 3/49
o 2/50
o1/51
31(113)
.1000(-2) .1001(-2) .1010(-2) .1011(-2) .1100(-2) .1101(-2) .1110(-2) .1111(-2?
0-1/53

0-2/54

Fig.6 Relative error function r(1,v) for i =3 and t = 4
Equation y@v = c; Period p=b"%;N =1

-8/54 + _8/53
1' T / .t -8/52 4‘- -8/51 T -8/50 1- -8/49

The following figures Fig.7, F19.8 , Fig. 9 and Fig. 10 show the relative error functions
r(j,z) of the solution z for the equation t@v =c for j = 0,1, ¢ = 2,3 and t = 4. The
results in theorems 4, 5, 6 and 7, are visualized by the figures.

1.
2.

3.
4.

The relative error functions are the piecewise increasing linear functions.

The switching points are coincide with those of the round-off error functions (see the
figures of round-off error functions in [?]).

The mazimum of relative error is taken in the initial interval I(1) with period p.

The point which attains the mazimum relative error is the point of left side adjacent to
the initial switching point s,(t, j) by one.
The round-off errors are not always machine precision accuracy. Here the relative error

such that the round-off error is machine precision accuracy, is expressed by the line ”-

»
The mazimum relative error mr(u) is monotone increasing as the difference i — 1
increases. The mazimum relative error 1/4 in Fig. 7 increases to 5/8 in Fig. 9 as i
increases from 2 to 8. The mazimum relative error 1/8 in Fig. 8 increases to 5/4 in
Fig. 10 as © increases from 2 to 3.
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MPA line
1/4 po-emmmmmememmeeee- -

e ememeeees 0

1/12

o]
1 81(0, 3) 82(0, 3?’[

_1,12 .1000(-2) .1001(-2) .1010(-2) .1011(-2) .1100(-2) .1101(-2) .1110(-2) o

-1/12 o 1111(-2)
-1/8 -

/6 e

Fig.7 Relative error function r(0,z) fori=2 andt =4
z:solution of u@z=c;p=>0"3;, N =2

The above graph shows that 6 points are machine precision accuracy and the other are
not.

1/3-4--

s | eeeeeeee ©

1/7 e

1/14 o

s1(1,2) - 55(1,2)
0_1000(-2) 1001(-2) .1010(-2) .1011(-2) .1100(-2) .1101(-2) .1110(-2) .1111(-:5)

-1/15 o
-1/10 o e

Y 7 J—
F19.8 Relative error function r(1,z) fori =2 andt =4

z:solution of u@z=c. p=b—3 N =2

The above graph shows that 6 points are machine precision accuracy and the other are
not.
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T

| Fig.9 Relative error function

r(0,z) fori=3 and t =4

--------- -e——--------------------—-----------—----
MPA line

82(0,3) 81(0, 3)

Qm:oo(-z) .1001(-2) .1010(-2) .1011(-2) .1100(-2) .1101(-2) .1110(-2) .1111(5)

z:solution of u@zr=c. p=b"2, N=1

The above graph shows that only initial point is machine precision accuracy and the other

are not.
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1
1.0100 |3 o
Fig.11 Relative_error function
r(l,z) fori=2 andt =4
z:solution of u@Pz =c
1.0000 ¢
0.1000 ---------
0.0100 |} o
e o
1
E (o]

[.)1000(-21) .1001(-2) .1010(-2) .1011(-2) .1130(-2) 1101(-2) .1110(-2) .1111(-%
_— (o]
12

1 Y
6

In Fig.10, the mazimum relative error is the vaue 5/4 which is more than 1. This
phenomenon is analysed as follows. In this case, for given
(1) u[~1,—4 >= 1111 and [0, -3 >= 1.000,
u@z = c 1s solved as

z[-3, —6 >=.1001(-2),
since :
u®z = u[-1,-3)) + 2[-3, =3)) + C(u(—4),z(—4), z(-5))b>
=.111 +.100(—2) + C(1,0,0)b™3 = 1.000.

For given u and ¢ in (1), u+z = c is solved as & = b~*. The error is & — z[-3,—6 >=

—.101(-3) and the relative error is %&—_32 = 5/4. The ezact solution % 1is extraordinally
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small. In the calculation of c — u , the catastrophic cancellation occurs. In the calculation
of u+ z, the carry propagates from the least significant position to the leading position of c.
Thus the round-off error becomes more than the exact solution.
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