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Abstract. Nonlinear boundary value problems (NBVPs in abbreviation) with pa-

rameters are called parametrized nonlinear boundary value problems. This paper studies

numerical verification of simple bifurcation points of parametrized NBVPs defined on

one-dimensional bounded intervals. Around simple bifurcation points the original prob-

lem is extended so that the extented problem has an invertible Fr\’echet derivative. Then,

the usual procedure of numerical verification of solutions can be applied to the extended

problem. A numerical example is given.
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1. Introduction.

For the past several years a theory for numerical verification of solutions of differential

equations has been developed [N1-5], [TN], [WN]. By the theory the existence of exact

solutions of differential equations are verified on computers by certain procedures in finite

steps.

Let A C $R$ be a bounded interval for a parameter. Here we deal with the following

nonlinear two-point boundary value problem with a parameter $\lambda\in\Lambda$ on the bounded

interval $J$ $:=(a, b)$ :

(1.1) $\{$ $u(a)=u(b)=0-u^{u}=f(\lambda, x, u)$

in $J$,

where $f$ : $\Lambda\cross J\cross Rarrow R$ is a given smooth function. Since (1.1) has the parameter $\lambda$ ,

the set of the solutions of (1.1) would form one dimensional curves. There, however, may

exist singular points on the curves. For example, a solution curve might fold (the folding

point is call a turning point), or several solution curves might intersect at one point

(the intersecting point is called a bifurcation point).

Let $(\lambda, u)$ be a solution of (1.1). The above singularities occur when the following

eigenvalue problem has the eigenvalue $\mu=0$ :

(1.2) $L\psi=\mu\psi$ ,

where the differential operator $L$ is defined by

$L\psi$ $:=-\psi^{u}-f_{y}(\lambda, x, u)\psi$ ,

and $f_{y}(\lambda, x, y)$ denotes the derivative of $f$ with respect to $y$ . More precisely, if $\mu=0$ is

not an eigenvalue of (1.2), by the implicit function theorem, there exists a unique solution

curve around $(\lambda, u)$ , and it is parametrized by $\lambda$ . Such a solution curve is called a regular

branch. On regular branches the usual procedure of numerical verification of solutions

of (1.1) can be applied.

Suppose that (1.2) has the eigenvalue $0$ . Then, we have some singularities there; we

may have a turning point or, even worse, a bifurcatin point. In [TN] the case of turning

points was considered.

In this paper we consider the case of bifurcation points. The difficulty of bifurcation

points is as follows. A bifurcation point itself is not only very difficult to compute,

but also very instable under perturbation: it may be disappeared by rounding errors or



131

discretizations. Such a destroyed bifurcation is usually called a numerical imperfect

bifurcation.

Our goal is to establish a new procedure for numerical verification of bifurcation

points. The main idea is as follows: In [W] the original equation is extended around a

simple bifurcation points so that the extended equation has an invertible Fr\’echet deriva-

tive.
$\backslash$

Then a straightforward modification of the usual numerical verification procedure

works well at a bifurcation point.

In the last section a numerical examples is given.

2. Parametrized NBVP and Simple Bifurcation Points.

As is stated in Section 1, we consider the two-point boundary value problem

(2.1) $\{$ $u(a)=u(b)=0-u”=f(\lambda, x, u)$

in $J$,

where $J$ $:=(a, b)CR$ is a bounded interval, and $\lambda\in\Lambda\subset R$ is a parameter.

Let $H_{0}^{1}(J),$ $H^{-1}(J)$ , etc. are the usual Sobolev spaces. In notation we omit ‘ $(J)$

whenever there is no danger of confusion. The weak form of (2.1) is written as

(2.2) Find $u\in H_{0}^{1}$ such that $(u’, v’)=(f(\lambda, x, u), v)$ , for $\forall v\in H_{0}^{1}$ ,

where $(\cdot, \cdot)$ is the inner product of $L^{2}$ defined by $(g, h);= \int_{J}$ ghdx for $g,$ $h\in L^{2}$ . Now,

define the operators $L$ : A $\cross H_{0^{1}}arrow H^{-1}$ and $F$ : A $\cross H_{0^{1}}arrow L^{2}\subset H^{-1}$ by, for $(\lambda, u)\in\Lambda\cross H_{0^{1}}$ ,

(2.3) $<L(\lambda, u),$ $v>;= \int_{J}u’v’dx$ , $\forall v\in H_{0}^{1}$ ,

(2.4) $<F(\lambda, u),$ $v>:= \int_{J}f(\lambda, x, u)vdx$ , $\forall v\in H_{0}^{1}$ ,

where $<.,$ $\cdot>$ is the duality pair of $H^{-1}$ and $H_{0}^{1}$ . Since the inclusion $\iota$ : $L^{2}arrow H^{-1}$ is

compact, the operator $L-F:\Lambda\cross H_{0}^{1}arrow H^{-1}$ is a Fredholm operator of index 1.

For $F$ to be smooth, we suppose the following assumption holds:

Afunction $\psi$ : $\Lambda\cross J\cross Rarrow R$ is called Carath\’eodory continuous if $\psi$ satisfies the

following conditions: for $(\lambda, x, y)\in\cdot\Lambda\cross J\cross R$ ,

$\{\begin{array}{l}\psi(\lambda,x,y)iscontinuouswithrespectto\lambda andyforalmostallx\psi(\lambda,x,y)isLebesguemeasurablewithrespecttoxforall\lambda andy\end{array}$

If $\psi(\lambda, x, y)$ is Carath\’eodory continuous, $\psi(\lambda, x, u(x))$ is Lebesgue measurable with

respect to $x$ for any Lebesgue measurable function $u$ .
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Let $\alpha=(\alpha_{1}, \alpha_{2})$ be’ usual multiple index with respect to $\lambda$ and $y$ . That is, for
$\alpha=(\alpha_{1}, \alpha_{2}),$ $D^{\alpha}f(\lambda, x, y)$ means $\frac{\partial^{|\alpha|}}{\partial\lambda^{\alpha_{1}}\partial y^{\alpha_{2}}}f(\lambda, x, y)$ .

Let $d\geq 1$ be an integer. For $\alpha,$ $|\alpha|\leq d$ , we define the map $F^{\alpha}(\lambda, u)$ for $(\lambda, u)\in\Lambda\cross H_{0}^{1}$

by

(2.5) $F^{\alpha}(\lambda, u)(x)$ $:=D^{\alpha}f(\lambda, x, u(x))$ .

We then assume that

Assumption 2.1. Let $d\geq 2$ . For $\partial ll\alpha,$ $|\alpha|\leq d$ , we $su$ppose that

(1) For $\partial imost$ all $x\in J,$ $D^{a}f(\lambda, x, y)$ exists at any $(\lambda, y)\in\Lambda\cross R$ , and that is Carath\’eodory

contin$uo$us.

(2) The mapping $F^{\alpha}$ defined by (2.5) is a continuous operator from A $\cross H_{0^{1}}$ to $L^{2}$ , and

the image $F^{\alpha}(U)$ of any $bo$unded subset $U\subset\Lambda\cross H_{0}^{1}$ is $bo$unded. $\triangleleft$

Assumption 2.1 is satisfied if $f$ : $\Lambda\cross J\cross Rarrow R$ is, for instance, $C^{d}$ function.

Lemma 2.2. Suppose that $Ass$umption 2.1 holds. Then, the operator $F$ : $\Lambda\cross H_{0^{1}}arrow$

$H^{-1}$ is of $C^{d}$ class, and its parti$al$ derivatives are written as

$<D_{u}F(\lambda, u)\psi,$ $v>$ $=$ $\int_{J}f_{y}(\lambda, x, u(x))\psi vdx$ ,

$<D_{\lambda}F(\lambda, u)\eta,$ $v>$ $=$ $\eta\int_{J}f_{\lambda}(\lambda, x, u(x))vdx$ ,

for $\psi,$ $v\in H_{0}^{1}$ , an$d\eta\in$ R. $\triangleleft$

Now, suppose that $(\lambda_{0}, u_{0})\in\Lambda\cross H_{0}^{1}$ satisfies the following:

(2.6) $\{\begin{array}{l}(L-F)(\lambda_{0},u_{0})=0\in H^{-1}AmKerD_{u}(L-F)(\lambda_{0},u_{0})=1D_{\lambda}(L-F)(\lambda_{0},u_{0})\in ImD_{u}(L-F)(\lambda_{0},u_{0})\end{array}$

We denote $D_{u}(L-F)(\lambda_{0}, u_{0}),$ $D_{\lambda}(L-F)(\lambda_{0}, u_{0})$ by $D_{u}(L-F)^{0},$ $D_{\lambda}(L-F)^{O}$ , re-

spectively. Since $L-F$ is a.nonlinear Fredholm operator of index 1 and (2.6), we know

that that $dimKerD(L-F)^{0}=2$ and $\dim{\rm Im} D(L-F)^{0}=1$ . We also find that $H_{0}^{1}$ can be

decomposed into subspaces

$H_{0}^{1}=V_{0}\oplus KerD_{u}(L-F)^{0}$ ,
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and $D_{u}(L-F)^{0}|_{V_{0}}$ is an isomorphism from $V_{0}$ to ${\rm Im} D_{u}(L-F)^{0}$ . Let $P$ be the inverse

operator of $D_{u}(L-F)^{0}|_{V_{0}}$ . It follows from (2.6) that there exists $\phi_{0}\in H_{0}^{1}$ and $\psi_{0}\in H_{0}^{1}$

such that

(2.7) $\{\begin{array}{l}D_{u}(L-F)^{0}\phi_{0}=0,||\phi_{0}||_{H_{0^{1}}}=1KerD_{u}(L-F)^{0}=span\{\phi_{0}\}ImD_{u}(L-F)^{0}=\{v\in H^{-1}|<v,\psi_{0}>=0\}\end{array}$

Then we assume that

(2.8) $B_{0}^{2}-A_{0}C_{0}>0$ ,

where $A_{0},$ $B_{0}$ , and $C_{0}$ are defined by

$A_{0}$ $:=<D_{uu}^{2}(L-F)^{0}\phi_{0}^{2},$ $\psi_{0}>$ ,

$B_{0}$ $:=<D_{\lambda u}^{2}(L-F)^{0}\phi_{0}+D_{uu}^{2}(L-F)^{0}(\phi_{0}, -PD_{\lambda}^{0}),$ $\psi_{0}>$ ,

$C_{0}$ $:=<D_{\lambda\lambda}^{2}(L-F)^{0}+2D_{\lambda u}^{2}(L-F)^{0}(-PD_{\lambda}^{0})+D_{uu}^{2}(L-F)^{0}(-PD_{\lambda}^{0})^{2},$ $\psi_{0}>$ ,

and $PD_{\lambda}^{0};=P(D_{\lambda}(L-F)^{0})$ .

By $t\backslash$ he Morse Theorem we have the following theorem:

Theorem 2.3. Suppose that Assumption 2.1 holds for $d\geq 2$ . Assume also that (2.6)

and (2.8) are satisfied. Then, there exists an open set of $(\lambda_{0}, u_{0})$ such that the solutions

of

$(L-F)(\lambda, u)=0$

consist in two $C^{d-2}$ branches which intersect transversally at $(\lambda_{0}, u_{0})$ .

A point at which (2.6) and (2.8) are satisfied is called a simple bifurcation point.

To resolve the singularity at a simple bifurcation point, Weber presented in [W] an

extended operator which has an invertible Fr\’echet derivative at the simple bifurcation

point. Let X and $Y$ be Banach spaces defined by

(2.9) $X$ $:=H_{0}^{1}\cross H_{0}^{1}\cross H_{0}^{1}\cross \mathbb{R}\cross R$, $Y$ $:=H^{-1}\cross H^{-1}\cross H^{-}$ $\cross \mathbb{R}\cross R$ ,

with the norms

$|1(x,y,z,a,b)||_{X}$ $:= \max\{||x||_{H_{0^{1}}},||y||_{H_{0^{1}}}, ||z||_{H_{0^{1}}}, |a|, |b|\}$ ,

$| I(p)q,r,c,d)||_{Y}:=\max\{||p||_{H-1},||q||_{H-1},||r||_{H-1}, |c|, |d|\}$ ,



134

for $(x, y, z, a, b)\in X$ and $(p, q, r, c, d)\in Y$ . Let $X_{0};=(H_{0^{1}})^{3}\cross\Lambda\cross R\subset X$ . Suppose that
$(\lambda_{0}, u_{0})\in\Lambda\cross H_{0}^{1}$ is a simple bifurcation point of the equation $L-F=0$ . Then we define

an extended operator $G:X_{0}arrow Y$ by

(2.10) $H(u, r, s, \lambda, \mu)$ $:=($ $(r,r)-1D_{u}(L-F)(\lambda,u)rD(L-F)(\lambda,u)s(r, s)(L_{u}-F)(\lambda,u)+\mu\phi_{+D_{\lambda}(L-F)(\lambda,u)})$ ,

where $(\cdot, \cdot)$ is the $L^{2}$ inner product on the interval $J$ , and $\phi\in H^{-1}$ is taken in a certain

way so that $\phi\not\in{\rm Im} D_{u}(L-F)(\lambda_{0}, u_{0})$ . Weber proved that the equation $H=0$ is an

isolated solution $w_{0};=(u_{0}, r_{0}, s_{0}, \lambda_{0},0)\in X_{0}$ if $(\lambda_{0}, u_{0})\in\Lambda\cross H_{0}^{1}$ is a simple bifurcation

$pointoftheequationL-F=0$.

Now, we rewrite the equation $H=0$ as a fixed point problem. Since $L|_{H_{0^{1}}}$ : $H_{0}^{1}arrow H^{-1}$

is an isomorphism, we define $\Phi\in \mathcal{L}(H^{-1}, H_{0}^{1})$ by $\Phi$ $:=(L|_{H_{0}^{1}})^{-1}$ . It is easy to show that

there exists a positive constant $C_{1}$ such that

(2.11) $||\Phi f||_{H^{2}}\leq C_{1}||f||_{L^{2}}$

for any $f\in L^{2}$ . Note that in this case the constant $C_{1}$ is easily determined, that $\cdot is,$ $C_{1}$ is

available in numerical verification procudure.

We define the operator $G:X_{0}arrow X$ by

(2.12) $G(u, r, s, \lambda, \mu)$ $:=(\begin{array}{l}\Phi(F(\lambda,u)-\mu\phi)\Phi(D_{u}F(\lambda,u)r)\Phi(D_{u}F(\lambda,u)s+D_{\lambda}F(\lambda,u))\lambda+(r,r)-1\mu+(r,s)\end{array})$ .

Then, the equation $H=0$ is now equivalent to the fixed point problem

(2.13) $(u, r, s, \lambda, \mu)=G(u, r, s, \lambda, \mu)$ .

We try to modify the usual procedure of numerical verification to the fixed point problem

(2’. 13).

3. Formulation of Numerical Verification.

Let $S_{h}\subset H_{0^{1}}$ be a finite element space. The projection $P_{h0}$ : $H_{0^{1}}arrow S_{h}$ is defined by

$((u-P_{h0}u)’, v_{h}’)=0$ , $\forall v_{h}\in S_{h}$ .



135

For $S_{h}$ , we suppose the following assumption:

Assumption 3.1. There exists a computable constant $C_{2}$ which is independent of $h$

and $u$ , and satisfies the following estimate:

(3.1) $||u-P_{h0}u||_{H_{0}^{1}}\leq C_{2}h|u|_{H^{2}}$ , $\forall u\in H_{0}^{1}\cap H^{2}$ . $\triangleleft$

It is well known that the finite element space of piecewise linear functions satisfies

Assumption 3.1.

Let $X_{h}=Y_{h}$ $:=(S_{h})^{3}\cross R^{2}$ . The projection $P_{h}$ : $Xarrow X_{h}$ is defined by

(3.2) $P_{h}(u, r, s, \alpha, \beta)$ $:=(P_{h0}u, P_{h0}r, P_{h0}s, \alpha, \beta)$ , for $(u, r, s, \alpha, \beta)\in X$ .

Suppose now that we are dealing with a simple bifurcation point. A finite element

solution of the equation $H=0$ could be defined by

$(u_{h)}’v_{1h}’)-(f(\lambda_{h}, x, u_{h})+\mu_{h}\phi, v_{1h})=0$ ,

$(r_{h}’, v_{2h}’)-(f_{y}(\lambda_{h}, x, u_{h})r_{h}, v_{2h})=0$ ,

(3.3) $(s_{h}’, v_{3h}’)-(f_{y}(\lambda_{h}, x, u_{h})s_{h}-f_{\lambda}(\lambda_{h}, x, u_{h}, v_{3h})=0$ ,

$(r_{h}, r_{h})-1=0$ ,

$(r_{h}, s_{h})=0$ ,

for any $(v_{1h}, v_{2h}, v_{3h})\in(S_{h})^{3}$ . As is stated in Section 1, however, bifurcation may be

destroied by discretization. Therefore, in general, a finite element solution of a simple

bifurcation point does not exist.

Hence we just take $w_{h}$ $:=(u_{h}, r_{h}, s_{h}, \lambda_{h}, \mu_{h})\in X_{h}$ which is (close enough” to the

solution $w_{0}\in X_{0}$ of the equation $H=0$ . In practical computation we try to make the

absolute values of the left-hand side of (3.3) as small as possible. We then assume the

following.

Assumption 3.2. Let $w_{h}$ $:=(u_{h}, r_{h}, s_{h}, \lambda_{h}, \mu_{h})\in X_{h}$ be ‘ fnite element solution”

computed by the above manner. We assume that the restric ted operator $P_{h}(I-DG(w_{h}))|_{X_{h}}$

has the inverse

$[I-DG^{h}]_{h}^{-1}$ : $X_{h}arrow X_{h}$ . $\triangleleft$
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If our “finite element solution” is close enough to the simple bifurcation point, As-

sumption 3.2 is satisfied.

In the sequel, we denote $DG(w_{h})$ and $DF(w_{h})$ by $DG^{h}$ and $DF^{h}$ , respectively.

Next, we introduce notions of rounding and $ro$un$ding$ error. Let $\epsilon,$ $(0<\epsilon<1)$ be a

parameter. We first define the operator $T_{\epsilon}$ : $X_{0}arrow X$ by

(3.4) $T_{\epsilon}$ $:=I-([I-DG^{h}]_{h}^{-1}P_{h}+\epsilon I)(I-G)$ .

Note that if $[I-DG^{h}]_{h}^{-1}P_{h}+\epsilon I$ has an inverse operator, the two fixed point equations

$w=G(w)$ and $w=T_{\epsilon}(w)$ are equivalent. Our main tool of numerical verification has

been the following fixed point theorem (for instance, see [Z]):

Theorem 3.3 (Sadovskii’s Fixed Point Theorem). Let $X$ be a Banach space

and $U\subset X$ $a$ nonempty, boun$ded$, convex, closed subset. Suppose that the nonlinear

operator $T$ : $Uarrow U$ is a $con$densin$g$ map. Then, there exists a fixed point $u\in U$ of $T$ :

$\exists u\in U$ such that $u=Tu$ . $\triangleleft$

Since $T_{\epsilon}$ can be rewritten as

$T_{\epsilon}=(1-\epsilon)I+[I-DG^{h}]_{h}^{-1}P_{h}(I-G)+\epsilon G$ ,

$T_{\epsilon}$ is a condensing map from $X_{0}$ to $X$ . Hence, if we have a nonempty, bounded, convex,

closed subset $U\subset X_{0}$ such that $T_{\epsilon}U\subseteq U$ , we can conclude that there exists a fixed point

of $T_{\epsilon}$ . Moreover, if $[I-DG^{h}]_{h}^{-1}+\epsilon I$ is invertible, the fixed point of $T_{\epsilon}$ is a solutuon of

the equation $H=0$ . Hence, our verification is reduced to the construction of such $U$ on

the memory of computer.

The approximations of an element $u\in H_{0}^{1}$ , a sebset $U\subset H_{0}^{1}$ , and operators defined

on $H_{0^{1}}$ in a certain finite element space $S_{h}$ are called their rounding. The error of the

rounding is called rounding error. These notions are defined by projection.

The rounding $\tilde{T}_{\epsilon}$ of $T_{\epsilon}$ is defined by $\tilde{T}_{\epsilon}$ $:=P_{h}oT_{\epsilon}$ , where $P_{h}$ is the projection defined

by (3.2). Then, we see that

(3.5) $\tilde{T}_{\epsilon}=\tilde{I}-([I-DG^{h}]_{h}^{-1}+\epsilon\tilde{I})(\tilde{I}-\tilde{G})$ ,

where $\tilde{I}$

$:=P_{h}o$ $I$ and $\tilde{G}$ $:=P_{h}oG$ . Let $U\subset X$ . The rounding $R(T_{\epsilon}U)$ is defined as the

image of $\tilde{T}_{\epsilon}$ :

(3.6) $R(T_{\epsilon}U)$ $:=\{w_{h}\in X_{!\iota}|w_{h}=\tilde{T}_{\epsilon}(w),$ $w\in U\}$ .
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We define the rounding error $RE(T_{\epsilon}U)$ by

$\alpha$

$:= \sup_{w\in U}||T_{\epsilon}(w)-\tilde{T}_{\epsilon}(w)||_{X}$ ,

$C$ $:=C_{1}C_{2}$ , ( $C_{1},$ $C_{2}$ are defined by (2.11), (3.1), respectively.),

$RE(T_{\epsilon}U):= \{(\psi_{1}.\psi_{2}, \psi_{3})\in(S_{h}^{\perp})^{3}|\max||\psi_{*}||_{H_{0^{1}}}\leq\alpha,$ $\max_{i}||\psi_{*}\cdot||_{L^{2}}\leq Ch\alpha\}\cross\{(0,0)\}$ .

Note that $RE(T_{\epsilon}U)$ is a subset of $(H_{0^{1}})^{3}\cross\{(0,0)\}$ . Then, as in [TN] and [WN], we have

Theorem 3.4. Let $U\subset X_{0}$ be a nonempty, bounded, convex, closed subset. If

(3.7) $R(T_{0}U)\oplus RE(T_{0}U)\subset Uo$

then, there exists a solution $w\in U$ of the fixed point problem $w=G(w)$ . Here, A C $B$

means closure(A)\subset interior(B).

4. $Nu_{\backslash }$merical Verification.

By Theorem 3.4, in the set $U\subseteq X_{0}$ which satisfies (3.7), there exists at least one solution
$w\in X_{0}$ of the fixed point problem $w=G(w)$ . Therefore, if we construct such $U$ on the

memory of computer, the solution of the fixed point problem is said to verified numerically.

This is what we shall do in this section.

Let $\{\phi_{j}\}_{j=1}^{M}$ be the basis of $(S_{h})^{3}$ . Let $\Theta_{h}$ be the set of linear combinations of intervals

and $\phi_{j}$ :

(4.1) $\Theta_{h}$ $:= \{(\sum_{j=1}^{M}A_{j}\phi_{j},$ $A_{M+1},$ $A_{M+2})|A_{j}\subset R$ are $intervals\}$ .

That is, an element $\omega\in\Theta_{h}$ is the set

$\omega=(\sum_{j=1}^{M}A_{j}\phi_{j},$ $A_{M+1},$ $A_{M+2})$ $:= \{(\sum_{j=1}^{M}a_{j}\phi_{j},$ $a_{M+1},$ $a_{M+2})|a_{j}\in A_{j}\}$ .

Let $R^{+}$ be the set of nonnegative reals. For $\alpha\in \mathbb{R}^{+}$ , we define the set $[\alpha]\subset(S_{h}^{\perp})^{3}\cross$

$\{(0,0)\}\subset(H_{0}^{1})^{3}\cross\{(0,0)\}$ by

(4.2) $[\alpha]$ $:= \{(\psi_{1}.\psi_{2}, \psi_{3})\in(S_{h}^{\perp})^{3}|\max_{i}||\psi_{i}||_{H_{0}^{1}}\leq\alpha,$ $\max_{i}||\psi_{i}||_{L^{2}}\leq Ch\alpha\}\cross\{(0,0)\}$ .

We define the following iteration:
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Definition 4.1. Let $w_{h}\in X_{h}$ be the “finite element solu tion.”

(1) We set $\triangle w_{h}^{0}$ $:=\{w_{h}\}$ and $\alpha_{0}$ $:=0$ as the initial values.

(2) For $n\geq 1$ , we define $U^{n-1}\subset X_{0},$ $\triangle w^{n}\subset X_{h}$ , and $\alpha_{n}\in R^{+}$ inductively by

(4.3) $\{\begin{array}{l}U^{n-1}=\triangle w_{h}^{n-1}+[\alpha_{n-1}]\triangle w_{h}^{0}\cdot.=\tilde{T}_{0}U^{n-1}\alpha_{n}\cdot.=Ch\sup_{y\in U^{n-1}}||\tilde{G}(y)||\end{array}$

where $||\tilde{G}(y)||$ is defined, for $y$ $:=(y_{1}, y_{2}, y_{3}, a, b)\in X$ , by

$||\tilde{G}(y)||$ $:= \max\{||f(a, x, y_{1})-b\phi||_{L^{2}},$ $||f_{y}(a, x, y_{1})y_{2}||_{L^{2}},$ $||f_{y}(a, x, y_{1})y_{3}+f_{\lambda}(a, x, y_{1})||_{L^{2}}\}$ . $\triangleleft$

Note that it is very difficult or impossible to estimate $\triangle w_{h}^{n}$ and $\alpha_{n}$ in (4.3) exactly.

It is, however, possible and easy to enclose each coefficient interval by a slightly bigger

interval, that is, overestimate them (cf. [WN]).

Now, let $\delta>0$ be a small real. We define

(4.4) $\{$
$\tilde{\alpha}.\cdot=\alpha+\delta^{n}\triangle_{n}\tilde{w}_{h}^{n}:=_{n}\triangle w_{h}+(\sum_{j=1}^{M}[-1,1]\delta\phi_{j},$

$[-1,1]\delta,$ $[-1,1]\delta$ ) $)$ ,

The definition of (4.4) is called 6-extension. Let $\tilde{U}$

$:=\triangle\tilde{w}_{h}^{n}+[\tilde{\alpha}_{n}]$ . Let $\triangle\overline{w}_{h}\subset X_{h}$ and
$\overline{\alpha}_{n}\in R^{+}$ be obtained by the iteration (4.3) from $\tilde{U}$ :

(4.5) $\{\begin{array}{l}\triangle\overline{w}_{h}\cdot.=T_{0}U\overline{\alpha}_{n}\cdot.=Ch\sup_{y\in\tilde{U}}||\tilde{G}(y)||\end{array}$

For these sets, the inclusion $\triangle\overline{w}_{h}\subset^{o}\triangle\tilde{w}_{h}^{n}$ is defined by $B_{j}\mathring{C}A_{j}(j=1, \ldots, M+2)$ ,

where $\triangle\tilde{w}_{h}^{n}=(\sum_{j=1}^{M}A_{j}\phi_{j},$ $A_{M+1},$ $A_{M+2})$ and $\triangle\overline{w}_{h}=(\sum_{j=1}^{M}B_{j}\phi_{j},$ $B_{M+1},$ $B_{M+2})$ .

To judge whether or not $\tilde{U}$ is what we want, we have the following theorem:

Theorem 4.2. If we find

(4.6) $\{\begin{array}{l}\triangle\overline{w}_{h}\subset\triangle\tilde{w}_{h}^{n}\overline{\alpha}_{n}<\tilde{\alpha}_{n}\end{array}$

we conclude that there exists a solution $w\in\tilde{U}$ of the fi$xed$
’

poin $t$ problem $w=G(w)$ .
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5. A Numerical Example.

In this section we present an example of numerical verification for the following equation:
$J$ $:=(0,1)$ and

(5.1) $\{$ $u(0)=u(1)=-u”=\lambda u+\sin_{0}(.2\pi x)$

, in J.’

It is easy to check that $(\pi^{2}, \sin(2\pi x/(3\pi^{2}))$ is a simple bifurcation point of (5.1). We

set $\phi(x):=\sin(\pi x)$ . We consider the extended equation

(5.2) $\{\begin{array}{l}-u’’=\lambda u+sin(2\pi x)+\mu\phi-r’’=\lambda r-s’=\lambda s+u(r,r)-1=0,(r,s)=0u(0)=u(1)=r(0)=r(1)=s(0)=s(1)=0\end{array}$

By a simple calculation we find that the equation (5.2) has an isolated solution $w_{0}$ $:=$

$(u_{0}, r_{0}, s_{0}, \lambda_{0},0)\in X_{0}$ , where $u_{0}$ $:=\sin(2\pi x)/(3\pi^{2}),$ $r_{0}$
$:=\sqrt{2}\sin(\pi x),$ $s_{0}$ $:=\sin(2\pi x)/(9\pi^{4})$ ,

and $\lambda_{0}$ $:=\pi^{2}$ .

Let $N;=100$ . We divide $J$ equally into $N$ small intervals. Let $S_{h}$ the finite element

space of piecewise linear funtions.

We try to verify the solution $w_{0}$ . The following are the result of verification. We show
$\tilde{\alpha}_{n}$ and the constructed set $\tilde{U}=(\Sigma_{j=1}^{297}A_{j}\phi_{j}, A_{298}, A_{299})$, where $A_{j}$ $:=[a_{j}, b_{j}]$ .

The iteration number $=5$ ,

$\tilde{\alpha}_{n}=3.147062D-2$ ,
$\lambda_{h}=9.87042\in A_{298}=$ (9.86224, 9.87860) and I $A_{298}|=1.45585D-2$ ,

$\mu=4.80D-15\in A_{299}=(-1.03775D-2,1.03775D-2)$ and $|A_{299}|=2.07550D-2$ ,

$\max_{1\leq:\leq 99}$ I $A_{i}|=2.29400D-2$ ,

$\max_{100\leq 1\leq 198}|A;|=9.01306D-4$ ,

$\max_{199\leq i\leq 297}|A_{i}|=9.95609D-4$ ,
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