無限コンパクト複素対称三重対角行列の固有値問題

筑波大学	電子·情報工学系	池辺八洲彦	(Yasuhiko Ikebe)
		浅井信吉	(Nibuyoshi Asai)
		原田稔	(Minoru Harada)
		高梨宏一(1	Kouichi Takanashi)
		菊池靖	(Yasushi Kikuchi)
		蔡東生	(DongSheng Cai)

無限複素対称三重対角行列 A の単純固有値の近似計算問題を考える. ただし A は複素 ヒルベルト空間 l²内でコンパクト作用素を表すものとする. コンパクト性を保証するための 必要十分条件は,よく知られているように,上位対角成分,主対角成分,下位対角成分が,いず れも0に収束することである. 近似固有値としては n 次主座小行列 (n = 1,2,...)の適当な 固有値をとる. 特殊関数への応用を考慮して,固有ベクトルの成分の挙動に関するいくつか の条件をつけ加えた結果,不等式ではなく,等式の形で一般的な誤差評価式を導くことができ た. これは数値解析において珍しい例に属する. その応用例として,正則クーロン波動関数の 零点,極大点,極小点,ベッセル関数の零点の計算問題を論ずる.

定理 1[3, Theorem 1.4]: 複素対称三重対角行列

			$\begin{bmatrix} d_1 \\ f_2 \end{bmatrix}$	$egin{array}{c} f_2 \ d_2 \end{array}$	f_3	0 7	
(1)		A = 1		f_3	d_3	•••	,
			0		•••	·.]	

ただし $d_k \rightarrow 0, f_k \rightarrow 0 (k \rightarrow \infty), f_k \neq 0 (k = 2, 3, \ldots),$

が与えられているものとする. そして \tilde{A}_n を A の n 次主座小行列とし, $A_n = \begin{bmatrix} A_n & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ (n = 1, 2, ...) とする. また λ を A の単純固有値とし, $\lambda_n \rightarrow \lambda$ を満たす \tilde{A}_n の固有値の列 { λ_n } をとる. (λ_n の存在は,前述の仮定と [4,Theorem 18.1] により保証される.) ここで次の仮定を置く.

a. $x = [x^{(1)}, x^{(2)}, ...]^T \epsilon \lambda$ に対応する固有ベクトルとするとき $x^T x \neq 0$

b. 十分大きな全ての $n \ (n \ge n_0)$ に対して $x^{(n)} \ne 0$ かつ $x^{(n+1)}/x^{(n)}$ が有界である.

以上に述べた仮定のもとで、次の評価式が成り立つ.

(2)
$$\lambda - \lambda_n = \frac{f_{n+1} x^{(n)} x^{(n+1)}}{x^T x} (1 + o(1)) \quad (n \to \infty)$$

コメント: [3,Theorem 1.4] 中では条件 $||A_n - A|| \rightarrow 0$ が陽に仮定されているが, 実は, この 条件は常に成立することを示すことができる. ゆえにこの条件は上の定理の仮定から削除し てある.

A が無限実対称三重対角行列であるときは,固有ベクトルからなる正規直交基底の存在 性 [5,p.228] よりこの誤差評価式を導びけることはよく知られている.本定理の意義は,実行 列の場合に導くことができたこの誤差評価式を,別のアプローチで複素行列の場合にも導き 出せることを示したところにある.

応用例 1: 非負整数 *L* と実数 η が与えられているときの正則クーロン波動関数 $F_L(\eta, \rho)$ の零 点計算問題を考える. この問題は以下に示す無限コンパクト実対称三重対角行列 $T_{L,\eta}$ の固有 値問題として再定式化される. すなわち $\rho \neq 0$ が $F_L(\eta, \rho)$ の零点であるための必要十分条件 は,1/ ρ が $T_{L,\eta}$ の固有値であることである [1].

$$T_{L,\eta} = \begin{bmatrix} -\eta d_{L+1} & e_{L+1} & \mathbf{0} \\ e_{L+1} & -\eta d_{L+2} & e_{L+2} \\ & e_{L+2} & -\eta d_{L+3} & \ddots \\ \mathbf{0} & \ddots & \ddots \end{bmatrix}$$
$$d_k = \frac{1}{k(k+1)} \to 0,$$
$$e_k = \frac{1}{k+1} \sqrt{\frac{(k+1)^2 + \eta^2}{(2k+1)(2k+3)}} \to 0.$$

(3)

また,固有ベクトル $\varphi(\rho)$ の形は定数倍を除いて一意に定まり, $\varphi(\rho) = [W_{L+1}, W_{L+2}, ...]^T \in l^2$, $W_k = \sqrt{2k+1}F_k(\eta, \rho)$ で与えられる [2].

105

定理1を適用するために,(1) $A \equiv T_{L,\eta}$ の固有値が全て単純である(すなわち, どの固有 値に対しても固有ベクトルは定数倍を除いて一意に定まり, かつ二階一般固有ベクトルは存 在しない),(2)定理1中の条件(a),(b)を満足する, ことを示すことができる.定理1をこ の問題に適用すると, $\lambda = 1/\rho$, $\lambda_n = 1/\rho_n$ であるので,相対誤差の予測値として次式が得ら れる,

(4)
$$\frac{\rho_n - \rho}{\rho} = \rho \cdot (\lambda - \lambda_n)(1 + o(1))$$
$$= \rho \cdot \frac{1}{\varphi^T \varphi} \cdot \frac{\sqrt{(L + n + 1)^2 + \eta^2}}{L + n + 1} F_{L+n}(\rho) F_{L+n+1}(\rho)(1 + o(1))$$

表1,2は $F_5(5,\rho)$ の零点のうち,原点から数えて1番目と5番目の零点に対する近似値の収 束について,相対誤差の実測値と予測値を比較したものである.

応用例 2: $F_L(\eta, \rho)$ の極大, 極小点 ρ を求める問題は, $F_L(\eta, \rho)$ の1 階微分の零点を求めればよい. $F_L(\eta, \rho)$ の零点計算と同様に,下に示す無限コンパクト実対称三重対角行列 $\tilde{T}_{L,\eta}$ の固有値問題として再定式化される. すなわち, ρ が $F_L(\eta, \rho)$ の極大または極小点であるための必要十分条件は, $1/\rho$ が $\tilde{T}_{L,\eta}$ の固有値であることである [2].

(5)
$$\tilde{T}_{L,\eta} = \begin{bmatrix} \frac{-\eta}{(L+1)^2} & \sqrt{\frac{2L+1}{L+1}}e_L & 0 & \cdots \\ \frac{\sqrt{\frac{2L+1}{L+1}}e_L}{\sqrt{\frac{2L+1}{L+1}}e_L} & & \\ 0 & & T_{L,\eta} \\ \vdots & & & \end{bmatrix}$$

この場合にも固有ベクトル $\tilde{\varphi}(\rho)$ の形は定数倍を除いて一意に定まり、

(6)
$$\tilde{\varphi}(\rho) = \left[\sqrt{\frac{L+1}{2L+1}} W_L, W_{L+1}, W_{L+2}, \ldots\right]^T = \left[\sqrt{\frac{L+1}{2L+1}} W_L \ \left| \varphi(\rho)^T \right]^T \in l^2$$

である [2].

 $A \equiv \tilde{T}_{L,\eta}$ が応用例1のときと同様の条件を満足することを示すことができるので、定理 1をこの問題に適用することができる. $\lambda = 1/\rho$, $\lambda_n = 1/\rho_n$ であるので、近似極大, 極小点 ρ_n

106

の相対誤差の予測値として次式が得られる.

(7)

$$\frac{\rho_n - \rho}{\rho} = \rho \cdot (\lambda - \lambda_n)(1 + o(1))$$
$$= \rho \cdot \frac{1}{\tilde{\omega}^T \tilde{\omega}} \cdot \frac{\sqrt{(L+n)^2 + \eta^2}}{L+n} F_{L+n-1}(\eta, \rho) F_{L+n}(\eta, \rho)(1 + o(1))$$

表 3, 4 は $dF_5(5, \rho)/d\rho$ の零点のうち, 原点から数えて 1 番目と 5 番目の零点に対する近似値の収束について, 相対誤差の実測値と予測値を比較したものである.

これら2つの応用例に現れた行列は、無限実対称三重対角行列であり、必ずしも複素にまで拡張した本定理を適用しなくても、それぞれ同じ誤差評価式が得られる.しかし、次のベッセル関数 $J_m(z), (m: 実数)$ の零点計算に現れる行列は無限複素対称三重対角行列であり、本定理でなければ誤差評価のできない例である.

応用例 3[3]: ベッセル関数 $J_m(z)$ の零点計算を考える. ここに $-\infty < m < \infty, m \neq -1, -2, ...$ である. この問題は下の無限コンパクト複素対称三重対角行列 A の固有値問題として再定式化される. すなわち zが $J_m(z)$ の零点であるための必要十分条件は, $4/z^2$ が A の固有値であることである [1].

(8)
$$A = \begin{bmatrix} d_1 & f_2 & \mathbf{0} \\ f_2 & d_2 & f_3 \\ & f_3 & d_3 & \ddots \\ \mathbf{0} & & \ddots & \ddots \end{bmatrix}, \quad d_k = \frac{2}{(\alpha_k - 1)(\alpha_k + 1)}, \quad k = 1, 2, \dots$$
$$f_k = \frac{1}{(\alpha_k - 1)\sqrt{(\alpha_k - 2)}\sqrt{\alpha_k}}, \quad k = 2, 3, \dots$$
$$\alpha_k = m + 2k, \quad k = 1, 2, \dots$$

ここに A は m > -2 のとき実行列であるが, m < -2 のときは f_j ($j = \lceil -m/2 \rceil$) が複素数 になり, 複素行列になる. この場合も固有ベクトル x は定数倍を除いて一意に定まり,

(9)
$$x = [\sqrt{m+2}J_{m+2}(z), \sqrt{m+4}J_{m+4}(z), \ldots]^T \in l^2$$

である. A が先の 2 例と同様の条件を満たすことを示すことができるので, 定理をこの問題 に適用することができる. $\lambda = 4/z^2$, $\lambda_n = 4/z^2$ であるので, 近似零点の相対誤差の予測値と しては次式が得られ, 数値的にもその精密さは [3] 中で確かめられている.

(10)
$$\frac{z_n - z}{z} = \frac{z^2}{8} \cdot (\lambda - \lambda_n)(1 + o(1)) = \frac{J_{m+2n}(z)J_{m+2n+2}(z)}{2J_{m+1}^2(z)(m+2n+1)}(1 + o(1))$$

表 5, 6 は $J_{-7.25}(z)$ の零点の原点に 1 番近いものと $J_{-9.25}(z)$ の零点のうち原点から 5 番目の零点に対する近似値の収束について, 相対誤差の実測値と予測値を比較したものであ る.また [3] 中では $J_0(z) - iJ_1(z)$ の零点計算についても, 無限複素対称三重対角行列の固有 値問題として再定式化を行い, この定理を適用した結果, 非常に精密な誤差評価式が得られて いる.

応用例に対する考察:応用例3では近似零点の相対誤差の予測値と実測値は、その値が2~3 桁も一致していることを数値的に確認できるが、応用例1,2ではそれほどには一致していな い.このことについて考察する.近似固有値の誤差評価式は、 $\lambda - \lambda_n = (\lambda - \mu_n) + (\mu_n - \lambda_n)$ と分解して、右辺の第1項と第2項を別々に評価し、*n*を十分大きくとれば第2項は第1項に くらべて無視できるほど小さくなることを示すために $\frac{|\mu_n - \lambda|}{|\lambda - \mu_n|}$ の上限を考える:

(11)
$$\frac{|\mu_n - \lambda|}{|\lambda - \mu_n|} \le \frac{|f_{n+1}x^{(n+1)}|}{|x^{(n)}|} \| (A - \lambda I)^{-1} \|_S (1 + o(1)).$$

するとこの右辺は定理の条件から確かに0に収束する.しかし | f_{n+1} | の0への収束がおそ く, $\left|\frac{x^{(n+1)}}{x^{(n)}}\right|$ が小さくなく,また, || $(A - \lambda I)^{-1}$ ||_Sが大きいといった理由により全体として (11) の収束がおそいということが考えられ,そのような場合,計算結果を出力した n の範囲 では $\mu_n - \lambda_n$ を無視できない可能性がある.そこで応用例 1 の場合に実際に $\frac{\mu_n - \lambda_n}{\lambda - \mu_n}$ を計算 した(表7). $\mu_n - \lambda_n$ は $\lambda - \mu_n$ にくらべ, 1 割程度の大きさであるところも見られるが,その 大きさは順に小さくなっていることが分かる.実際,近似零点が4倍精度いっぱいの精度ま で収束する間に,相対誤差の予測値は実測値に確かに近づいている.

まとめ

- 1. 無限コンパクト複素対称三重対角行列 A の近似固有値に対する誤差評価式を理論的に 導き出すことができた.
- 2. この誤差評価式の精密さは応用例からも確認できた.

参考文献

- J. Grad and E. Zakrajšek, Method for Evaluation of Zeros of Bessel Functions, J. Inst. Maths. Applics, 11:57-72 (1973).
- [2] Y. Ikebe, The Zeros of Regular Coulomb Wave Functions and of Their Derivatives, Math. Comp., 29:878-887 (1975).
- [3] Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi and M. Harada, The Eigenvalue Problem for Infinite Compact Complex Symmetric Matrices with Application to the Numerical Computation of Complex Zeors of $J_0(z) - iJ_1(z) = 0$ and of Bessel Functions $J_m(z)$ of Any Real Order m. To appear.
- [4] M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii and V. Ya. Stetsenko, Approximate Solution of Operator Equations, Wolters-Noordhoff, Groningen, 1972. English Translation.
- [5] F.Riesz, B. Sz. -Nagy, Functional Analysis, Frederick Ungar Publishing Co., 1955.
 English Translation.
- [6] G. N. Watoson, A Treatise on the Theory of Bessel Functions, Cambridge Uviv. Press, 1944.

行きのなな	ドロション	相対	誤差
行列の伏剱	近似夺只	実測値	予測値
20	18.00546023079404008016286706808850	0.742E-10	0.845E-10
21	18.00546022960947550842959750248847	0.838E-11	0.945E-11
22	18.00546022947442243383869958757627	0.879E-12	0.982E-12
23	18.00546022946014264085983915509521	0.858E-13	0.951E-13
24	18.00546022945873824873186946433151	0.782E-14	0.861E-14
25	18.00546022945860943143556284530519	0.667E-15	0.729E-15
26	18.00546022945859838410948728091500	0.533E-16	0.579E-16
27	18.00546022945859749626961295527100	0.400E-17	0.433E-17
28	18.00546022945859742926064505625907	0.283E-18	0.305E-18
29	18.00546022945859742450164821282215	0.189E-19	0.202E-19
30	18.00546022945859742418301627141995	0.119E-20	0.127E-20
31	18.00546022945859742416286922724038	0.709E-22	0.754E-22
32	18.00546022945859742416166421161588	0.401E-23	0.425E-23
33	18.00546022945859742416159593009371	0.215E-24	0.227E-24
34	18.00546022945859742416159225917203	0.109E-25	0.115E-25
35	18.00546022945859742416159207167005	0.531E-27	0.558E-27
36	18.00546022945859742416159206255900	0.245E-28	0.257E-28
37	18.00546022945859742416159206213741	0.110E-29	0.113E-29

表 1: $F_5(5.0, ho)$ の1番目の零点の収束状況

真の零点 = 18.00546022945859742416159206211768

表 2: F₅(5.0, ρ) の5番目の零点の収束状況

真の零点	=	34.834936	31442577	902935805	434310459

	マロ母を	相対	誤差
行列の次致	近似苓点	実測値	予測値
30	34.83730861107096816158747213625496	0.364E-02	0.665E-02
31	34.83565522906775659965516059547662	0.156E-02	0.270E-02
32	34.83513760134949377436739676433101	0.607 E-03	0.991E-03
33	34.83498863820246794305881540245866	0.215E-03	0.333E-03
34	34.83494899623791873834637725982513	0.695E-04	0.103E-03
35	34.83493919087585993065538886678591	0.206E-04	0.292E-04
36	34.83493692692108386176943669445102	0.562 E-05	0.773E-05
37	34.83493643720436973773535717575194	0.142E-05	0.190E-05
38	34.83493633765219443626204652749278	0.335E-06	0.438E-06
39	34.83493631858140088896936111790874	0.736E-07	0.944E-07
40	34.83493631513038695813960667551966	0.152E-07	0.191E-07
41	34.83493631453920272019437229538459	0.294E-08	0.364E-08
42	34.83493631444314211994465287477573	0.536E-09	0.656 E-09
43	34.83493631442831056350489565511447	0.924E-10	0.112E-09
44	34.83493631442613106938745668344667	0.151E-10	0.180E-10
45	34.83493631442582578426909333965810	0.233E-11	0.275E-11
46	34.83493631442578496717923455559438	0.342E-12	0.401E-12
47	34.83493631442577975128940354771141	0.477E-13	0.555E-13
48	34.83493631442577911347969524384054	0.635E-14	0.732E-14
49	34.83493631442577903876199016725139	0.806E-15	0.923E-15
50	34.83493631442577903036759580095655	0.976E-16	0.111E-15
51	34.83493631442577902946222644042411	0.113E-16	0.128E-16
52	34.83493631442577902936839554892647	0.126E-17	0.141E-17
53	34.83493631442577902935904277002608	0.134E-18	0.149E-18
54	34.83493631442577902935814537958340	0.136E-19	0.152E-19
55	34.83493631442577902935806242869744	0.133E-20	0.148E-20
56	34.83493631442577902935805503612698	0.126E-21	0.139E-21
57	34.83493631442577902935805440046553	0.114E-22	0.125E-22
58	34.83493631442577902935805434769197	0.992E-24	0.109E-23
59	34.83493631442577902935805434345943	0.834 E-25	0.910E-25

表 3: d $F_5(5.0, ho)/d ho$ の1番目の零点の収束状況

	真の零点 = 14.82785710220326646242871	600729115	
行用の物料	に小手た	相対	誤差
行列の伏剱	20次数	実測値	予測値
15	14.82785727224139272696073331595522	0.115E-07	0.132E-07
16	14.82785712288852660458875283838734	0.140E-08	0.159E-08
17	14.82785710449984587445301689194688	0.155E-09	0.174E-09
18	14.82785710243691097048876500168807	0.158E-10	0.175E-10
19	14.82785710222512777162789431575818	0.147E-11	0.163E-11
20	14.82785710220515403230963092733724	0.127E-12	0.139E-12
21	14.82785710220341732458626997172656	0.102E-13	0.111E-13
22	14.82785710220327765553231616864633	0.755E-15	0.815E-15
23	14.82785710220326723540516359607588	0.521E-16	0.560 E- 16
24	14.82785710220326651223681648103782	0.336E-17	0.359E-17
25	14.82785710220326646543031249938329	0.202E-18	0.215E-18
26	14.82785710220326646259825094371959	0.114E-19	0.121E-19
27	14.82785710220326646243770887376126	0.606E-21	0.640E-21
28	14.82785710220326646242916484929810	0.303E-22	0.319E-22
29	14.82785710220326646242873712375859	0.142E-23	0.149E-23
30	14.82785710220326646242871694531386	0.633E-25	$0.662 \text{E}{-}25$

$\mathrm{d}F_5(5.0,\rho)/d ho$ の1番目の零点の収束状況 真の零点 = 14.82785710220326646242871600729115

表 4: dF₅(5.0, ρ)/dρの5番目の零点の収束状況

$dF_5(5.0, \rho)/d\rho$ の5番目の零点の収束状況 真の零点 = 32.92248394450433713822754973548144

行用の物料	吃 如蚕上	相対	誤差
行列の伏釵	近似苓息	実測値	予測値
30	32.92316165832926489542045390135262	0.206E-04	0.292E-04
31	32.92266900246179595061606909070301	0.562E-05	0.773E-05
32	32.92253076034774801286373930613642	0.142E-05	0.190E-05
33	32.92249496530952578957355860292131	0.335E-06	0.438E-06
34	32.92248636783911329605516390290883	0.736E-07	0.944E-07
35	32.92248444386386432002720949984369	0.152E-07	0.191E-07
36	32.92248404121067800043561343463996	0.294E-08	0.364E-08
37	32.92248396215002120495844263993237	0.536E-09	0.656E-09
38	32.92248394754487281338948241402623	0.924E-10	0.112E-09
39	32.92248394500010922363502370124667	0.151E-10	0.180E-10
40	32.92248394458097584748952144478187	0.233E-11	0.275E-11
41	32.92248394451558825086992461445481	0.342E-12	0.401E-12
42	32.92248394450590827323237925361033	0.477E-13	0.555E-13
43	32.92248394450454613607879707816778	0.635E-14	0.732E-14
44	32.92248394450436365838099429784369	0.806E-15	0.923E-15
45	32.92248394450434035242727250771787	0.976E-16	0.111E-15
46	32.92248394450433751075163327726835	0.113E-16	0.128E-16
47	32.92248394450433717956193510742099	0.126E-17	0.141E-17
48	32.92248394450433714262303855280446	0.134E-18	0.149E-18
49	32.92248394450433713867596354048104	0.136E-19	0.152E-19
50	32.92248394450433713827147772111459	0.133E-20	0.148E-20
51	32.92248394450433713823168580112888	0.126E-21	0.139E-21
52	32.92248394450433713822792435578704	0.114E-22	0.125E-22
53	32.92248394450433713822758240246830	0.992E-24	0.109E-23
54	32.92248394450433713822755248008975	0.834E-25	0.910E-25
55	32.92248394450433713822754995782736	0.675E-26	0.735E-26
56	32.92248394450433713822754975286216	0.528E-27	0.573E-27
57	32.92248394450433713822754973679351	0.399E-28	0.431E-28
58	32.92248394450433713822754973557718	0.291E-29	0.313E-29
59	32.92248394450433713822754973548804	0.201E-30	0.220E-30

0零点の収実状況
2
香
6
<u> </u>
- 23
6
, Ť
2
5
珳

14 M	上田四乙、		相浏	課差
水跋	以以全民		実測値	下测航
6	(0.00000000000000000000000000000000000	5017655)	(1.06-03, 0.00E+00)	(1.06E-03.0.00E+00)
10	(0.00000000000000000000000000000000000	3163653)	(4.03-06, 0.00E+00)	(4.01E-06 . 0.00E+00)
11	(0.00000000000000000000000000000000000	9745761)	(8.75-09.0.00E+00)	(8.73E-09.0.00E+00)
12	(0.00000000000000000000000000000000000	(6478909)	(1.15-11 . 0.00E+00)	(1.15E-11.0.00E+00)
13	(0.00000000000000000000000000000000000	9284706)	(9.74-15.0.00E+00)	(9.73E-15, 0.00E+00)
14	(0.00000000000000000000000000000000000	8857050)	(5.47-18, 0.00E+00)	(5.47E-18.0.00E+00)
15	(0.00000000000000000000000000000000000	4024319)	(2.13-21, 0.00E+00)	(2.13E-21.0.00E+00)
16	(0.000000000000000000000000E+00, -6.2275444547586559444043557	9617692)	(5.88-25 . 0.00E+00)	(5.88E-25 . 0.00E+00)

表 6: J_7.25(z)の3番目の零点の収束状況

真の零点 = (1.764320273123522449460898897261002、4.68242070239948984575074128680)

***		f¥114	法规
次效	近似零 点	実測値	予測値
7	(1.771070013001639416332776463348415, 4.685203239020405673860638020085151)	(9.95E-041.06E-03)	(9.93E-041.05E-03)
ø	(1.764336714370069749043341089976366, $4.682400673068621427742148923636166)$	(-2.58E-064.48E-06)	(-2.60E-064.48E-06)
0	(1.764320245067484093827273297769761, $4.682420664997258581659447371372099)$	(-8.97E-09 . 2.61E-09)	(-8.97E-09 . 2.62E-09)
10	(1.764320273081195864979407229748945, 4.682420702418987147562896400680268)	(6.63E-13.9.28E-12)	(6.72E-13.9.29E-12)
11	(1.764320273123528969125628639455542, 4.68242070239951666873557163909709)	(5.47E-15.6.70E-16)	(5.47E-15.6.67E-16)
12	(1.764320273123522459735141482283418, $4.682420702399489848384432462134566)$	(6.11E-191.96E-18)	(6.11E-191.96E-18)
13	$(1.764320273123522449461182575578189\ ,\ 4.682420702399489848982059654644519)$	(-4.50E-222.30E-22)	(-4.50E-222.30E-22)

相対	誤差	
実測値	予測值	$(\mu_n - \lambda_n)/(\lambda - \mu_n)$
0.742E-10	0.845E-10	-0.122E+00
0.838E-11	0.945 E-11	-0.112E+00
0.879E-12	0.982E-12	-0.104E+00
0.858E-13	0.951E-13	-0.976E-01
0.782E-14	0.861E-14	-0.911E-01
0.667E-15	0.729E-15	-0.852E-01
0.533E-16	0.579E-16	-0.799E-01
0.400E-17	0.433E-17	-0.751E-01
0.283E-18	0.305E-18	-0.707E-01
0.189E-19	0.202E-19	-0.666E-01
0.119E-20	0.127 E-20	-0.630E-01
0.709E-22	0.754 E-22	-0.596E-01
0.401E-23	0.425E-23	-0.564E-01
0.215E-24	0.227 E- 24	-0.536E-01
0.109E-25	0.115E-25	-0.509E-01
0.531E-27	0.558 E-27	-0.484E-01
0.245E-28	0.257 E-28	-0.449E-01
0.110E-29	0.113E-29	-0.115E-01

表 7: F₅(5.0, ρ)の1番目の零点の第1項と第2項の比