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A New Class of Broyden Families for Nonlinear
Least Squares Problems

(非線形最小 2乗問題に対する新しいクラスの
Broyden族について)

東京理科大学 . 工学部 矢部 博 (Hiroshi Yabe)

1 Introduction

This paper is concerned with the nonlinear least squares problem

(1.1) minimize $f(x)= \frac{1}{2}||r(x)\Vert^{2}=\frac{1}{2}\sum_{j=1}^{m}(r_{j}(x))^{2}$ ,

where $r_{j}$ : $R^{n}arrow R,$ $j=1,$ $\ldots,$
$m(m\geq n)$ are twice continuously differentiable, $r(x)=$

$(r_{1}(x), \ldots, r_{m}(x))^{T}$ and I I denotes the 2 norm. Among many numerical methods, struc-
tured quasi-Newton methods seem very promising. These methods use the structure of
the Hessian matrix of $f(x)$ ,

(1.2) $\nabla^{2}f(x)=J(x)^{T}J(x)+\sum_{j=1}^{m}r_{j}(x)\nabla^{2}r_{j}(x)$ ,

where $J$ is the Jacobian matrix of $r$ , and approximate the second part of the Hessian by
some matrix $A$ . The structured quasi-Newton methods were proposed in order to over-
come the poor performance of the Gauss-Newton method for large residual problems[2],[5].
In this paper, we consider the line search strategy as a globalization technique. This gen-
erates the sequence $\{x_{k}\}$ by

$x_{k+1}=x_{k}+\alpha_{k}d_{k}$ ,

where $\alpha_{k}$ is a step length and a search direction $d_{k}$ is given by solving the linear system
of equations
(1.3) $(J_{k}^{T}J_{k}+A_{k})d=-J_{k}^{T}r_{k}$ ,

where $r_{k}=r(x_{k}),$ $J_{k}=J(x_{k})$ , and the $n\cross n$ matrix $A_{k}$ is the approximation to the second
part of the Hessian matrix. The matrix $A_{k}$ is generated by some quasi-Newton updating
formula, say, A-update. This system corresponds to the Newton equation. Since the
coefficient matrix of (1.3) does not necessarily possess the hereditary positive definiteness
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property, Yabe and Takahashi[14] proposed computing the search direction $d_{k}$ by solving
the linear system of equations

(1.4) $(J_{k}+L_{k})^{T}(J_{k}+L_{k})d=-J_{k}^{T}r_{k}$ ,

where the matrix $L_{k}$ is an $m\cross n$ correction matrix to the Jacobian matrix such that
$(J_{k}+L_{k})^{T}(J_{k}+L_{k})$ approximates the Hessian and is generated by some updating formula,
say, L-update. Since the coefficient matrix is expressed by its factorized form, the search
direction may be expected to be a descent direction for $f$ . Following Dennis[4], we dealt
with the secant condition

(1.5) $(J_{k+1}+L_{k+1})^{T}(J_{k+1}+L_{k+1})s_{k}=z_{k}$ ,

where
(1.6) $s_{k}=x_{k+1}-x_{k}$ , $z_{k}=(J_{k+1}-J_{k})^{T}r_{k+1}+J_{k+1}^{T}J_{k+1}s_{k}$ .

We call this method the factorized quasi-Newton method. Yabe and Takahashi[14] pro-
posed BFGS-like and DFP-like updates, and Yabe and Yamaki[16] obtained a structured
Broyden family for $L_{k}$ that contained these updates.

On the other hand, Sheng and Zou[ll] studied factorized versions of the structured
quasi-Newton methods independently of us. They proposed obtaining a search direction
$d_{k}$ by solving the linear least squares problem

(1.7) minimize $\frac{1}{2}||r_{k}+(J_{k}+L_{k})d||^{2}$ with respect to $d$ .

In the case of $L_{k}=0$ , the above implies the Gauss-Newton model. The normal equation
of (1.7) is represented by

(1.8) $(J_{k}+L_{k})^{T}(J_{k}+L_{k})d=-(J_{k}+L_{k})^{T}r_{k}$ .

Since the $vector-L_{k}^{T}r_{k}$ exists in the righthand side, the above does not correspond to the
Newton equation, so Sheng and Zou imposed the orthogonality condition

(1.9) $L_{k+1}^{T}r_{k+1}=0$

on the matrix $L_{k+1}$ in addition to the secant condition (1.5). They obtained a BFGS-like
update and showed the local and q-superlinear convergence of their method. The idea
of Sheng and Zou seems very interesting to us, because their update includes a feature
different from our factorized updates. Further, some numerical experiments given in
Yabe and Takahashi[15] suggest the efficiency of their method. Recently, Yabe[13] have
obtained a general form which satisfies the secant condition (1.5) and the orthogonality
condition (1.9) and proposed the SZ-Broyden family (L-update);
(SZ-Broyden family (L-update))

(1.10) $L_{+}=PL$ $+$ $(1- \sqrt{\phi})(\frac{PNs}{s^{T}P\# s}I(\tau z\#-P^{\#}s)^{T}$

$+\sqrt{\phi}PN(\tau(P^{\#})^{-1}z^{\#}-s)$ $\frac{z\#}{s^{T}z\#})^{T}$ ,
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where
(1.11) $0\leq\phi\leq 1$ , $[(1- \phi)\frac{s^{T_{Z}\#}}{s^{T}P\#_{S}}+\phi\frac{(z\#)^{T}(P\#)_{Z}^{-1\#}}{s^{T}z\#}]\tau^{2}=1$,

$Q= \frac{r_{+}r_{+}^{T}}{||r_{+}||^{2}}$ , $P=I-Q=I- \frac{r_{+}r_{+}^{T}}{||r_{+}||^{2}}$ ,

$N=J_{+}+PL$ , $B\#=N^{T}N=(J++PL)^{T}(J_{+}+PL)$ ,

$P^{\#}=N^{T}PN$ , $Q^{\#}=N^{T}QN= \frac{J_{+}^{T}r_{+}r_{+}^{T}J_{+}}{||r_{+}||^{2}}$ and $z^{\#}=z-Q\# s$ .

Setting $B_{+}=(J_{+}+L_{+})^{T}(J_{+}+L_{+})$ , we have

(1.12) $B_{+}$ $=$ $(P^{\#}$ – $\frac{P^{\#}ss^{\tau_{P}\#}}{s^{T}P\# s}$ 十 $\frac{z\#(z\#)^{T}}{s^{T}z\#}+\phi(s^{T}P^{\#}s)v^{\#}(v^{\#})^{T})+Q^{\#}$

$=$ $B^{\#}- \frac{PssP}{s^{T}P\# s}+\frac{zv(z\#)^{T}}{s^{T}z\#}+\phi(s^{T}P^{\#}s)v^{\#}(v^{\#})^{T}$ ,

(1.13) $v\#$ $=$ $\frac{P\# s}{s^{T}P\# s}$
–

$\frac{z\#}{s^{T}z\#}$

Now we have two kinds of updates, an A-update and an L-update, each with merits and
demerits. An A-update just needs an $n\cross n$ symmetric square matrix and is calculated
in $O(n^{2})$ arithmetic cost, but the coefficient matrix in (1.3) is not necessarily positive
definite for the line search strategy. On the other hand, an L-update may be expected
to maintain the positive definiteness of the coefficient matrix in (1.4), but it needs an
$m\cross n$ rectangular matrix and is calculated in $O(mn)$ arithmetic cost. However both
approaches should not compete each other, but should complement each other. By using
a relationship between an A-update and an L-update, special features of an L-update can
be reflected in an A-update. This is a motivation of this paper.

In Section 2, we investigate a relationship between an A-update and an L-update.
By using this relation, we show that the structured Broyden family given by Yabe and
Yamaki[16] corresponds to the structured secant update from the convex class proposed
by Engels and Martinez[7]. We also obtain a new A-update that corresponds to the
SZ-Broyden family (L-update). Section 3 deals with sizing techniques, which were first
proposed by Bartholomew-Biggs[2] and Dennis et a1.[5]. Finally we show some numerical
experiments of Broyden-like families for A-updates in Section 4, and examine the effec-
tiveness of sizing techniques. Throughout the paper, for simplicity, we drop the subscript
$k$ and replace the subscript $k+1$ by $”+$ . Further I I denotes the 2 norm.

2 Relation between A-Updates and L-Updates, and
a new Broyden-like Family

The main subject of this section is the investigation of the relationship between A-updates
and L-updates. Using this relationship, we show that the structured Broyden family given
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by Yabe and Yamaki[16] can be regarded as the factorized version of the structuted secant
update from the convex class proposed by Engels and Martinez[7]. On the other hand,
Yabe[13] proposed the SZ-Broyden family (L-update) based on the idea of Sheng and
Zou. This family has a feature different from our factorized updates. An application of
the relationship between A-updates and L-updates to the SZ-Broyden family (L-update)
enables us to obtain a new A-update which has a feature different from the family of
Engels and Martinez.

Consider the case where we do not impose the orthogonality condition $L_{+}^{T}r_{+}=0$ on
the matrix $L_{+}$ for the SZ-Broyden family. In this case, we may regard $P=I$ . We then
have

$N=J_{+}+L$ , $Q=0$ , $Q^{\#}=0$ , $z^{\#}=z$ and $P^{\#}=B^{\#}$ .

Then the family (1.10) reduces to the structured Broyden family given by Yabe and
Yamaki[16]:

(2.1) $L_{+}$ $=$ $L+(1- \sqrt{\phi})(\frac{(J_{+}+L)s}{s^{T}B\# s}I(\tau z-B^{\#}s)^{T}$

$+ \sqrt{\phi}(J_{+}+L)(\tau(B^{\#})^{-1}z-s)(\frac{z}{s^{T}z}I^{T}$ ,

(2.2) $B_{+}$ $=$ $B^{\#}- \frac{BssB}{s^{T}B\# s}+\frac{zz^{T}}{s^{T}z}+\phi(s^{T}B^{\#}s)vv^{T}$ ,

where
(2.3)

$\tau^{2}=\frac{1}{(1-\phi)\frac{s^{T}z}{s^{T}B\# s}+\phi\frac{z^{T}(B\#)^{-1_{Z}}}{s^{T_{Z}}}}$

,

(2.4) $B^{\#}=(J_{+}+L)^{T}(J++L)$ and $v= \frac{B\# s}{s^{T}B\# s}-\frac{z}{s^{T}z}$ .

In L-updates, the matrix $(J_{+}+L_{+})^{T}(J_{+}+L_{+})$ is a new approximation to the Hessian
matrix $\nabla^{2}f(x_{+})$ , and in A-updates, the matrix $J_{+}^{T}J_{+}+A_{+}$ is a new approximation to the
Hessian. Furthermore, the matrices $(]_{+}+L)^{T}(J_{+}+L)$ and $J_{+}^{T}]_{+}+A$ are intermediate
matrices for L-updates and A-updates, respectively. Thus we can regard the matrices
$(J++L)^{T}(J++L)$ and $(J_{+}+L_{+})^{T}(J_{+}+L_{+})$ as the matrices $J_{+}^{T}J++A$ and $J_{+}^{T}J_{+}+A+$ ,
respectively. So, setting

(2.5) $B^{\#}=J_{+}^{T}J_{+}+A$ and $B_{+}=J_{+}^{T}J++A+$

in (2.2), we obtain an A-update:

(2.6) $A_{+}=A- \frac{ww^{T}}{s^{T}w}+\frac{zz^{T}}{s^{T}z}+\phi(s^{T}w)vv^{T}$ ,

$v= \frac{w}{s^{T}w}-\frac{z}{s^{T}z}$ , $w=(J_{+}^{T}J_{+}+A)s$ , $0\leq\emptyset\leq 1$ ,

which corresponds to the structured secant update from the convex class proposed by
Engels and Martinez[7]. Thus the expression (2.1) can be regarded as the factorized form
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of their family. Note that for $\phi=0$ and $\phi=1$ the above implies the BFGS update of
Al-Baali and Fletcher[1],[6] and the DFP update of Dennis-Gay-Welsch[5], respectively.

We have stated the relationship between A-updates and L-updates above. Now we
are interested in what A-update corresponds to the SZ-Broyden family (L-update), so
we apply the relation (2.5) to the SZ-Broyden family (1.12). Since $Q^{\#}=J_{+}^{T}QJ+and$

$Q=r_{+}r_{+}^{T}/||r_{+}||^{2}$ , we have

$P^{\#}s=(B\#-Q^{\#})s=As+J_{+}^{T}(I-Q)J_{+}s$

and
$z^{\#}=z-Q^{\#}s=(J_{+}-J)^{T}r_{+}+J_{+}^{T}(I-Q)J_{+}s$ .

Thus we obtain a new A-update:
(SZ-Broyden family (A-update))

(27) $A_{+}=A- \frac{w\#(w\#)^{T}}{s^{T}w\#}+\frac{z\#(z\#)^{T}}{s^{T}z\#}+\phi(s^{T}w^{\#})v^{\#}(v^{\#})^{T}$,

where

$v^{\#}$
$=$ $\frac{w\#}{s^{T}w\#}-\frac{z\#}{s^{T}z\#}$ , $w^{\#}=As+J_{+}^{T}(I- \frac{r_{+}r_{+}^{T}}{||r_{+}||^{2}})J_{+}s$,

$z^{\#}$
$=$ $(J_{+}-J)^{T}r_{+}+J_{+}^{T}(I- \frac{r_{+}r_{+}^{T}}{||r_{+}||^{2}})J_{+}s$ and $0\leq\phi\leq 1$ .

For $\phi=0$ and $\phi=1$ , we have an SZ-BFGS update (A-update) and an SZ-DFP update
(A-update), respectively:

$A_{+}=A- \frac{w\#(w^{\#})^{T}}{s^{T}w\#}+\frac{z\#(z\#)^{T}}{s^{T}z\#}$

and
$A_{+}=A- \frac{w\#(z\#)\#(w)^{T}}{s^{T}z\#}+(1+\frac{S^{\tau_{w}\#}}{s^{T}z\#})\frac{z\#(z\#)^{T}}{s^{T}z\#}$

Note that the preceding updates contain the projection information of the orthogonality
condition (1.9) for an L-update in the vectors $w\#$ and $z\#$ . Thus we may expect this new
A-update to possess a feature different from the family of Engels and Martinez in practical
computations.

3 $S$ izing Techniques

We know that, for large residual problems, the sructured quasi-Newton methods perform
well, but that for zero and small residual problems, the Gauss-Newton method performs
better. Thus, in the latter case, it is desirable for the structured quasi-Newton methods
to follow the Gauss-Newton method. For this purpose, Bartholomew-Biggs[2] and Dennis
et a1.[5] introduced sizing techniques, and Al-Baali et al.[l] considered the combination of
the structured quasi-Newton methods and the Gauss-Newton method–hybrid methods.
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Though both strategies can be applied to all the methods given in the previous sections,
we consider only sizing techniques in what follows.

For A-updates, Bartholomew-Biggs[2] proposed a sizing parameter (Biggs parameter)

(3.1) $\beta_{k}=\frac{r(x_{k+1})^{T}r(x_{k})}{r(x_{k})^{T}r(x_{k})}$

based on the idea such that if $r(x_{k+1})=\beta_{k}r(x_{k})$ for some $\beta_{k},$ $A_{k}=\Sigma_{i=1}^{m}r_{i}(x_{k})\nabla^{2}r_{i}(x_{k})$

and each $r_{i}(x_{k})$ is quadratic, then 2 $mi=1r;(x_{k+1})\nabla^{2}r_{i}(x_{k+1})=\beta_{k}A_{k}$ . Dennis et a1.[5]
proposed a sizing parameter (DGW parameter)

(32) $\beta_{k}=\min(|\frac{s_{k}^{T}(J_{k+1}-J_{k})^{T}r_{k+1}}{s_{k}^{T}A_{k}s_{k}}|,$ $1)$

based on the idea that the spectrum of the sized matrix $\beta_{k}A_{k}$ should overlap that of the
second part of the Hessian matrix in the direction of $s_{k}$ . Note that the factor $s_{k}^{T}(J_{k+1}-$

$J_{k})^{T}r_{k+1}/s_{k}^{T}A_{k}s_{k}$ corresponds to the factor given by Oren[9].
Now we present an algorithm for structured quasi-Newton methods with sizing tech-

mques.

(Algorithm A for A-updates)
Starting with a point $x_{1}\in R^{n}$ and an $n\cross n$ matrix $A_{1}$ (usually, $A_{1}=0$ and $\beta_{1}=1$ ), the
algorithm proceeds, for $k=1,2,$ $\ldots$ , as follows:

Step 1. Having $x_{k}$ and $A_{k}$ , find the search direction $d_{k}$ by solving the linear system of
equations
(3.3) $(J_{k}^{T}J_{k}+A_{k})d=-J_{k}^{T}r_{k}$ .

Step 2. Choose a steplength $\alpha_{k}$ by a suitable line search algorithm.

Step 3. Set $x_{k+1}=x_{k}+\alpha_{k}d_{k}$ .

Step 4. If the new point satisfies the convergence criterion, then stop; otherwise, go to
Step 5.

Step 5. Construct $A_{k+1}$ by using the following A-updates:

(Engels and Martinez family)

(3.4) $A_{k+1}= \beta_{k}A_{k}-\frac{w_{k}w_{k}^{T}}{s_{k}^{T}w_{k}}+\frac{z_{k}z_{k}^{T}}{s_{k}^{T}z_{k}}+\phi_{k}(s_{k}^{T}w_{k})v_{k}v_{k}^{T}$,

where
$v_{k}= \frac{w_{k}}{s_{k}^{T}w_{k}}-\frac{z_{k}}{s_{k}^{T}z_{k}}$ , $w_{k}=(J_{k+1}^{T}J_{k+1}+\beta_{k}A_{k})s_{k}$ ,

or
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(SZ-Broyden family (A-update))

(3.5) $A_{k+1}= \beta_{k}A_{k}-\frac{w_{k}^{\#}(w_{k}^{\#})^{T}}{s_{k}^{\prime\tau}w_{k}^{\#}}+\frac{z_{k}^{\#}(z_{k}^{\#})^{T}}{s_{k}^{T}z_{k}^{\#}}+\phi_{k}(s_{k}^{T}w_{k}^{\#})v_{k}^{\#}(v_{k}^{\#})^{T}$ ,

where

$v_{k}^{\#}$ $=$ $\frac{w_{k}^{\#}}{s_{k}^{T}w_{k}^{\#}}-\frac{z_{k}^{\#}}{s_{k}^{T}z_{k}^{\#}}$ ,

$w_{k}^{\#}$ $=$ $\beta_{k}A_{k}s_{k}+J_{k+1}^{T}(I-(||r_{k+1}\Vert^{2})^{\dagger}r_{k+1}r_{k+1}^{T})J_{k+1^{S}k}$,
$z_{k}^{\#}$ $=$ $(J_{k+1}-J_{k})^{T}r_{k+1}+J_{k+1}^{T}(I-(||r_{k+1}||^{2})^{\dagger}r_{k+1}r_{k+1}^{T})J_{k+1}s_{k}$ ,

and $\beta_{k}$ is defined by the Biggs parameter (3.1) or the DGW parameter (3.2), $\phi_{k}$ is
a parameter such that

$0\leq\phi_{k}\leq 1$ ,

and $(||r_{k+1}||^{2})\dagger$ denotes the Moore-Penrose generalized inverse of $||r_{k+1}||^{2}$ .

4 Computational Experiments

The purposes of our numerical experiments are to compare a new A-update (3.5) with
the Engels and Martinez family (3.4), and to investigate how the computational perfor-
mance depends on the choice of the parameters $\phi_{k}$ and $\beta_{k}$ given in Algorithm A from the
viewpoint of the number of iterations and the number of vector valued function $(i.e$ . $r(x)$

$)$ evaluations. Note that there are different strategies among the structured quasi-Newton
methods. Dennis et a1.[5] combined the DGW update and the trust region globaliza-
tion strategy, and Al-Baali et al.[l] proposed the hybrid method which combined the
Gauss-Newton method and the structured BFGS update for the hne search globalization
strategy, and so forth. In this section, we just compare the performance of some updates
for the line search globalization strategy.

The numerical calculations were carried out in double precision arithmetic on a SUN
SPARC station 1+, and the program was coded in FORTRAN 77. The Jacobian matrix is
evaluated by the forward difference approximation. In Algorithm $A$ , the initial matrix $A_{1}$

is set to zero matrix. The linear system of equations in Step 1 is solved by the modified
Cholesky method, i.e. when the coefficient matrix cannot be decomposed because of
indefiniteness, a diagonal element of Cholesky factor was replaced by a small positive
number. In Step 2, the bisection line search method with Armijo’s rule

(4.1) $f(x_{k}+\alpha_{k}d_{k})\leq f(x_{k})+0.1\alpha_{k}\nabla f(x_{k})^{T}d_{k}$

is employed. Further, in Step 4, the iterative process is terminated

(T1) if $||r(x_{k+1})||_{\infty} \leq\max(TOL1, \epsilon)$ ,
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or

(T2) if $|e_{i}^{T}J(x_{k+1})^{T}r(x_{k+1})| \leq\max(TOL2, \epsilon)||r(x_{k+1})||||J(x_{k+1})e_{i}||$ for $i=1,$ $\ldots,$
$n$

and $||x_{k+1}-x_{k}||_{\infty} \leq\max(TOL3, \epsilon)\max(||x_{k+1}||_{\infty}, 1.0)$, where $e_{i}$ denotes the i-th
column of the unit matrix,

or

(T3) if the number of iterations exceeds the prescribed limit (ITMAX),

or

(T4) if the number of function evaluations exceeds the prescribed limit (NFEMAX),

where $||\bullet||_{\infty}$ denotes the maximum norm and $\epsilon$ is machine epsilon. The modified Cholesky
method and the stopping criteria described above followed the code NOLLSI in Tan-
abe and Ueda[12]. In the experiments, we set TOLI $=$ TOL2 $=$ TOL3 $=10^{-4}$ , IT-
MAX $=500$ and NFEMAX $=2000$ . For the SZ-Broyden family (A-update) in Step 5,
the Moor-Penrose generalized inverse $(||r_{k+1}||^{2})^{\uparrow}$ was numerically set to $(1/||r_{k+1}||^{2})$ if
$||r_{k+1}||^{2}\geq 10^{-20}$ , and $0$ otherwise. Since the stopping criteria (T1) with TOLI $=10^{-4}$

was used, $(||r_{k+1}||^{2})^{\uparrow}$ was not set to zero in our numerical experiments. In addition to the
convex classes of the Broyden-like families mentioned in the previous sections, we used the
Gauss-Newton method (GN) and the structured symmetric rank one (SR1) update for
comparison. The structured SRI update with sizing was first proposed by Bartholomew-
Biggs[2], and is represented by

(4.2) $A_{k+1}= \beta_{k}A_{k}+\frac{(q_{k}-\beta_{k}A_{k}s_{k})(q_{k}-\beta_{k}A_{k}s_{k})^{T}}{s_{k}^{T}(q_{k}-\beta_{k}A_{k}s_{k})^{T}}$ ,

where
$q_{k}=(J_{k+1}-J_{k})^{T}r_{k+1}$ .

Since the DGW sizing parameter (3.2) makes the denominator zero, we just applied the
Biggs sizing parameter to the above.

The names, the sizes and the starting points of the test problems we used are listed
in Table 1, together with the abbreviated problem names. These problems are given in
Dennis et a1.[5], and are in detail in Mor\’e, Garbow and Hillstrom[8]. In Table 1, (Z), (S)
and (L) mean a zero residual problem, a small residual problem and a large residual prob-
lem, respectively. Tables 2 and 5 are computational results for the Engels and Martinez
family with no sizing, with DGW sizing and Biggs sizing parameters, respectively. Tables
3 and 6 are for the SZ-Broyden (A-update) with no sizing, DGW sizing and Biggs sizing
parameters, respectively. The computational results for the Gauss-Newton method and
the structured SR1 update are given in Tables 4 and 7. In each table, the total number of
iterations and the total number of function evaluations are written. The latter is written
in a parenthesis in the tables, and contains the number to evaluate the Jacobian matrix
by forward finite difference. Also, the $asterisk*in$ each table contains the case where
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the method failed to converge in the specified number of iterations or function evalua-
tions. In each table, the number in the parenthesis denotes the performance ratio of sizing
techniques. For example, in the part of $B(0.1)$ with DGW sizing in Table 2, the ratio
0.844 implies 304/360. The small ratio means that the sizing technique works very well.
However we should note that this ratio depends on the choices of ITMAX and NFEMAX
in the stopping criteria in the case where the $symbol*is$ attached. In each table, “ $B(\xi)$

means the results of the Broyden-hke family with $\phi_{k}=\xi$ . So, in the Engels and Martinez
family, “B(O.O)” and “ $B(1.0)$ corresponds to the results of the Al-Baali and Fletcher
update and the revised DGW update, respectively. However, since Al-Baali and Fletcher
proposed the hybrid method and Dennis et al. used the trust region strategy, we cannot
make a direct comparison with their results.

From all the tables, we summarize our numerical results as follows:
(l)The structured quasi-Newton methods with sizing are more robust than the Gauss-
Newton method.
(2) $The$ Engels and Martinez family matched with the DGW sizing parameter, and the
SZ-Broyden fanuly (A-update) matched with the Biggs sizing parameter. Further the
SZ-Broyden family with Biggs sizing parameter worked better than the other families.
(3) $For$ both families with sizing, the cases of $\phi=0.5$ were numerically stable.
(4) $As$ the parameter $\phi$ approached 1, the performance of sizing techniques increased. The
DFP-like update without sizing was much inferior to other updates without sizing. On
the other hand, the DFP-like update with sizing worked as well as the other sized updates.
(5) $The$ Bartholomew-Biggs update, i.e. the structured symmetric rank one update with
Biggs parameter, worked well.

The result (2) suggests that an application of features of L-updates to A-updates
is promissing. In this paper, we suggested one relationship between A-updates and L-
updates. This result encouraged us to study another relation and to propose a new
A-update which corresponds to a new L-update. The result (3) is somewhat similar to
the numerical results given in Oren[10], in which Oren applied his sizing parameter to
the standard Broyden family for general minimization problems. The result (4) means
that the DFP-like update needs sizing technique very much. However this does not mean
that the other updates, e.g. BFGS-like update, need no sizing. There is a possibility of
finding another kind of sizing parameter which is effective for the other updates. This
result supports the research of Contreras and Tapia[3]. In their paper, they claimed
that the standard DFP update needed to be sized for general minimization problems,
and that the DFP update was much imposed when matched with the Oren-Luenberger
sizing parameter. They proposed another kind of sizing parameter for the standard BFGS
update. Their idea may be applied to the structured quasi-Newton methods. The result
(5) encourages us to study a nonconvex class of the structured Broyden family, because
the structured symmetric rank one update does not belong to the convex class but is a
member of the Broyden-like family.
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5 Concluding Remarks

The numerical results show that the SZ-Broyden family (A-update) with the Biggs sizing
parameter works well. These results also show that the DFP-like update needs sizing
techniques very much and supports the research of Contreras and Tapia[3]. Further
investigation of the relationship between A-updates and L-updates seens very promising
to us. This may give us a new A-updates. Since L-updates enable us to obtain a descent
search direction for the objective function, by investigating the relation we may expect to
find conditions under which matrices $J_{k}^{T}J_{k}+A_{k}$ possess the hereditary positive definiteness
property for A-updates. However, the relation mensioned in this paper is not exact
yet, because the intermediate matrices of A-updates and L-updates do not in general
correspond exactly. The results of Section 2 seem to give us a clue to understanding the
relation.

This paper mainly dealt with the convex classes of the Broyden-like families. As
mentioned in the previous section, updates which are not contained in the convex classes
are also promising. The structured SRI update is especially interesting. In fact, setting

$\phi_{k}=\frac{s_{k}^{T}z_{k}}{s_{k}^{T}(z_{k}-w_{k})}$ and $\phi_{k}=\frac{s_{k}^{T}z_{k}^{\#}}{s_{k}^{T}(z_{k}^{\#}-w_{k}^{\#})}$

in (3.4) and (3.5), respectively, we have

$A_{k+1}= \beta_{k}A_{k}+\frac{(z_{k}-w_{k})(z_{k}-w_{k})^{T}}{s_{k}^{T}(z_{k}-w_{k})}$

and
$A_{k+1}= \beta_{k}A_{k}+\frac{(z_{k}^{\#}-w_{k}^{\#})(z_{k}^{\#}-w_{k}^{\#})^{T}}{s_{k}^{T}(z_{k}^{\#}-w_{k}^{\#})}$.

Since $z_{k}-w_{k}=z_{k}^{\#}-w_{k}^{\#}=(J_{k+1}-J_{k})^{T}r_{k+1}-\beta_{k}A_{k}s_{k}$ , the above yields the structured SRI
update (4.2). This means that the structured SRI update is a common member of the
nonconvex classes of the Engels-Martinez family and the SZ-Broyden family (A-update).
However, note that the projection information of the orthogonality condition (1.9) is no
longer included in the structured SR1 update.
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Table 1. Test Problems
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Table 2 Total Number of Iteratio皿 $s$ ( $E$皿 gels and Martimz family)

Table 2 (Co皿$ti$皿$ued$ )

Table 3 Total Number of Iteratio皿 $s$ (SZ-Broyde皿 $fh$�$ly$ (A update))

Table 3 $(Continued)$

Table 4 Total Number of Iteratio皿 $s$ (Gauss-Newton, $SR1$ )
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血$b$ $\ovalbox{\tt\small REJECT}|$航 al $Ohni\ovalbox{\tt\small REJECT} alui$ 侮 $\text{叫_{}S}n$ Mati皿� 血�辱)

騒$b$ 6丁航al $Ohni\ovalbox{\tt\small REJECT}$al$u$�寓肱$-r$ $e$ 血$miy$ (A update))

血$b$ 駅 $\ovalbox{\tt\small REJECT} n_{n}e$)

臨$b$ 7丁砿 al $Ohn$伽皿 Evaluations (Gaus評 Newb馬 $SRn$


