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ランチョス・プロセスに基づく
積型反復解法とその一般化
張紹良 藤野清次 (計算流体力学研究所)

Abstract

Recently Bi-CGSTAB as a variant of Bi-CG has been proposed for solving nonsymmetric

linear systems, and its attractive convergence $bei\iota$ aviour has been confirmed in many numeri-

cal experiments. Bi-CGSTAB can be characterized by its residual polynomial which consists

of the product of the residual polynomial of Bi-CG with other polynomial of form generated

from two-term recurrence relations. In this paper, we propose an unified way to generalize

a class of product-type methods $wl\iota ose$ residual polynorrtials can be factored by the residual

polynomial of Bi-CG and other polynomial of form $witl\iota$ standard tlrree-term recurrence re-

lations. Such product-type metlxods that base on Bi-CG can be regarded as generalizations

of Bi-CGSTAB. From $tl\iota e$ unified way, the well-known variants of the product-type metltods,

like CGS, Bi-CGSTAB, Bi-CGSTAB2, are reacquired again.

Key words. Bi-CG, Bi-CGSTAB, CGS, $n$ onsymmetric linear systems, product-type meth-

ods, reconstructing Bi-CG, residual polynonUal, tlrree-term recurrence relations.

AMS(MOS) subject classiflcation. $65F10$

1 Introduction

For solving nonsymmetric linear systems, $tl\iota e$ Bi-Conjugate Gradient (Bi-CG hereafter) $[8, 3]$

was presented as a generalization of the Conjugate Gradient (CG llereafter)[7] for solving sym-

metric positive definte systems. IIowever, operations of transpose matrix-vector multications are

needed in Bi-CG because a Krylov subspace generated from tbe transpose matrix is used. In or-

der to avoid calculating the transpose matrix-vector multiplications and improve the convergence

rate in Bi-CG, recently many $e$ fforts have been devoted to deriving more eIficient methods from

reconstructing Bi-CC. A common technique to design a new metltod $1_{)}y$ means of reconstructing
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Bi-CG is to define its residual polynomial by product of two polynomial factors where one factor

is the residual polynomial of Bi-CG and the other one is an undetermined polynomial of form.

For example, the Conjugate Gradients-Squared (CGS hereafter)[13] and Bi-CGSTAB[16] were

derived from Bi-CG by this teclrnique. In CGS, P. Sonneveld defined the undetermined polyno-

mial of form by the same residual polynomial of Bi-CG, i.e. defined the residual polynomial of

CGS by the square of that of Bi-CG. CGS was recognized as a powerful variant of Bi-CG in a lot

of numerical experiments $[13, 11]$ . In many situations, however, the property of square may cause

the convergence behaviour of CGS to be rather irregular and oscillatory because of the presence

of the round-off errors[16, 17, 6]. Therefore, in Bi-CGSTAB, H. A. Van der Vorst selected a

polynomial of form with two-term recurrence relations instead of one factor of CGS to design

the residual polynomial of Bi-CGSTAB. Since the undetermined parameters with respect to the

residual polynomial of Bi-CGSTAB are chosen at least to minimize the residual norm per itera-

tion, Bi-CGSTAB isarather stable and more efficient variant of Bi-CG. In fact, many numerical

experiments also indicated that Bi-CGSTAB can often run faster and its convergence behaviour

is more smooth than CGS[16, 5, 1]. Besides, M. H. Gutknecht replaced the two-term recurrent

polynomial in Bi-CGSTAB with a three-term recurrent polynomial only at even iterations to

solve linear systems with complex spectrum, and inlplemented tlie algorithm of Bi-CGSTAB2[4].

Bi-CGSTAB2 is explained as a generalizaton of Bi-CGSTAB, say, the combination Bi-CG with

GMRES(2), in the sense that Bi-CGSTAB is tlte combination of Bi-CG with GMRES(1) $[4, 12]$ .

$T1\iota e$ purpose of this paper is to propose an unified way to extend Bi-CGSATB. In the sense

to define $tl\iota e$ undetermined polynomial of form by standard three-term recurrence relations

modelled after the residual polynomial of Bi-CG, we generalize a class of generalizatons of

Bi-CGSTAB by means of reconstruting Bi-CG. Tlte well-known CGS, Bi-CGSTAB and Bi-

CGSTAB2 are included in the generalized product-type methods based on Bi-CG without tlte

disadvantage to store extra iterates like $tl\iota at$ in GMRES[12] and GCR[2]. Tltis paper is organized

as follows: in $tl\iota e$ next section, we introduce $tl\iota e$ background concerned with reconstructing Bi-

CG, and characterize the product-type methods based on Bi-CG. In \S 3, we propose a standard

three-term recurrent polynomial of form to construct the residual polynomial of the product-type
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methods, and derive the recurrence formulas among $tl\iota e$ related iterates. In \S 4, an equivalent

approach to reduce $tl\iota e$ recurrence formulas is $pr$ esented. Several implementations of variants of

the product-type methods are considered, and some well-known variants are recalled in \S 5.

Throughout tltis paper, superscripts BCG, CGS, STA, ST2 are used to distinguish iterates

generated in the algorithms of Bi-CG, CGS, Bi-CGSTAB and Bi-CGSTAB2 respectively.

2 Reconstructing Bi-CG

To begin with, let us consider the solution of the following linear system

(2.1) $Ax=b$

where $A$ is an $N\cross N$ large and sparse nonsymmetric matrix, and always assumed to be nonsin-

gular.

The algorithm of Bi-CG for solving the system (2.1), described first by C. Lanczos[8], was

given by R. Fletcher[3] as follows:

ALGORITHhI 1 Bi-CG
Choose an initial guess $x_{0}^{BCG}$ ,
and set $p_{0}^{BCG}=r_{0}^{BCG}=p_{0}^{BCG}=r_{0}^{BCG}=b-Ax_{0}^{BCG}$ .
For $n=0,1,$ $\cdots$ until $||r_{n}^{BCG}||\leq\epsilon||b||$ do:

$\alpha_{n}=\frac{(r_{n}^{BCG*},r_{n}^{BCG})}{(p_{n}^{BCG},Ap_{n}^{BCG})}$,

$x_{n+1}^{BCG}=x_{n}^{BCG}+\alpha_{n}p_{\mathfrak{n}}^{BCG}$,
$r_{n+1}^{BCG}=r_{n}^{BCG}-\alpha_{n}Ap_{n}^{BCG}$, $r_{n+1}^{BCG}=r_{n}^{BCG}-\alpha_{\iota}A^{T}p_{n}^{BCG*}$ ,

$\beta_{\iota}=\frac{(r_{\hslash+\iota}^{BCG},r_{\mathfrak{n}+\iota}^{BCG})}{(r_{\iota}^{BCG*},,r_{n}^{BCG})}$ ,

$p_{n+1}^{BCG}=r_{n+1}^{BCG}+\beta_{n}p_{n}^{BCG}$ , $p_{n+1}^{BCG}=r_{n+1}^{BCG*}+\beta_{n}p_{n}^{BCG}$‘.

Let $r_{0}^{BCG}$ and $r_{0}^{BCG*}$ be abbreviated as $r_{0}$ and $r_{0}^{*}$ . In the algorithm of Bi-CG, the following

two Krylov subspaces

(2.2) $K_{n}(A;r_{0}):=span\{r_{0}, Ar_{0}, \cdots , A^{n-1}r_{0}\}$ and

(2.3) $K_{n}(A^{T};r_{0}^{*}):=span\{r_{0}^{*}, A^{T}r_{0}^{*}, \cdots, (A^{T})^{n-1}r_{0}^{*}\}$

are generated, and the approximative solution $x_{n}^{BCG}$ is given in such way that the residual
$r_{n}^{BCG}$ ( $=b-Ax_{n}^{BCG}$ theoretically) is made orthogonal with respect to $K_{n}(A^{T}; r_{0}^{*})$ . Therefore, we
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have the following ortltogonalities of Bi-CG[3].

(2.4) $r_{n}^{BCG}\perp K_{n}(A^{T}; r_{0}^{*})$ , and $Ap_{n}^{BCG}\perp K_{l}(A^{T}; r_{0}^{*})$ .

Let $R_{m}$ and $P_{n}$ denote the polynomials corresponding to tlle residual $r_{n}^{BCG}$ and the direction

$p_{n}^{BCG}$ , then the iterates $r_{n}^{BCG},$ $p_{n}^{BCG},$ $r_{n}^{BCG*}$ and $p_{n}^{BCG*}$ can been expressed as follows:

(2.5) $r_{n}^{BCG}=R_{\tau\iota}(A)r_{0},$ $p_{n}^{BCG}=P_{\iota}(\Lambda)r0,$ $r_{n}^{BCG*}=R_{n}(A^{T})r_{0}^{*},$ $p_{n}^{BCG*}=P_{n}(A^{T})r_{0}^{*}$ .

$R_{n}$ is the residual polynomial of Bi-CG, and so-called the Lanczos polynomial. Notice that

the basic recurrence relations between $R$, and $P_{n}$ hold as follows:

$R_{0}(\lambda)=1$ , $P_{0}(\lambda)=1$ ,

(2.6) $R_{n+1}(\lambda)=R_{n}(\lambda)-\alpha_{n}\lambda P_{n}(\lambda)$ , $P_{n+1}(\lambda)=R_{n+1}(\lambda)+\beta_{n}P_{n}(\lambda)$ , for $n=1,2,$ $\cdots$ ,

Throughout this paper, it is always assumed that the residual $r_{n}^{BCG}$ is convergent towards

zero. In tlte sequel, it is known that two disadvantages appear in the algorithm of Bi-CG:

. to construct the sequence of the residuals $r_{0}^{BCG}$
’

$r_{1}^{BCG}$ ’. . , $r_{n}^{BCG}$ in the $I\{rylov$ subspace

$K_{n}(A, r_{0}),$ $onehastousetheKrylovsubspaceK_{n}(A^{T}, r_{0}^{*})sothattheoper$ations of trans-

pose matrix-vector multiplications appear per iteration;

. although $r_{n}^{BCG}$ “ also converges towards zero, this convergeltce property can not be exploited

directly for improving the convergence rate of the residual $r_{n}^{BCG}$ .

Next, an unified way to remedy above disadvantages is proposed. Here, we attempt to use a

polynomial $H_{n}$ to accelerate $r_{n}^{BCG}$ , say, make $H_{n}(A)r_{n}^{BCG}(=H_{n}(A)R_{\triangleleft\iota}(A)r_{0})$ converge towards

zero fast. By doing so, we can derive a class of methods which have product-type residual

polynomial from reconstructing Bi-CG. Here, we characterize the product-type metltods based

on Bi-CG by the following process:

. residual polynomial of a product-type method is defined by product of the following two

$n$ degree polynomials of forms

(27) $H_{\iota}(\lambda)R_{n}(\lambda)$

where $R$ is the Lanczos polynomial and $fI_{n}$ is undetermined.
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In the product-type methods, $r_{n}^{BCG}$ “ would be never formed, nor the transpose matrix-vector

multiplications would be needed. According to the description above, we know that CGS, Bi-

CGSTAB and Bi-CGSTAB2 all belong to such kind of product-type methods based on Bi-CG.

In general, when one attempts to derive a new product-type method from Bi-CG, one would

encounter the following $tl\iota ree$ problems:

(A) by means of establishing new formulas, to compute tlte first-kind of parameters $\alpha_{n}$ and

$\beta_{n}$ which are used to determine $R_{\iota}$ ;

(B) to define the construction of $H_{t)}$.

(C) by analyzing $tl\iota e$ stability of the methods, to compute the second-kind of parameters

which are used to determine $H_{n}$ . This aspect is the key-point to design the product-type

methods.

In fact, the problem (A) can be solved by a technique depended on tlte orthogonalities (2.4).

This technique is due to P. Sonneveld[13], and developed later by H. A. Van der Vorst[16].

Notice that $r_{n}^{BCG}$“ and $p_{n}^{BCG*}$ can be written as

$r_{n}^{BCG*}=R_{n}(A^{T})r_{0}^{*}=((-1)^{n} \prod_{i=0}^{n-1}\alpha;)(A^{T})^{n}r_{0}^{*}+z_{1}$ ;

$p_{n}^{BCG*}=P_{n}(A^{T})r_{0}^{*}=((-1)^{n} \prod_{i=0}^{n-1}\alpha;)(A^{T})^{n}r_{0}^{*}+z_{2}$.

with $z_{1}$ and $z_{2}\in K_{n}(A^{T}, r_{0}^{*})$ . By tlte orthogonalities (2.4), auxiliary formulas for computing $\alpha_{n}$

and $\beta_{n}$ can be recovered:

(2.8) $\alpha_{n}=\frac{(r_{n}^{BCG*},r_{n}^{BCG})}{(p_{n}^{BCG*},Ap_{n}^{BCG})}=\frac{((A^{T})^{n}r_{0}^{*},r_{n}^{BCG})}{((A^{T})^{n}r_{0}^{*},Ap_{n}^{BCG})}$

(2.9) $\beta_{n}=\frac{(r_{n+1}^{BCG*},r_{n+1}^{BCG})}{(r_{n}^{BCG*},r_{n}^{BCG})}=-\alpha_{n}\frac{((A^{T})^{n+1}r_{0}^{*},r_{n+1}^{BCG})}{((A^{T})^{n}r_{0}^{*},r_{n}^{BCG})}$ .

The formulas $(2.8)\sim(2.9)$ imply that we can directly use the basis $(A^{T})^{n}r_{0}^{*}$ of the Krylov

subspace $K_{n+1}(A^{T}; r_{0}^{*})$ instead of vectors $r_{n}^{BCG*}$ and $p_{n}^{BCG*}$ to determine the first-kind of pa-

rameters $\alpha_{n}$ and $\beta_{n}$ in tlie algorithm of Bi-CG. The formulas are fundamental to establish the

product-type methods based on Bi-CG.
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In order to deal with tlie problem (B), i.e. designing the polynomial of form $H_{n}$ in (2.7),

three different polynomials of forms had been presented[13, 16, 4]:

. in CGS, the polynomial of form $H_{n}$ is chosen to be tlte Lanczos polynomial $R_{m}$ ;

. in Bi-CGSTAB, the polynomial of form $H_{n}$ is defined by a factored polynomial of form

$Q_{n}$ determined by a second-kind of parameter $w_{n-1}$

(2.10) $Q_{n}=(1-\omega_{n-1}\lambda)Q_{n-1}$ ;

. in Bi-CGSTAB2, the polynomial of form $H_{1}$ is denoted by $\tau_{n}$ and chosen to satisfy the

following recurrence relations

(2.11) $\tau_{2n+1}=(1-\chi_{n}\lambda)\tau_{2n}$ , $\tau_{2n+2}=((n+\eta_{n}\lambda)\tau_{2n+1}+(1-(_{n})\tau_{2n}$ .

The operations for tlte second-kind of parameters can be omitted in CGS. For the problem

(C), the second-kind of parameter $\omega_{n}$ (resp. $\chi_{n}$ , ( and $\eta_{n}$ ) in Bi-CGSTAB (resp. Bi-CGSTAB2)

is determined in the such way tltat $tl\iota e$ residual norm per iteration can be minimized locally.

The design of the polynomial of form $H_{n}$ in practice is desired as:

(1) to make the polynomial of form $H_{n}$ satisfy short-term recurrence relations so that little

computational work and low storage costs are required per iteration;

(2) to choose the second-parameter of $H_{n}$ reasonably to get rather fast and stable convergence

behaviour.

3 Generalized product-type methods based on Bi-CG

In this section, we will describe the basic idea to establish a standard polynomial of form $H_{n}$

which leads to generalized product-type methods based on Bi-CG for solving the linear system

(2.1).
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3.1 Construction of polynomial of form

By eliminating $P_{\iota}$ from (2.6), one would recover the $tl\iota ree$-term recurrence relations for $R_{n}$

$alone[14]$ :

(3.1) $R_{0}(\lambda)=1$ , $R_{1}(\lambda)=(1-\alpha_{0}\lambda)R_{0}(\lambda)$,

(3.2) $R_{n+1}( \lambda)=(1+\frac{\beta_{n-1}}{\alpha_{n-1}}\alpha_{n}-\alpha_{n}\lambda)R_{n}(\lambda)-\frac{\beta_{\mathfrak{n}-1}}{\alpha_{n-1}}\alpha_{n}R_{n-1}(\lambda)$, $n=1,2,$ $\cdots$ .

The three-term recurrence relations are fundamental for the efficiency of all iterative methods

based on the Lanczos process. In fact, the $tl\iota ree$-term recurrence relations of Bi-CG provide a

modest hint that motivate our search for developing generalized product-type methods based

on Bi-CG. Here, we introduce two independent parameters $(_{n}$ and $\eta_{n}$ and let the polynomial of

form $H_{n}$ modell after the tlrree-term recurrence relations $(3.1)\sim(3.2)$ of $R_{n}$ as follows:

(3.3) $H_{0}(\lambda):=1$ , $H_{1}(\lambda):=(1-(0^{\lambda)H_{0}(\lambda)}$

(3.4) $H_{n+1}(\lambda):=(1+\eta_{n}-(n\lambda)H_{n}(\lambda)-\eta_{n}H_{n-1}(\lambda)$ .

where the undetermined parameters $\zeta_{n}$ and $\eta_{n}$ belong to the second-kind.

3.2 Recurrence formulas for iterates

Using the basic recurrence relations (2.6), we have the following set of recurrence relations

among the products of polynomials $H_{n}R_{n},$ $H_{n}P_{n},$ $H_{n-1}R_{n},H_{n-2}R_{n}$ and $H_{n-1}P_{n}$ :

(3.5) $H_{n+1}R_{n+1}=(1+\eta_{\mathfrak{n}})H_{n}R_{n+I}-\zeta_{n}\lambda H_{n}R_{n+1}-\eta_{n}H_{n-1}R_{n+1}$ ,

(3.6) $H_{n+1}P_{n+1}=H_{n+1}R_{n+1}+\beta_{n}(1+\eta_{n}-\zeta_{n}\lambda)H_{n}P_{n}-\beta_{n}\eta_{n}H_{n-1}P_{n}$ ,

(3.7) $H_{n}R_{n+1}=H_{n}R_{n}-\alpha_{n}\lambda H_{n}P_{n}$ ,

(3.8) $H_{n-1}R_{n+1}=H_{n-1}R_{n}-\alpha_{n}\lambda H_{n-1}P_{n}$ ,

(3.9) $H_{n}P_{n+1}=H_{n}R_{n+1}$ 十 $\beta_{n}H,{}_{\iota}P_{n}$ .

Let us build up the product-type methods with residual:

(3.10) $r_{n}$ $;=H_{n}(A)r_{n}^{BCG}=H_{n}R_{n}(A)r_{0}=b-Ax_{n}$
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$wl\iota ich$ can be obtained with the following iterates:

(3.11) $p_{n}$ $:=H_{n}(A)p_{n}^{BCG},$ $t_{n}$ $;=H_{n-1}(A)r_{n}^{BCG},$ $s_{n};=H_{n-2}(A)r_{n}^{BCG},$ $w_{n};=H_{n-1}(A)p_{n}^{BCG}$ .

According to the recurrence $r$elations $(3.5)\sim(3.9)$ , we have the following recurrence formulas

among the sequences of the iterates $r_{n},$ $p_{n},$ $t_{n},$ $s_{n}$ and $w_{n}$ :

(3.12) $r_{n+1}=-\eta_{n}s_{n+1}+(1+\eta_{n})t_{n+1}-\zeta_{n}At_{n+1}$ ,

(3.13) $p_{n+1}=r_{n+1}-\beta_{n}\eta_{n}w_{n}+\beta_{n}(1+\eta_{n})p_{n}-\beta_{n}\zeta_{n}Ap_{n}$ ,

(3.14) $t_{n+1}=r_{n}-\alpha_{n}Ap_{n}$ ,

(3.15) $s_{n+1}=t_{n}-\alpha_{n}Aw_{n}$ ,

(3.16) $w_{n+1}=t_{n+1}+\beta_{n}p_{\iota}$ .

From the definition (3.10) of the residual $r_{n}$ and tlle recurrence formula (3.12) of the residual

$r_{n}$ , we have the formula to update the approximating solution $x_{n+1}$ :

(3.17) $x_{n+1}=-\eta_{n}(x_{n-1}+\alpha_{n-1}p_{n-1}+\alpha_{n}w_{n})+(1+\eta_{n})(x_{n}+\alpha_{n}p_{n})+\zeta_{n}t_{n+1}$ .

3.3 Computations for $\alpha_{n}$ and $\beta_{n}$

Since the coefficient of the highest order term of $H_{n}$ is $(-1)^{n} \prod_{j=0}^{n-1}(;$ , we have

$(r_{0}^{*}, r_{n})=(r_{0}^{*}, H_{n}(A)r_{n}^{BCG})=(H_{n}(A^{T})r_{0}^{*}, r_{n}^{BCG})=((-1)^{n} \prod_{|=0}^{n-1}\zeta_{i})((A^{T})^{n}r_{0}^{*}, r_{n}^{BCG})$ ,

$(r_{0}^{*}, Ap_{n})=(r_{0}^{*}, AH_{n}(A)p_{n}^{BCG})=(H_{\iota}(A^{T})r_{0}^{*}, Ap_{n}^{BCG})=((-1)^{n} \prod_{=0}^{n-1}\zeta_{i})((A^{T})^{\mathfrak{n}}r_{0}^{*}, Ap_{n}^{BCG})$ .

Then, from the formulas $(2.8)\sim(2.9),$ $\alpha_{n}$ and $\beta_{n}$ can be recovered from the iterates $r_{n+1},$ $r_{n}$

and $p_{n}$ :

(3.18) $\alpha_{n}=\frac{(r_{0}^{*},r_{n})}{(r_{0}^{*},Ap_{n})}$ , $\beta_{n}=\frac{\alpha_{n}}{(_{n}}$ $\frac{(r_{0}^{*},r_{n+1})}{(r_{0}^{*},r_{n})}$

Now, we have accomplished a part of the purpose of this paper, i.e. proposed an unified way

to derive generalized product-type methods from the reconstruction of Bi-CG. Due to the lack
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of a criterion for cltoices of $\zeta_{n}$ and $\eta_{n}$ , it is very hard in fact to determine the second-kind of

parameters $(_{n}$ and $\eta_{n}$ that are closely and indissolubly connected with convergence $bel\iota$aviour

in practice. Implementations of the second-kind of parameters $(_{n}$ and $\eta_{n}$ will be discussed in \S 5

in detail.

4 Equivalent approach

Notice that the $n- 1t1\iota$ iterates $x_{n-1}$ and $Pn-1$ are used to update $x_{n+1}$ in the formula

(3.17). It is not appreciated in any ideal iterative method. In this section, we propose $anotl\iota er$

approach to establish polynomial of form $H_{n}(\lambda)$ in (2.7) which is mathematically equivalent to

the polynomial of form (3.4). By doing so, we can present new class of product-type methods

in which $x_{n+1}$ can be updated without the n-lth iterates, like $x_{n-1}$ and $p_{n-1}$ .

4.1 Equivalent polynomial of form

Let $H_{n}(\lambda)$ be generated by tlte three-term recurrence realtions (3.4), we find an important

fact that $H_{n}(0)=1$ holds for any $n$ . Then, we have $H_{n+1}(0)-H,$ (0) $=0$ for any $n$ . Thus, we

can find an auxiliary polynomial $G_{n}(\lambda)$ with degree $n$ so that:

(4.1) $H_{n+1}(\lambda)-H_{n}(\lambda)=-\zeta_{n}\lambda G_{n}(\lambda)$ .

Rewrite the three-term recurrence realtions (3.4) as

(4.2) $H_{n+1}(\lambda)-H_{n}(\lambda)=-(n\lambda H_{n}(\lambda)+\eta_{n}(H_{n}(\lambda)-H_{n-1}(\lambda))$ ,

and let $\mu_{n}=(_{n}$ and $\nu_{n}=(_{n}\frac{\eta_{n+1}}{\zeta_{n+1}})$ then the double sets of polynomials $H_{n}(\lambda)$ and $G_{n}(\lambda)$ mutually

interlocked by the following recurrence relations can be obtained:

(4.3) $H_{n+1}(\lambda)=H_{n}(\lambda)-\mu_{n}\lambda G_{n}(\lambda)$ ;

(4.4) $G_{n+1}(\lambda)=H_{n+1}(\lambda)+\nu_{n}G_{7l}(\lambda)$ .

Using the recurrence relations (4.3) and (4.4), we can reduce the formula (3.17).
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4.2 Equivalent recurrence formulas for iterates

To compute the product of polynomials $H_{n}R_{r\iota}$ , we make use of a new set of recurrence

relations among $tl\iota e$ products of polynomials $H_{n}R,$ $H_{n}P_{n},$ $G_{n}R_{n},$ $G_{n}P_{n}$ and $G_{n-1}R_{n}$ instead

of $tl\iota e$ set of recurrence relations $(3.5)\sim(3.9)$ :

(4.5) $H_{n+1}R_{n+1}=H_{n}R_{n}-\alpha_{n}\lambda H_{n}P_{\iota}-\mu_{n}\lambda G_{n}R_{n+1}$ ,

(4.6) $H_{n+1}P_{n+1}=H_{n+1}R_{\iota+1}+\beta_{\iota}H_{n+I}P_{n}$ ,

(4.7) $G_{n}R_{n+1}=G_{n}R_{n}-\alpha_{n}\lambda G_{n}P_{n}$ ,

(4.8) $G_{n+1}R_{n+1}=H_{n+1}R_{z\iota+1}+\nu_{n}G_{n}R_{n+1}$ ,

$(4 \theta)$ $G_{n+1}P_{n+1}=H_{n+1}P_{n+I}+\nu_{n}G_{n}R_{n+1}+\beta_{n}\nu_{n}G_{n}P_{n}$ .

To obtain residaul $r_{n}$ $:=H_{n}(A)r_{n}^{HCG}$ , let us define auxiliary iterates as follows:

(4.10) $p_{n}$ $:=H_{n}(A)p_{n}^{BCG},$ $u_{n}$ $;=G_{n}(A)p_{n}^{BCG},$ $t_{n}$ $:=G_{n}(A)t_{n}^{HCG},$ $s_{n}$ $:=G_{n-1}(A)r_{n}^{BCG}$ .

Then, we have $tl\iota e$ following recurrence formulas among the iterates:

(4.11) $r_{n+1}=r_{n}-\alpha_{n}Ap_{n}-l^{\iota_{n}As_{n+1}}$ ,

(4.12) $p_{n+1}=r_{n+1}+\beta_{n}p_{n}-\beta_{\iota l}\iota_{n}Au_{n}$ ,

(4.13) $s_{n+1}=t_{n}-\alpha_{n}Au_{n}$ ,

(4.14) $t_{n+1}=r_{n+1}+\nu_{\iota}s_{n+1}$ ,

(4.15) $u_{n+1}=p_{n+1}+\nu_{n}s_{n+1}+\beta_{n}\nu_{n}u_{n}$ .

The formula to update the approximative solution $x_{n+1}$ is writen as:

(4.16) $x_{n+1}=x_{n}+\alpha_{n}p_{n}+\mu_{n}s_{n+1}$ .

From the equivalence between $tl\iota e$ three-term recurrence relations (3.4) and $(4.3)\sim(4.4)$ , it is

easy to see that the approximative solutions $x_{n+1}$ generated by formula (4.16) is mathematically
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equivalent to the approximative solutions $x_{n+1}$ generated by formula (3.17). The formula (3.17)

is reduced to the formula (4.16).

Clearly, the formulas of (3.18) for computing $\alpha$ , and $\beta_{n}$ are still valid here:

(4.17) $\alpha_{n}=\frac{(r_{0}^{*},r_{n})}{(r_{0}^{*},Ap_{n})}$ $\beta_{n}=\frac{\alpha_{n}}{\mu_{n}}\cdot\frac{(r_{0}^{*},r_{\iota+1})}{(r_{0}^{*},r_{n})}$ .

5 Implementation details

In accordance with the requirement (2) described at $tl\iota e$ end of \S 2, we summarize several

possibilities to select $\mu_{n}$ and $\nu_{n}$ (resp. ( and $\eta_{n}$ ) for the actual implementation of the product-

type methods based on Bi-CG. As well-known variants, the $algoritl\iota$ms of CGS, Bi-CGSTAB

and Bi-CGSTAB2 will be recalled in terms of special choices.

5.1 Tlle choice for CGS

Suppose that $\mu_{n}=\alpha_{n}$ and $\nu_{n}=\beta_{n}$ in recurrence relations $(4.3)\sim(4.4)$ , we obtain a signif-

icant variant of the product-type methods whiclt only depends on information of Bi-CG. It is

easy to see that this variant is mathematically equivalent to CGS.

In this case, we find that $H_{n}=R_{n}$ and $G_{n}=P_{n}$ . This fact leads the relation $p_{n}=t_{n}$

in recurrence formulas $(4.11)\sim(4.15)$ to hold. Letting $r^{C_{\iota}GS},$ $p_{n}^{CGS},$ $e_{n}^{CGS}$ and $h_{n}^{CGS}$ denote new

iterates $R_{\iota}(A)r_{n}^{BCG},$ $P_{n}(A)p_{n}^{BCG},$ $R_{n}(A)_{P_{1l}^{BCG}}$ and $P_{n-1}(A)r_{n}^{BCG}$ respectively, and rearranging

recurrence formulas $(4.11)\sim(4.15)$ , then the algoritlrm of CGS[13] is recalled as follows:

ALGORITnM 2 CGS

Choose an initial guess $x_{0}^{CGS}$ ,
and set $r_{0}^{CGS}"=p_{0}^{CGS}=e_{0}^{CGS}=r_{0}^{CGS}=b-Ax_{0}^{CGS}$ .
For $n=0,1,$ $\cdots$ until 11 $r_{n}^{CGS}||\leq\epsilon||b||$ do:

$\alpha_{n}=\frac{(r_{0\prime}^{CG^{\sigma}S}r_{n}^{CGS})}{(r_{01}^{CG\underline{i}}Ap_{n}^{CG_{-}^{\neg}}\backslash )}$

$h_{n+1}^{CGS}=e_{n}^{CGS}-\alpha_{n}Ap_{n}^{CGS}$ ,
$x_{\mathfrak{n}+1}^{CGS}=x_{n}^{CGS}+\alpha_{n}(e_{n}^{CGS}+h_{\mathfrak{n}+1}^{CGS})$,
$r_{n+1^{\neg}}^{CGarrow\backslash }=r_{n}^{CG_{\sim}^{\neg}}\backslash -\alpha_{n}A(e_{n}^{CGS}+h_{n+1^{\wedge}}^{CGarrow\backslash })$ ,

$\beta_{n}=\frac{(r_{0}^{CGS},r_{\mathfrak{n}+1}^{CG_{\overline{arrow\backslash }}})}{(r_{0\prime}^{CGS*}r_{n}^{CGS})}$

$e_{n+1}^{CGS}=r_{n+1^{\neg}}^{CGarrow\backslash }+\beta_{n}h_{n+1}^{CG_{-\backslash }^{-}}$,
$p_{n+1}^{\cos}=e_{n+1}^{CGS}+\beta_{n}(h_{n+1}^{CG_{\overline{-\backslash }}}+\beta_{n}p_{n}^{CGS})$;
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Note that another version of CGS can be derived from recurrence formulas $(3.12)\sim(3.16)$

under the assumptions $(_{n}=\alpha_{n}$ and $\eta_{n}=\frac{\beta_{n-1}}{\alpha_{n}}\alpha_{n}$ , but this version seems to be computationally

expensive in practice.

5.2 Tlle choice for Bi-CGSTAB

In tlte subsection, we attempt to get some variants of the product-type methods with

little computational work. Here, suppose that parameter $\eta_{n}$ (resp. $\nu_{n}$ ) in recurrence formulas

$(3.12)\sim(3.16)$ (resp. $(4.11)\sim(4.15)$ ) had been given in advance, the another parameter $\zeta_{n}$ (resp.

$\mu_{n})$ is selected to minimize $tl\iota e$ residual norm as function of $\zeta$ (resp. $\mu$ )

$f(():=||r_{n+1}||=||t_{n+1}+\eta_{n}(t_{n+1}-s_{n+1})-(At_{n+1}||$

(resp. $f(\mu):=||r_{n+1}||=||r_{n}-\alpha_{n}Ap_{n}-\mu As_{n+1}||$ )

which reaches its minimum value at

$(_{n}= \frac{(t_{n+1}+\eta_{n}(t_{n+1}-s_{n+1}))At_{n+1})}{(At_{n+1},At_{n+1})}$ (resp. $\mu_{n}=\frac{(r_{n}-\alpha_{n}Ap_{n)}As_{n+1})}{(As_{n+1},As_{n+1})}.$)

Moreover, we consider the following special case that all $\eta_{n}$ (resp. $\nu_{n}$ ) are defined by a

quantity $\omega$ . cu is called $tl\iota e$ relaxation factor. Tltis aspect about how to choose the relaxation

factor for solving realistic problems needs further research.

1. According to $tl\iota e$ recurrence formulas $(3.12)\sim(3.16)$ , we have the following variant of the

product-typr methods, and name it GPBi-CG$(\omega)$ .

ALGORITHM 3 GPBi-CG$(w)$

Choose an initial guess $x_{0}$ ,
and set $r_{0}^{*}=p_{0}=r_{0}=b-Ax_{0},$ $w_{0}=t_{0}=0,$ $\eta_{0}=0$ .
For $n=0,1,$ $\cdots$ until Il $r_{n}||\leq\epsilon||b$ II do:

$\alpha_{n}=\frac{(r_{0\prime}^{*}r_{n})}{(r_{0}^{*},Ap_{n})}$

$s_{n+1}=t_{n}-\alpha_{n}Aw_{n)}$

$t_{n+1}=r_{n}-\alpha_{n}Ap_{n}$ ,

$\zeta_{n}=\frac{(t_{n+1}+\omega(t_{n+1}-s_{n+1}),At_{n+1})}{(At_{\mathfrak{n}+1},At_{n+1})}$

$x_{n+1}=x_{n}+\alpha_{n}p_{n}+\zeta_{n}t_{n+1}+t\nu(x_{l}-x_{n-1}+\alpha_{nPn}-\alpha_{n-1}p_{n-1}-\alpha_{n}w_{n})$,
$r_{n+1}=t_{n+1}+\omega(t_{\iota+1}-s_{n+1})-(\mathfrak{n}A\_{n+1)}$
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$\beta_{n}=\frac{\alpha_{n}}{(_{n}}\cdot\frac{(r_{0}^{*},r_{n+1})}{(r_{\dot{0}},r_{n})}$ ,

$w_{n+1}=t_{n+1}+\beta_{n}p_{n}$ ,
$Pn+1=r_{n+1}+\beta_{n}(p_{n}-\iota_{n}Ap_{n}+\omega(p_{n}-w_{n}))$;

2. According to the recurrence formulas $(4.11)\sim(4.15)$ , we have the reduced variant of GPBi-

CG(ru), and call it RGPBi-CG$(w)$ .

ALGORITHM 4 RGPBi-CG $(\omega)$

$Cl\iota oose$ an initial guess $x_{0}$ ,
and set $r_{0}^{*}=u_{0}=t_{0}=p_{0}=r_{0}=b-Ax_{0}$ .
For $n=0,1,$ $\cdots$ until Il $r_{n}||\leq\epsilon||b||$ do:

$\alpha_{n}=\frac{(r_{0)}^{*}r_{n})}{(r_{0}^{l},Ap_{n})}$

$s_{n+1}=t_{n}-\alpha_{n}Au_{n}$ ,

$\mu_{n}=\frac{(r_{n}-\alpha_{n}Ap_{n},As_{n+1})}{(As_{\iota+1)}As_{\iota+1},)}$

$x_{n+1}=x_{\mathfrak{n}}+\alpha_{n}p_{n}+\mu_{n}s_{n+1}$ ,
$r_{n+1}=r_{n}-\alpha_{n}Ap_{n}-\mu_{n}As_{n+1}$ ,

$\beta_{n}=\frac{\alpha_{n}}{\mu_{n}}\frac{(r_{0}^{*},r_{n+1})}{(r_{\dot{0}},r_{n})}$

$p_{n+1}=r_{n+1}+\beta_{n}(p_{n}-\mu_{n}Au_{n})$ ,
$t_{n+1}=r_{n+1}+ws_{n+1}$ ,
$u_{n+1}=p_{n+1}+\omega(s_{n+1}+\beta_{n}u_{n})$ ;

3. It is clear that $x_{n-1}$ and $Pn-1$ appear in the formula to update $x_{n+1}$ in GPBi-CG$(w)$ is

very awkward. Fortunately, we can remedy this difficulty by letting $w=0$ . Notice that the

iterates $s_{n}$ and $w_{n}$ become worthless in this case. In this way an important and economical

variant will be obtained again, recalled Bi-CGSTAB[16]:

ALGORITHM 5 Bi-CGSTAB

Choose an initial guess $x_{0}^{STA}$ ,
and set $\gamma_{0}^{STA*}=p_{0}^{\overline{arrow\backslash }TA}=r_{0}^{STA}=b-Ax_{0}^{\sigma}S$TA.
For $n=0,1,$ $\cdots$ , until II $\gamma_{n}^{STA}||\leq\epsilon$ lm $b$ II do:

$\alpha_{n}=\frac{(r_{0)}^{STA}r_{n}^{STA})}{(r_{0}^{STA},Ap_{n}^{STA})}$

$t_{n+1}^{STA}=r_{n}^{STA}-\alpha_{n}Ap_{n}^{STA}$ ,

$\zeta_{n}=\frac{(arrow}{(\Lambda t_{n+1}^{STA}<,At_{n+1}^{STA})}$

$x_{n^{TA}}s_{+\iota n}=x_{n}^{STA}+\alpha_{n}p_{n}^{STA}+(t_{\mathfrak{n}+1}^{STA}<$ ,
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$r_{n+}^{STA_{1}}\sigma=t_{n+1}^{STA}-(nAt_{n+1}^{STA}$ ,

$\beta_{n}=\frac{\alpha_{n}}{(_{n}}\cdot\frac{(r_{0}^{STA*},r_{n+1}^{STA})}{(\gamma^{S}0^{TA*STA}\gamma_{n}^{\zeta})}$

$p_{n+1}^{\overline{-\backslash }TA}=r_{\overline{n}+1}^{\overline{\backslash }TA}+\beta_{n}(p_{n}^{STA}-(nAp_{n}^{STA})$ ;

Similarly, Bi-CGSTAB can be also derived from RGPBi-CG$(w)$ by setting $w=0$ where

the iterates $t_{n}$ and $u_{n}$ generated in RGPBi-CG$(w)$ can be omitted.

5.3 The choice for GPBi-CG

It is convenient to determine parameters $\zeta_{\iota}$ and $\eta$, in terms of minimizing the residual norm

as the function of (and $7\mathfrak{j}[4]$ :

$f(\zeta, \eta):=||r_{n+1}||=||t_{n+1}+\eta(t_{n+1}-s_{n+1})-(At_{n+1}||$ .

It suffices to solve a 2 $\cross 2$ linear equations.

Thus, we ltave the following variant of the product-type methods, and name it GPBi-CG:

ALGORITHM 6 GPBi-CG

Choose an initial guess $x_{0}$ ,
and set $r_{0}^{*}=p_{0}=r_{0}=b-Ax_{0},$ $w_{0}=t_{0}=0,$ $\eta_{0}=0$ .
For $n=0,1,$ $\cdots$ until 11 $r_{n}||\leq\epsilon||b||$ do:

$\alpha_{n}=\frac{(r_{\dot{0}},\gamma_{n})}{(r_{0}^{*},Ap_{n})}$

$s_{n+1}=t_{n}-\alpha_{n}Aw_{\mathfrak{n}}$ ,
$t_{n+1}=r_{n}-\alpha_{n}A_{Pn}$ ,

$(_{n}=\ovalbox{\tt\small REJECT}^{-}(s_{n+1}-t_{n+1}, s_{n+1}-t_{n+1})(t_{\iota^{\iota+1}},Atn+_{S}1)(s_{n_{n^{+}+^{1}\iota^{-t_{n+_{S}1},\Lambda_{1}t_{n+1})(t_{n+1},s_{n+1}-t_{n+1})}}}(At_{n+1},At_{n+1})(s_{n+}-t_{\iota+1,\iota+\iota-t)(-t_{n+1},At_{n+1})^{2}}’-n+$

$\eta_{n}=\frac{(At_{n+1},At_{n+1})(i_{n}+1_{1}^{S}n+\iota-t_{n+1})-(s_{n+1}-t_{n+1},At_{n+1})(t_{n+1},At_{n+1})}{(At_{\iota+1},At_{n+1})(s_{\iota+1}-t_{n+1},s_{n+1}-t_{n+1})-(s_{n+1}-t_{n+1)}At_{n+1})^{2}}$

$x_{n+1}=x_{n}+\alpha_{n}p_{n}+(t+\eta_{n}(x_{n}-x_{n-1}+\alpha_{n}p_{n}-\alpha_{n-1}p_{n-1}-\alpha_{n}w_{n})$,
$r_{n+1}=t_{n+1}+\eta_{n}(t_{n+1}-s_{n+1})-(nAt_{n+\iota}$ ,

$\beta_{n}=\frac{\alpha_{n}}{\zeta_{n}}$
. $\frac{(r_{0}^{*},r_{n+1})}{(r_{\dot{0}},r_{\iota})}$

$w_{n+1}=t_{n+1}+\beta_{n}p_{n}$ ,
$Pn+1=r_{n+1}+\beta_{n}(p_{n}-(A+\eta_{n}(p_{n}-w_{n})))$

5.4 The chioce for RGPBi-CG

In the recurrence formulas $(4.11)\sim(4.15)$ , we select the parameters $\mu_{n}$ and $\nu_{n-1}$ so that the

zesidual norm Il $r_{n+1}$ Il with respect to $\mu_{n}$ and $\nu_{n-1}$ reacltes its minimum value at $nt1\iota$ iteration.
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Denote $r_{n}-\alpha_{n}Ap_{7}$, by $w_{n}$ , and $s_{n}-\alpha_{n}A(s_{n}+\beta_{n-1}u_{n-1})$ by $q_{n}$ . Then, rearranging the

recurrence formulas $(4.11)\sim(4.15)$ , we obtain the reduced variant of GPBi-CG, and name it

RGPBi-CG.

ALGORITHM 7 RGPBi-CG

Choose an initial guess $x_{0},$ $r_{0}=b$ $Ax_{0}$ ,

and set $\gamma_{0}^{*}=u_{0}=p_{0}=r_{0},$ $\alpha_{0}=\frac{(r_{0\prime}^{*}r_{0})}{(r_{\dot{0}},Ap_{0})}$

$s_{1}=w_{0}=r_{0}-\alpha_{0}Ap_{0},$ $\mu_{0}=\frac{(s_{1},As_{1})}{(As_{1},As_{1})}$

For $n=0,1,$ $\cdots$ until 11 $r_{n}||\leq\epsilon||b||$ do:
$x_{n+1}=x_{n}+\alpha_{n}p_{n}+\mu_{n}s_{n+1}$ ,
$r_{n+1}=w_{n}-\mu_{n}As_{n+1)}$

$\beta_{n}=\frac{\alpha_{\iota}}{l^{\iota’}n}\frac{(r_{0}^{*},r_{n+1})}{(r_{0}^{l},r_{n})}$

$p_{n+1}=r_{n+1}+\beta_{n}(p_{n}-\mu_{n}Au_{n})$ ,

$\alpha_{n+1}=\frac{(r_{0\prime}^{*}r_{n+1})}{(r_{0}’,Ap_{n+1})})$

$w_{n+1}=r_{n+1}-\alpha_{n+1}Ap_{n+1}$ ,
$q_{n+1}=s_{n+I}-\alpha_{n+1}A(s_{n+1}+\beta_{\mathfrak{n}}u_{\mathfrak{n}})$,

$\mu_{n}=\ovalbox{\tt\small REJECT}^{-}(q_{n}+\iota_{A,Aw_{n+1})(A,Aq_{n+\iota})-(w_{n+1}^{q_{n+1})(,Aq_{n+1})}’}(w_{\iota+^{+_{1}1}},1A^{A},A^{w}q^{n_{n}+_{+^{1}1}})^{2}$

$\nu_{n}=\frac{(Aw_{n+1},Aw_{n+1})(w_{n+1},Aq_{n+1})-(Aw_{n+1},Aq_{n+1})(w_{n+1},Aw_{n+1})}{(Aq_{n+\iota)}Aq_{n+1})(w_{\mathfrak{n}+1},Aw_{n+1})-(Aw_{\mathfrak{n}+1},Aq_{n+1})(w_{n+\iota},Aq_{n+1})}$

$s_{n+2}=w_{n+1}+\nu_{n}q_{n+1}$ ,
$u_{n+1}=p_{n+1}+\nu_{n}(s_{n+1}+\beta_{n}?\iota_{n})$ ;

5.5 Hybrid variants

Another possibility of implementations is to combine one variant of the product-type meth-

ods with other one of the product-type methods without restarting. For example, during the

first half of algorithm, we use Bi-CGSTAB, and during the latter half, we use CGS.

Acturally, Bi-CGSTAB2 can be explained as a hybrid variant of Bi-CGSTAB and GPBi-CG.

In other words, for choice of the second-kind parameters, the minimization of residual norm is

defined: as function of two variables (and $\eta$ at even iterations; and as function of one variable

$\zeta$ under the assumption $\eta_{n}=0$ at odd iterations.

If $n=2k$ , tllen let $\overline{\chi}_{k}=(_{n}$ , else let $\tilde{\zeta}_{k}=1+\eta_{rt}$ and $\tilde{\eta}_{k}=-(n$ in the GPBi-CG algori $tl\iota m$ ,

Bi-CGSTAB2 reads as follows[4]:
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ALGORITnM $s$ Bi-CGSTAB2

Choose an initial guess $x_{0}^{ST2}$ ,
and set $r_{0}^{ST2}"=p_{0}^{ST2}=\tau_{0}^{ST2}=b-Ax_{0}^{ST2}$ ,
for $n=0,1,$ $\cdots$ , until $||r_{n}^{ST2}||\leq\epsilon||b||$ do:
when $n=2k$ ,

$\alpha_{n}=\frac{(r_{0)}^{ST2^{-}}*r_{n}^{arrow\backslash T2})}{(r_{0}^{ST2c},Ap_{n}^{ST2})}$

$t_{n+1}^{\sigma}ST2=r^{S}n^{T2^{-}}-\alpha_{n}\Lambda_{P_{n}^{\vee}}^{\backslash T2}$ ,

$\overline{\chi}_{k}=\frac{(arrow}{(At_{n+1}^{(ST2},At_{\iota+1}^{S’T2})}$ ,

$x_{n+1}^{\backslash T2}-=x^{S_{\iota}T2}+\alpha_{n}p_{n}^{ST2}+\overline{\chi}_{k}.t_{n+1}^{ST2}$ ,
$r_{n+1}^{ST2}=t_{n+1}^{S^{\Gamma}T2}-’\tilde{\chi}_{k}At_{n+1}^{ST2}$ ,

$\beta_{n}=\frac{\alpha_{n}}{\overline{\chi}_{k}}\frac{(r_{0}^{ST2},r_{n+1}^{ST2})}{(r^{S}0^{T2*ST2}r_{n}^{\sigma})}$

$w_{n+}^{ST2_{1}}=t_{n+1}^{ST2}+\beta_{n}p_{n}^{ST2}$ ,
$p_{n+1}^{ST2}=r_{n+1}^{ST2}+\beta_{n}p_{n}^{ST2}-\beta_{n}\tilde{\chi}_{k}Ap_{n}^{ST2}$ ,
when $n=2k+1$ ,

$\alpha_{n}=\frac{(r_{0}^{ST2*},r_{n+1}^{ST2})}{(r_{0}^{ST2},A^{\sigma}p_{n}^{ST2})}$ ,

$s_{n+}^{ST2_{1}}=t_{n}^{ST2}-\alpha_{n}Aw_{n}^{ST2}$ ,
$t_{n+1}^{ST2}=r_{n}^{ST2}-\alpha_{n}Ap_{n}^{ST2}$ ,

$\tilde{\zeta}_{\mathfrak{i}}=\ovalbox{\tt\small REJECT}^{\overline{\backslash }T2}(t_{n+\iota}^{\sigma_{T2}}s_{(t_{n+1}^{ST2}-s_{n+1}^{2_{ST2}}t_{n+1}^{ST2}-s_{n+1}^{ST2})(t_{n}^{\backslash T2})-(t_{n+1}-s_{n+}^{\backslash T2_{1\prime}^{\vee}}At_{n+1}^{ST2})^{\neg}}-s_{\iota+1}^{ST},A_{1}t_{n+1}^{ST2})(s_{n+1}^{ST2},At_{At_{n+1}^{ST2},A^{A_{-}}}^{c}n+1)-(t_{n_{+}+_{1}1}^{ST2},At_{n+1}^{ST2})(s_{n+_{\vee}1}^{ST2},t_{n+1}^{\overline{\backslash }T2}-s_{n_{2}+1}^{-\backslash T2})\sim ST2^{-}$

$\tilde{\eta}_{k}=\frac{(t_{n+^{2_{1}}}S-s_{n+}^{\sigma},At_{n+1}^{ST2})(s_{n+}St_{n+1}\vee-s_{n+}^{ST2_{1}})-(t_{n+1}^{-}arrow\backslash T2-s_{n+}^{ST2_{1}},t_{n+1}^{ST2}-s_{n+}^{ST2_{1}})(s_{n+}^{ST2_{1}},At_{n+1}^{ST2})-}{(t_{n+1}^{ST2}-s_{n+1}^{ST2},t_{n+1}^{ST2}’-s_{n+1}^{ST2})(At_{n+1}^{ST2},At_{n+1}^{ST2})-(t_{n+1}^{ST2}-s_{n+1}^{ST2},At_{n+1}^{ST2})^{2}}$ ,

$x_{n+1}^{ST2}=(1-\tilde{\zeta}_{k})(x_{n-1}^{ST2}+\alpha_{n-1}p_{n-1}^{ST2}+\alpha_{n}w_{n}^{ST2})+(k(x_{n}^{ST2}+\alpha_{n}p_{n}^{ST2})-\tilde{\eta}_{k}t_{n+1}^{ST2}\sim$ ,
$r_{n+1}^{ST2}=(1-\tilde{\zeta}_{k})s_{n+1}^{arrow\backslash T2^{\sim}}+(t^{ST2}+\tilde{\eta}_{k}At_{\iota+1}^{ST2}\neg,$ ,

$\beta_{\iota}=-\frac{\alpha_{n}}{\tilde{\eta}_{k}}\cdot\frac{(r_{\overline{0}}^{\backslash T2*},r_{n+}^{\backslash T2_{1}})-\vee-}{(r^{S}0^{T2*\backslash T2}\gamma_{n}^{-}arrow)}$

$p_{n+1}^{ST2}=r_{n^{T}}s_{+^{2_{1}^{\sim}}}+\beta_{n}(1-(k)w^{S}n^{T2^{-}}+\beta_{n}((kp_{n}^{ST2}+\tilde{\eta}_{k}Ap_{n}^{ST2})$;

6 Summary

In view of more stable convergence behaviour and little work and low storage, we emphasize

that the polynomial of form $II_{\gamma 1}$ generated by the three-term recurrence relation (3.4) is better

tltan the others which come from such truncated iterative method as GMRES(k)(k $>2$ ) $[12,4]$

for tlle requirement (1) described at the end of \S 2,

For solving realistic problems, any variant will be llardly competi tive without preconditioning
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techniques, however, we did not give any detailed description of preconditioning techniques in

this paper. All variants can be combined witlt the efficient preconditioning techniques, such as

imcomplete LU factorizations. For more detailed discussion on such studies see, e.g., [9, 10, 15].
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