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Numerical Verification of
Simple Bifurcation Points

Takuya Tsuchiya™*
(=B % )

Abstract. Nonlinear boundary value problems (NBVPs in abbreviation) with pa-
rameters are called parametrized nonlinear boundary value problems. This paper studies
numerical verification of simple bifurcation points of parametrized NBVPs defined on
one-dimensional bounded intervals. Around simple bifurcation points the original prob-
lem is extended so that the extented problem has an invertible Fréchet derivative. Then,
the usual procedure of numerical verification of solutions can be applied to the extended

problem. A numerical example is given.
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1. Introduction.

For the past several years a theory for numerical verification of solutions of differential
equations has been developed [N1-5], [TN], [WN]. By the theory the existence of ezxact
solutions of differential equations are verified on computers by certain procedures in finite
steps. v

Let A C R be a bounded interval for a parameter. Here we deal with the following

nonlinear two-point boundary value problem with a parameter A € A on the bounded

interval J := (a, b):
—u" = f(A z,u) in J,
(4D { se— oo,

where f: A X J x R — R is a given smooth function. Since (1.1) has the parameter A,
the set of the solutions of (1.1) would form one dimensional curves. There, however, may
exist singular points on the curves. For example, a solution curve might fold (the folding
point is call a turning point), or several solution curves might intersect at one point
(the intersecting point is called a bifurcation point).

Let (A, u) be a solution of (1.1). The above singularities occur when the following

eigenvalue problem has the eigenvalue p = 0:

(1.2) L = py,

where the differential operator L is defined by

L¢ = _1/)” - fy(/\) $,-U)1/),

and f,(}, z,y) denotes the derivative of f with respect to y. More precisely, if u = 0 is
not an eigenvalue of (1.2), by the implicit function theorem, there exists a unique solution
curve around (A, u), and it is parametrized by . Such a solution curve is called a regular
branch. On regular branches the usual procedure of numerical verification of solutions
of (1.1) can be applied.

' Subpose that (1.2) has the eigenvalue 0. Then, we have some singularities there; we
may have a turning point or, even worse, a bifurcatin point. In [TN] the case of turning
points was considered.

In this paper we consider the case of bifurcation points. The difficulty of bifurcation
points is as follows. A bifurcation point itself is not only very difficult to compute,

but also very instable under perturbation: it may be disappeared by rounding errors or
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discretizations. Such a destroyed bifurcation is usually called a numerical imperfect
bifurcation.

Our goal is to establish a new procedure for numerical verification of bifurcation
points. The main idea is as follows: In [W] the original equation is extended around a
simple bifurcation points so that the extended equation has an invertible Fréchet deriva-
tive. Then a straightforward modification of the usual numerical verification procedure
works well at a bifurcation point.

In the last section a numerical examples is given.

2. Parametrized NBVP and Simple Bifurcation Points.

As is stated in Section 1, we consider the two-point boundary value problem

(2.1) { —u" = f(\ z,u) in J,

u(a) = u(b) =0,
where J := (a,b) C R is a bounded interval, and A € A C R is a parameter.
Let Hj(J), H™Y(J), etc. are the usual Sobolev spaces. In notation we omit ‘(J)’

whenever there is no danger of confusion. The weak form of (2.1) is written as

(2.2) Find u€ H; suchthat (u',v')=(f() z,u),v), forVve H},

where (-,-) is the inner product of L? defined by (g, k) := [, ghdz for g,h € L?. Now,
define the operators L : AxH} — H™Yand F : AxH} — L? C H ! by, for (A, u) € AxH{,

(2.3) < L(\u),v >= / u'v'dz, Vv € Hy,
; J :
(2.4) < F(\ u),v >= / f(A z, u)vdz, Vv € Hy,
, J
where < -,- > is the duality pair of H~! and H}. Since the inclusion ¢ : L% — H™1is
compact, the operator L — F : A x Hl — H™' is a Fredholm operator of index 1.
For F to be smooth, we suppose the following assumption holds:

A function ¢ : A x J x R — R is called Carathéodory continuous if 1 satisfies the
following éonditions: for (A\,z,y) €A x J xR,

(A, z,y) is continuous with respect to A and y for almost all z,
Y(A, z, y) is Lebesgue measurable with respect to z for all A and y.

If ¥(\, z,y) is Carathéodory continuous, ¥(}, z,u(z)) is Lebesgue measurable with

respect to z for any Lebesgue measurable function u.



132

Let @« = (a;,a2) be usual multiple index with respect to A and y. That is, for
lal
o = (041,042), Daf()\,:l,',y) means EXQTWf()‘Jx)y) »
Let d > 1 be an integer. For o, |a| < d, we define the map F*(), u) for (A, u) € Ax Hy
by
(25) Fo(, 0)(z) = D*FO\ 2, u(2)).

We then assume that

Assumption 2.1. Let d > 2. For all a, |a| < d, we suppose that

(1) For almost allz € J, D* f(), z,y) exists at any (A, y) € AxR, and that is Carathéodory
continuous. »

(2) The mapping F* defined by (2.5) is a continuous operator from A x H} to L?, and
the image F*(U) of any bounded subset U C A x H} is bounded. <

Assumption 2.1 is satisfied if f : A x J x R — R is, for instance, C¢ function.

Lemma 2.2. Suppose that Assumption 2.1 holds. Then, the operator F : A x H} —

H™' is of C? class, and its partial derivatives are written as

< D,F(\u)yp,v> = /ny()\,m,u(:z:))'t/)vd:q,

< DyF(\un,v> = n/JfA(A,:z:,u(:v))vdw,

forp,v € H}, andn € R. q

Now, suppose that (Ao, up) € A x H; satisfies the following:
(L = F)(Ao,u0) =0€ H,
{ dimKerD, (L — F)(Xo,uo) = 1,
D)‘(L - F)()\(), Uo) € ImDu(L - F)(Ao, Uo).

(2.6)

We denote D,(L — F)(Xo,u0), Da(L — F)(Xo,u0) by Do(L — F)°, Dy(L — F)°, re-
spectively. Since L — F'is a nonlinear Fredholm operator of index 1 and (2.6), we know
that that dimKerD(L — F)° = 2 and dimImD(L — F)® = 1. We also find that H? can be

decomposed into subspaces

Hy = Vo ® KerD, (L — F)°,
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and D,(L — F)°|y, is an isomorphism from V; to ImD,(L — F)°. Let P be the inverse
operator of D,(L — F)°|y,. It follows from (2.6) that there exists ¢ € H] and v € H;

such that
Du(L—F)°¢o=0,  |lgollmy =1,

(2.7) KerD,(L — F)° = span{¢o}, ‘
| ImD,(L — F)° = {v € H™| < v, >= 0}.

Then we assume that

(2.8) BZ — A,Cy > 0,

where Ag, By, and Cy are defined by

Ag :=< DI,(L — F)°$3, ¢ >,
BO =< Dfu(L — F)0¢0 + D?W(L - F)O(¢0; "'PD(A))r "ADO >,
Co :=< D3(L — F)° + 2D3,(L — F)*(=PD3) + D2,(L — F)°(—PDY)%, 4o >,

and PDS := P(Dy(L — F)°).

By the Morse Theorem we have the following theorem:

Theorem 2.3. Suppose that Assumption 2.1 holds for d > 2. Assume also that (2.6)
and (2.8) are satisfied. Then, there exists an open set of (Ag,ug) such that the solutions
of
| (L= F)(\u) =0

consist in two C4~2 branches which intersect transversally at (Ao, uo).

A point at which (2.6) and (2.8) are satisfied is called a simple bifurcation point.
To resolve the singularity at a simple bifurcation point, Weber presented in [W] an
extended operator which has an invertible Fréchet derivative at the simple bifurcation

point. Let X and Y be Banach spaces defined by
(2.9) X:=HyxH;xHy xRxR, Y:=H"'xH'xH'xRxR,
with the norms

(2,9, 2,a,b)llx == max{||zll g3, llyllag, 121y lal, [61},

1(p, 4, 7y ¢, d)lly := max{llplla-1, lglla-1, lrll -+, lel, 1dl },
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for (z,y,2,a,b) € X and (p,q,7,¢,d) €Y. Let Xq := (H3)? x A x R C X. Suppose that
(Ao, uo) € A x Hj is a simple bifurcation point of the equation L — F' = 0. Then we define

an extended operator G : Xy — Y by

(L - F)()‘)u) +/~£¢

D,(L - F)(\ u)r

D,(L — F)(M\u)s+ Dy(L — F)()\, u)
(r,r)—1

(r,9)

where (-, ) is the L? inner product on the interval J, and ¢ € H~! is taken in a certain

way so that ¢ ¢ ImD,(L — F)(Xo,up). Weber proved that the equation H = 0 is an

(2.10) H(u,r, s, p) :=

b

isolated solution wg := (ug, ro, S0, Ao, 0) € Xo if (Ao, ug) € A x H} is a simple bifurcation
point of the equation L — F = 0.

Now, we rewrite the equation H = 0 as a fixed point problem. Since L| g H s H?
is an isomorphism, we define ® € L(H™, Hy) by ® := (L|g3)~". It is easy to show that

there exists a positive constant C; such that

(2.11) 1@ fllz: < Cillfllz2

for any f € L2. Note that in this case the constant C; is easily determined, that is, C; is
available in numerical verification procudure.
We define the operator G : Xqg — X by

S(F (X, u) — ug)
&(D, F(A u)r)

(2.12) G(u,r, s, \ p) = O(D,F (A u)s + DyF(A, u))
A+ (r,r)—1
pt(r,s)

Then, the equation H = 0 is now equivalent to the fixed point problem
(2.13) (u,r, 8, A 1) = G(u,r, s, A, p).

We try to modify the usual procedure of numerical verification to the fixed point problem
(2:13).
3. Formulation of Numerical Verification.

Let S, C H} be a finite element space. The projection Py : H} — S, is defined by

((u— Phou)') ’U;L) =0, Vv, € Sp.
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For S}, we suppose the following assumption:

Assumption 3.1. There exists a computable constant C, which is independent of h

and u, and satisfies the following estimate:
(3.1) lu — Proullgp < Cohlulg2, Yue HyNH?:. <

It is well known that the finite element space of piecewise linear functions satisfies

Assumption 3.1.

Let Xj =Y, := (Si)® x R%. The projection P, : X — X, is defined by
(3.2) Pi(u, 1,5, a, B) := (Prott, Pror, Pros,a, ), for (u,rs,a,p) € X.

Suppose now that we are dealing with a simple bifurcation point. A finite element

solution of the equation H = 0 could be defined by

(U;“ v;h) - (f(Ah’ T, uh) + luh¢> Ulh) = 0;

(T4, v51) — (fy(An, &, up)rh, van) = 0,

(33) (S;w Ugh) - (fy()‘h; "_L‘a Uh)S}; - f/\()‘h) T, Up, USh) = 0)
(T‘h, Th) —~ 1= 0,
('n"h,Sh) = Oa

for any (vin,van,van) € (Si)®. As is stated in Section 1, however, bifurcation may be
destroied by discretization. Therefore, in general, a finite element solution of a simple
bifurcation point does not exist.

Hence we just take wy := (up,Th, Sh, A, 4n) € X which is “close enough” to the
solution wy € X, of the equation H = 0. In practical computation we try to make the
absolute values of the left-hand side of (3.3) as small as possible. We then assume the

following.

Assumption 3.2. Let wy, := ‘(uh,rh,sh,)\h,uh) € X, be “finite element solution”
computed by the above manner. We assume that the restricted operator P,(I—DG(wp))|x,

has the inverse

[[-DG";': Xp— X <
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If our “finite element. solution” is close enough to the simple bifurcation point, As-
sumption 3.2 is satisfied.

In the sequel, we denote DG(w,) and DF(wy) by DG* and DF*, respectively.

Next, we introduce notions of rounding and rounding error. Let ¢, (0 < e < 1) bea

parameter. We first define the operator 7; : Xo — X by
(3.4) T.:=1— ([ - DG"|;' P, + I)(I - G).

Note that if [ — DG*);' P, + €l has an inverse operator, the two fixed point equations
w = G(w) and w = T, (w) are equivalent. Our main tool of numerical verification has

been the following fixed point theorem (for instance, see [Z]):

Theorem 3.3 (Sadovskii’s Fixed Point Theorem). Let X be a Banach space
and U C X a nonempty, bounded, convex, closed subset. Suppose that the nonlinear

operator T' : U — U is a condensing map. Then, there exists a fixed point u € U of T':

JuelU suchthat u=Tu. <«

Since T, can be rewritten as
T.=(1—e)l+[I - DG";*P,(I - G) + G,

T, is a condensing map from X, to X. Hence, if we have a nonempty, bounded, convex,
closed subset U C X, such that T.U C U, we can conclude that there exists a fixed point
of T.. Moreover, if [[ — DG*];! + €I is invertible, the fixed point of T is a solutuon of
the equation H = 0. Hence, our verification is reduced to the construction of such U on
the memory of computer.

The approximations of an element u € H}, a sebset U C H{, and operators defined
on H! in a certain finite element space S, are called their rounding. The error of the
rounding is called rounding error. These notions are defined by projection.

The rounding 7. of T, is defined by T. := P, o T., where P, is the projection defined
by (3.2). Then, we see that -

(3.5) | T.=1-(I-DG";'+ (I - G),

where I := P,oJ and G := P,o G. Let U C X. The rounding R(T.U) is defined as the
image of T.:

(3.6) R(T.U) := {ws € X,

wp, = ﬁ(w), wE U}.
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We define the rounding error RE(T.U) by

a := sup || Ty(w) — T(w)llx,
welU
C = C,0,, (Cy,C, are defined by (2.11), (3.1), respectively.),
RE(TU) = {(ta-ta,va) € (52)° | maxvallg < o max [allze < Cha} x {(0,0).

Note that RE(T.U) is a subset of (H})? x {(0,0)}. Then, as in [TN] and [WN], we have
Theorem 3.4. Let U C X, be a nonempty, bounded, convex, élosed subset. If
(3.7) R(TyU) @ RE(TyU) C U,

then, there exists a solution w € U of the fixed point problem w = G(w). Here, A CB

means closure(A) C interior(B).

4. Numerical Verification.

By Theorem 3.4, in the set U C X, which satisfies (3.7), there exists at least one solution
w € X, of the fixed point problem w = G(w). Therefore, if we construct such U on the
memory of computer, the solution of the fixed point problem is said to verified numerically.
This is what we shall do in this section. | |

Let {4}, be the basis of (S),)%. Let ©, be the set of linear combinations of intervals
and ¢;:

M
(4.1) O := { (Z A;d;, AM+1;AM+2)

i=1

A; CR are intervals} .

ajGAj}.

Let R* be the set of nonnegative reals. For o € R*, we define the set [a] C (Sit)® x
{(0,0)} C (H;)* x {(0,0)} by

That is, an element w € O, is the set

M M
W= (Z Aj¢jaAM+1,AM+2) = {(z a;Pj, am+1, aM+2)

=1 i=1

(42) o] = { (414, ¥s) € (5i)° | maxlilly < o max [illzz < Cha} x {(0, 0)}-

We define the following iteration:
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Definition 4.1. Let w, € X, be the “finite element solution.”
(1) We set Awy, := {ws} and ap := 0 as the initial values.
(2) For n > 1, we define U"™! C X, Aw™ C X3, and o, € R inductively by

U= Awp™ + [a,-1),

(4.3) Ay = T,U™ 1,
@, = Ch sup ||G(y)|l,
yGUn—l

where ||G(y)|| is defined, for y := (1,792,793, 4,b) € X, by
IG()I| = max{||f(a, z,41)~bgllz2, I, (@, 2, y2)wallze, 1 fy (0, 2, 1)+ fala, 2, 90)llze }. - <

Note that it is very difficult or impossible to estimate Aw} and «, in (4.3) exactly.
It is, however, possible and easy to enclose each coeflicient interval by a slightly bigger
interval, that is, overestimate them (cf. [WN]).
Now, let 6 > 0 be a small real. We define
‘ M
ATy = Awp + | Y [-1,1]6¢;,[-1,1)6,[-1,1]6) | ,
(44) 1=1

Op = ap + 6.

The definition of (4.4) is called 6-extension. Let U := Ad? + [6,]. Let Awy, C X, and
&, € R* be obtained by the iteration (4.3) from U:

Ay, = Tofj,
(4.5) &, := Chsup ||G()||.
yeﬁ

‘For these sets, the inclusion Aw@, C Aw} is defined by B, C A, (J=1,..,M+2),

- M- M
where Ad} = (Z Ajd;, AM+1,AM+2) and Ay, = (Z B;¢;, Bu+1, BM+2)-

To judge whether or not U is what we want, we have the following theorem:

Theorem 4.2. If we find
(o) {

(-]
Au‘)h C AQD;:,
Qp < Oy,

we conclude that there exists a solution w € U of the fixed point problem w = G(w).
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5. A Numerical Example.
In this section we present an example of numerical verification for the following equation:

=(0,1) and
. —u" = du + sin(27z), in J,
(5.1) { w(0) = u(1) = 0.

It is easy to check that (72, sin(27z/(37?)) is a simple bifurcation point of (5.1). We
set ¢(z) := sin(wz). We consider the extended equation
( —u" = du+sin(27z) + pe,

—r" = )r,
(5.2) ¢ —s"=As+u,
(r,r)—1=0, (r,s)=0
| u(0) = u(1) =r(0) =r(1) = s(0) = s(1) = 0.
By a simple calculation we find that the equation (5.2) has an isolated solution wp :=

(4o, 70, 50, Ao, 0) € Xo, where ug := sin(27z)/(372), ro := v/2sin(nz), s := sin(27z)/(97),

and Xg := 7

Let N := 100. We divide J equally into N small intervals. Let S, the finite element
space of piecewise linear funtions. '

We try fo verify the solution wy. The following are the result of verification. We show

&, and the constructed set U = ( 297 A;b;, Ageg, Aagg), where A; := [a;, b;].

The iteration number = 5,
&, = 3.147062D-2,
Ap = 9.87042 € Aggg = (9.86224,9.87860) and |As| = 1.45585D-2,
- p=4.80D-15 € Azge = (-—1.03775D—2, 1.03775D-2) and | Az = 2.07550D-2,
max | Al = 2.20400D-2,
| 4i| = 9.01306D-4,
|A;| = 9.95609D—4,

100<t<198

199<t<297
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