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Offer Analysis for the Arbitration Procedure FDOA
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Abstract

When two disputants are ignorant of their opponents’ estimates about the arbitrator’s
fair point, the arbitration procedure FDOA ($Final-Double-Offer$ Arbitration) is better than
other procedures, because it can induce the existence of a non-empty contract zone in some
cases even though the IG (intrinsic gap) of the estimates is positive. This paper gives
offer analysis for FDOA. First, we show that when two disputants are risk neutral, the
dsiputants’ offers of FDOA are closer than those of FOA. Then we consider the influence of
risk attitude to offers, and show that when the disputants increase their risk aversion, their
offers converge to their reservation prices respectively, so that they can reach agreement by
themselves. We use an example to show that this property does not hold for the arbitration
procedure FOA (FinaJ-Offer Arbitration).

Key words: dispute, final-offer arbitration, $Anfi-double-0ffer$ arbitration, game, offer,
risk attitude.

1 Introduction

In real life, disputes arise in politics, economic, sociology and many other fields. Arbitration is
very effective in solving these disputes. Since 1966, when Stevens proposed arbitration proce-
dure “Final-Offer Arbitration”, which is abbreviated as FOA, the research about arbitration
procedures has become more and more important.

The procedure FOA requires that the arbitrator choose one of the offers that is closer to his
own fair point. Before FOA was proposed, conventional arbitration, by which the arbitrator
takes his fair point as settlement, was the only arbitration method. Although two disputants
are also usually required to give their own offers for reference, the arbitrator is allowed to
proclaim any settlement, which he thinks fair, as the final result. You can image that this
procedure encourages two disputants give greedy offers. The introduction of FOA is path-
breaking, because FOA uses one of the disputants’ offers, instead of arbitrator’s favorite point,
as the arbitration result. Anyone of the disputants does not dare to give too greedy offer
under FOA, otherwise his opponent’s offer will be chosen by the arbitrator, and then becomes
the final result. Besides, after all, the arbitrator is an outsider, his fair point may hurt both
disputants.

In FOA, if any disputant is afraid that his opponent’ offer may be chose as the final result,
so that he makes more concession in negotiation and therefore an agreement is reached before
the real arbitration, the dispute is soon settled. This time, we say that the disputants have
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reached agreement by themselves. That the procedure FOA is welcome is just because it
induces disputants do so. Brams, Kilgour and Weber (1991) cited a comment on FOA by a
baseball arbitrator: $I’ m$ starting to feel like the atomic bomb. The deterrent effect of me as an
arbitrator is enough“. Thus when we evaluate arbitration procedure, its deterrent force is an
important factor. However, as analyzed in Brams and Merrill (1983), the disputants’ offers will
not compatible if they ask to realize arbitration. We cannot expect that two disputants can
reach agreement while giving offers. Because the arbitrator is not allowed to give a compromise
settlement, the final result will certainly hurt one of the disputants. Therefore the closeness of
the disputants’ offers is another important criterion.

Of course, two disputants do not know exactly where the arbitrator’s favorite point is,
otherwise the disputants have to let their offers be equivalent to it. Up to now, while analyzing
arbitration procedure like FOA, most literature suppose that two disputants share the same
estimates about the arbitrator’s favorite point, therefore the authors can use the effective tool
–Nash equilibrium to analyze offers. Samuelson (1991) get rid of this assumption, but he
supposes that two disputants know that the arbitrator chooses the mid-point of something
like reservation prices –private information of disputants, which are supposed to be known
by the arbitrator. Usually, two disputants are ignorant of their opponents’ estimates about
the arbitrator’s favorite point, let alone their equivalence. Noting this fact, in this paper, we
consider “prudent offer“, supposing that the disputants use prudent strategies when they give
offers. We have another reason to do so. Wittman (1986) used the concept of “Cournot-
Nash” equilibrium. Under some conditions, there exist(s) (some) equilibrium (equilibria). The
conditions are very strong in the sense that, even the simplest case of the model Brams and
Merrill (1983) used, the uniform estimate does not satisfy the conditions Wittman proposed.
In addition, when there are more than one Cournot-Nash equilibria, we have to suppose that
two disputants image the same equilibrium. Therefore. when we consider the general model,
under the supposition that the two estimates may be different, it is not bad to neglect the
existence of Nash equilibrium. Thus we use prudent offer in this paper. This also provides us
the possibility to deal with pure strategy only. Arbitration is different from usual game. Mixed
strategies is meaningful if the game is multiply played, but arbitration is absolutely once only.

In Zeng Ohnishi and Ibaraki (1992), we think that the main reason that disputants resort
to arbitration is that their estimates have positive “intrinsic gap“, the contract zones of FOA
and many other procedures are empty if positive intrinsic gap appears, in other words, the
procedures cannot overcome this gap. Therefore we present a new arbitration procedure FDOA
and we show that FDOA is better than FOA and some other procedures in the sense that it can
overcome the intrinsic gap under certain conditions. This paper further analyzes the procedure
FDOA.

As stated above, when we analyze arbitration procedure, two factors are considered. Zeng
Ohnishi and Ibaraki (1992) have used the concept of “contract zone“ to analyze the deterrent
force of FDOA. This paper considers the second factor. In Section 2, we derive some necessary
conditions for disputants’ prudent offers in FDOA and FOA. In Section 3, we show that when
the disputants are risk neutral, their prudent offers of FDOA are closer than that of FOA,
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therefore FDOA is better than FOA by the above mentioned criterion. Second, we examined

FDOA for the case that disputants may be risk averse. We show that FDOA is strong enough
to induce risk averse disputants to reach agreement.

Farber and Katz (1979) and Wittman (1986) give some results about the effect of increased
risk aversion by one of the disputants, for conventional arbitration and FOA respectively.

Their results show that the “contract zone“ becomes larger when disputants become more

risk averse. Wittman (1986) gives a result about the convergence of the disputants’ offers

when the disputants become infinitely risk-seeking, but he has not given any result about the
convergence of the offers when the disputants become infinitely risk averse. In our opinion,
the latter case is more important, because usually, people are risk averse. In the final part of

Section 4, we use an example to show that FOA is not strong enough to induce any disputant

to give offer that converges to his “reservation price” when he is infinitely risk averse.

2 Arbitration Procedure FDOA

As usually, we use the buyer-seller model to analyze arbitration. Two parties, referred to as
seller and buyer, must jointly decide on a determinate value of some continuous variable $x$ in
$[L, H]$ , where $L(H)$ is a finite lower (upper) bound. Disputant $s$ (seller) wants the value to

be high –the higher the better –whereas $b$ (buyer) wants the value to be low –the lower

the better. $L(H)$ can be explained as reservation price, which represents the very minimum
(maximum) the party $s(b)$ will settle for.

As everyone knows, the buyer may often be an individual which is usually risk averse,
and the seller may often be a firm, which is usually risk neutral. Since we will consider the
risk attitude effect in Section 4, we mainly examine the buyer part when we give proofs for
theorems, if the similar condusions hold for the seller part.

In Zeng Ohnishi and Ibaraki (1992), we propose arbitration FDOA. In FDOA, disputants
$s$ and $b$ are requested to give pairs of two offers $(x_{s}, y_{s})$ , and $(x_{b}, y_{b})$ respectively. The first
components $x_{s}$ and $x_{b}$ are their real offers, which may become the final result as in FOA. The
second components $y_{s}$ and $y_{b}$ are their estimates of the arbitrator’s fair point. Although their
estimates may be probabilistic, $y_{s}$ and $y_{b}$ are required to be a single point.

As illustrated in the flow chart of Figure 1, the arbitrator will first compare $y_{s},$ $y_{b}$ with
his fair point $x_{a}$ . If $y_{s}>y_{b}$ , their estimates are not compatible. This time, as in FOA, the

arbitrator will choose $x_{s}$ ( $x_{b}$ or $(x_{s}+x_{b})/2$ ) as the final result if $y_{s}$ is closer (farther or equal)
to $x_{a}$ than $y_{b}$ to $x_{a}$ . By this rule, we discourage the disputants to give an estimate that is too

optimistic. If $y_{s}\leq y_{b}$ , their estimates are compatible. This time, the arbitrator will compare
$|x_{s}-y_{s}|$ with $|x_{b}-y_{b}|$ . If $|x_{s}-y_{s}|<|x_{b}-y_{b}|,$ $s$ has made more concession and thus $s’ s$ offer $x_{s}$

will be the final result. By this rule, we encourage the disputants to make their offers $x_{s}$ and $x_{b}$

close to their estimates $y_{s}$ and $y_{b}$ respectively, therefore neither player can make an arbitrarily
extreme real offer.

Let us describe disputant s’s $(b’ s)$ estimate on the arbitrator’s fair point by probabilistic
density function $f_{s}(x)(f_{b}(x))$ and distribution function $F_{s}(x)(F_{b}(x))$ over $[L, H]$ . We suppose
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that $f_{s}(x)$ and $\int_{b}(x)$ are con ( $\dot{|}||\iota\downarrow()\iota\iota sr_{11}$ nct ion.$s$ wi (li IImea n,s $l^{l_{J^{}}}\’/1,,,$ $\mathfrak{l}\mathfrak{l}1C^{\iota}$( $li:tII\backslash \prime\prime\prime\}$ , $\prime\prime$ ’ re,s $|$ ) $(\backslash (-$

tively. As usual, we use { $f_{s}(:|)$ and { $\prime_{b}(.l\cdot)(()t1_{(}\backslash \iota\downarrow(y\downarrow c^{1}$ tlIe } $|$ (ili $tyI^{\cdot}\iota\downarrow||((|()|\downarrow s$ of clisputant s.s and $b$

respectively, wllich are $s$ upposed to be di $(f\cdot\iota\cdot\backslash$

Fig. 1: flow chart of $I^{^{\backslash }}DOA$ procedure

At first, we use two axioIns to modify $\downarrow|tt^{\iota}$ acti vi ty of $0111^{\cdot}$ disput $\dot{c}1Itls$ .

Axiom 2.1 The disputants $gi\uparrow$ ) $e$ offers in $[T_{J}, lI]$ .

If one of the disputants $gi$ ve any offer which is outside [ $L$ , Il], 1 $|_{1}t$ ’ arbil ra(or will judge that
$1_{1}is$ opponent wins.

Axiom 2.2 For any poslfive numbe $r\cdot\epsilon,$
$\int_{l^{l_{J^{}}+\epsilon}}f_{s}(iI^{\cdot})dx>0,$ $\int_{H^{H}-\epsilon}\int_{l},(.l’)\iota 1.’\cdot>0$ .

This axiom assumes that any disputa,nt ca nnot a $fTi$ rrn ( $|_{1}a1|$ he a rbi (rat or will $g|\vee t^{1}1^{\cdot}\epsilon\backslash s$ ult that
is better than his reserva{ ion price $Io|$ (. This assunlpt ion ca 11 si $\downarrow ll[$ ) $lil\cdot y$ ou $|(|is(|lssio|\downarrow$ without
much loss of generali ty. Because, ir this axiomm is $vi()1_{ii}1\{^{)}$ ( $1$ , sa$yI\dot{e}$ ) $1$ some $c$ a nd ( $1i$ : ( $AlIls$ , we
can use $L+\epsilon$ to replace $L$ .
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Usually, disputants $s$ and $b$ do not share a common estimate about the arbitrator’s fair
settlement. On the contrary, they may not even know their opponents’ estiInates. Therefore
we suppose that they use a prudent offer which is defined below:

Definition 2.1 (Definition 2.2 of Zeng Ohnishi and Ibaraki (1992)) With the density function
$f_{s}(x)(f_{b}(x))$ of estimate, value $x_{s}^{*}(x_{b}^{*})$ is a prudent offer of $s(b)$ under an arbitration procedure
$P$ if and only if

$\inf$ $g_{s}(x_{s}^{*},x_{b}|P)=$ $\sup$ $\inf$ $g_{s}(x_{s}, x_{b}|P)$

$x_{b}\in[L,H]$ $x_{s}\in[L,H]^{x_{b}\in[L,H]}$

$(. \inf_{x_{q}\in[LH]},g_{b}(x_{s},x_{b}^{*}|P)=\sup_{x_{b}\in[L,H]}\inf_{x_{s}\in[LH]},g_{b}(x_{s}, x_{b}^{*}|P))$

where $g_{s}(x_{s}, x_{b}|P)(g_{b}(x_{s}, x_{b}|P))$ denotes the expected profit of $s(b)$ under the procedure $P$ if
$s’ s$ offer is $x_{s}$ and $bs$ offer is $x_{b}$ .

Of course, this definition makes sense only under the condition that the maximum and
the minimum can be arrived. In this paper, we assume that the prudent offers always exist.
Besides, the above definition can be easily adapted for the case that players give more than
one offer, such as in procedure FDOA.

Lemma 2.1 Let $($ ”, $y_{s}^{*}),$ $(x_{b}^{*}, y_{b}^{*})$ be the prudent offers of $s$ and $b$ in procedure FDOA. Then

(2.1) $\{2UU_{s}(x_{s}^{*})\int_{(s/x_{s}^{*})}yH_{H_{*}}f_{s}(t)dt=U_{s}(2y_{*}^{*}-x_{s}^{*})\int_{y_{\sim^{Q}}}^{\underline{Q}}f_{s}(t)dt=U_{s}(x_{s}^{s})f_{s}(y_{s}^{*})$

a $nd$

(2.2) $\{U_{b}(x_{b}^{*})\int_{-2U_{b}’(x_{b}^{*})}L^{y_{b}}f_{b_{b}}(t)dt=U(2y_{b}^{*}-x^{*})\int_{L^{y}}f_{b}(t)dt=^{b}U_{b}(x_{b}^{*})f_{b^{b}}(y_{b}^{*})$

hold.

For arbitration procedure FOA, it is easy to prove the following necessary condition:

Lemma 2.2 In $FOA,$ $ss$ prudent offer $x_{s}\#$ and $bs$ prudent offer $x_{b}^{\#}$ satisfy the $fo$ llowing equa-
tions (2.3) and (2.4) respectively:

(2.3) $\{U_{s}(y_{s}\#)_{s}F_{s}(\frac{x^{\underline{\#_{Q}}}+y_{s}^{\#}}{U_{s}^{2}(})=\frac{U_{s}\{x^{\#}.)-U_{\approx}\{y^{\#}\vee)}{s(^{\underline{x}_{A^{+^{2}}}^{\#\#}}2R^{q})=}f_{s}(\frac{x_{\simeq}^{\#}+y_{e}^{\#}}{x_{s}\#)^{2}})[\#\#\cdot$

where $y_{s}\#$ is $bs$ best reply to $s’ s$ offer $x_{s}\#$ , and

(2.4) $\{U_{b}’(x_{b}^{\#})F_{b}(\frac{x_{b}^{\#}+y_{b}^{\#}}{U_{b}^{2}(y})\frac{U_{b}(y_{b}^{\#})-U_{b}(x_{b}^{\#})}{b(\frac{x_{b^{+y^{\#}}}^{\#^{2_{b}}}}{2})=}f_{b}(\frac{x_{b}^{\#}+y_{b}^{\#}}{y_{b}^{\#})^{2}})[x_{b}^{\#,\#}b$

where $y_{b}^{\#}$ is $ss$ best reply to $bs$ offer $x_{b}^{\#}$ .
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As special case, when the disputants are risk neutral, their prudent offers have the following
forms:

Lemma 2.3 (Theorem 3.1 of Zeng Ohriishi and Ibaraki (1992)) Assume that $f_{s}’(m_{s})$ and
$f_{b}’(m_{s})$ exist and $f_{s}(m_{s})>0,$ $f_{b}(m_{b})>0$ hold. Then, in $FOA$ ,

$x!=m_{s}+ \frac{1}{2f_{s}(m_{s})}$ , $x_{b}^{\#}=m_{b}- \frac{1}{2f_{b}(m_{b})}$

are prudent offers of risk neutral disputants $s$ and $b$ respectively, if

$f_{s}(x)\leq f_{s}(m_{s})+4f_{s}^{2}(m_{s})|x-m_{s}|$ for $x$ such that $|x-m_{s}| \leq\frac{1}{4f_{s}(m_{s})}$

$f_{b}(x)\leq f_{b}(m_{b})+4f_{b^{2}}(m_{b})|x-m_{b}|$ for $x$ such that $|x-m_{b}| \leq\frac{1}{4f_{b}(m_{b})}$

and there exist $c_{s1}\in[L, m_{s}],$ $c_{s2}\in[m_{s}, H],$ $c_{b1}\in[L, m_{b}]$ and $c_{b2}\in[m_{b}, H]$ such that

$f_{s}(x)$ $\geq$ $f_{s}(m_{s})exp(-2f_{s}(m_{s})|x-m_{s}|)$ for $c_{s1}\leq x\leq c_{s2}$ ,

$f_{s}(x)$ $\leq$ $f_{s}(m_{s})exp(-2f_{s}(m_{s})|x-m_{s}|)$ for $x\leq c_{s1}$ and $x\geq c_{s2}$ ,

$f_{b}(x)$ $\geq$ $f_{b}(m_{b})exp(-2f_{b}(m_{b})|x-m_{b}|)$ for $c_{b1}\leq x\leq c_{b2}$ ,

$f_{b}(x)$ $\leq$ $f_{b}(m_{b})exp(-2f_{b}(m_{b})|x-m_{b}|)$ for $x\leq c_{b1}$ and $x\geq c_{b2}$ .

3 Comparison of FDOA with FOA

In this section, we discuss the case when two disputants are risk neutral. We prove that
the prudent offer of $s$ in FDOA is smaller than that in FOA, and the prudent offer of $b$ in
FDOA is larger than that in FOA, therefore FDOA is better than FOA in the sense that the
two disputants’ offers are closer. In order to use the convenient expression of the disputants’
prudent offers in FOA, we supposes that the functions $f_{s}(t)$ and $f_{b}(t)$ satisfy the conditions in
Lemma 2.3.

Theorem 3.1 For two risk neutral disputants $s$ and $b$ , if $f_{s}(x)$ is concave and symmetrical
in $[L, H_{s}]$ with median $m_{s}= \frac{L+H_{e}}{2}f_{b}(x)$ is concave and symmetrical in $[L_{b}, H]$ with median
$m_{b}= \frac{L_{b}+H}{2}$ then

$x!>x_{s}^{*}$ , $x_{b}^{\#}<x_{b}^{*}$ ,

where $x_{s}\#$ and $x_{b}^{\#}$ are the prudent offers in $FOA$ of $s$ and $b$ respectively, $x_{s}^{*}$ and $x_{b}^{*}$ are the first
components of the prudent offers in FDOA of $s$ and $b$ respectively.

Proof : We only prove the case for $b$ , i.e.,

(3.1) $x_{b}^{\#}<x_{b}^{*}$ .
1 To conserve space, details of the proofs of other theorems, lemmas and consequences, whi$ch$ are not presented

in this paper, are available from the authors.
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By Lemmas 2.1 and 2.3, we have

$x_{b}^{\#}=m_{b}- \frac{1}{2f_{b}(m_{b})}$

and $x_{b}^{*}$ with parameter $y$ solves the following equations:

(3.2) $(H-y)f_{b}(y)=F_{b}(y)(1+F_{b}(y))$

(3.3) $(H-x_{b}^{*})f_{b}(y)=2F_{b}(y)$ .

It is easy to check that $f_{b}(y)>0$ . Therefore we can rewrite (3.3) as

(3.4) $H-x_{b}^{*}= \frac{2F_{b}(y)}{f_{b}(y)}=\frac{2(H-y)}{1+F_{b}(y)}$

where the second equality is from (3.2).

First, we consider the case $y\geq m_{b}$ . If $f_{b}(y)\leq f_{b}(m_{b})/2$ , as $f_{b}(x)$ is concave, $H-y\leq$

$(H-m_{b})/2$ . From the second equality of (3.4), $H-x_{b}^{*}\leq 2(H-y)\leq H-m_{b}$ , therefore
$x_{b}^{\#}<m_{b}\leq x_{s}^{*}$ . If $f_{b}(y)>f_{b}(m_{b})/2$ , by the first equality of (3.4) and equation (3.2), we have

$y-x_{b}^{*}= \frac{F_{b}(y)[1-F_{b}(y)]}{f_{b}(y)}=\frac{\frac{1}{4}-[F_{b}(y)-\frac{1}{2}]^{2}}{f_{b}(y)}<\frac{1}{2f_{b}(m_{b})}$

therefore
$x_{b}^{*}>y- \frac{1}{2f_{b}(m_{b})}\geq m_{b}-\frac{1}{2f_{b}(m_{b})}=x_{b}^{\#}$ .

Now we consider the case $y\in(L_{b},m_{b})$ . As $f_{b}$ is concave and symmetrical around $m_{b}$ ,
$f_{b}(m_{b})= \max_{t\in[L_{b},H]}f_{b}(t)$ , therefore $(H-L_{b})f_{b}(m_{b})\geq F_{b}(H)=1$ , i.e.,

(3.5) $f_{b}(m_{b})\geq 1/(H-L_{b})$ ;

Let $A(t)=2m_{b}F_{b}(t)-(t-L_{b})$ , we have $A(m_{b})=A(L_{b})=0,$ $A”(t)=2m_{b}f_{b}’(t)\geq 0$ for
$t\in(L_{b}, m_{b})$ thus

(3.6) $F_{b}(t) \leq\frac{t-L_{b}}{H-L_{b}}$ for $t\in(L_{b}, m_{b})$ ;

Similar to (3.6), as $f_{b}$ is concave, we have

(3.7) $f_{b}(t) \geq\frac{2(t-L_{b})}{H-L_{b}}f_{b}(m_{b})$ for $t\in(L_{b}, m_{b})$ .

We conclude that the equality in (3.7) does not hold for $t\in(L_{b}, m_{b})$ . In fact, as $f_{b}(t)$ is
concave, $f_{b}(m_{b})\geq f_{b}(t)\geq 0$ for all $t\in(L_{b}, m_{b})$ . If this equality holds for some $t^{*}\in(L_{b}, m_{b})$ ,
then it holds for all $t\in(L_{b}, m_{b})$ . Thus $f_{b}(m_{b})=1/(m_{b}-L_{b}),$ $f_{b}(t)=2(t-L_{b})/(H-L_{b})^{2}$ ,
$F_{b}(t)=(t-L_{b})^{2}/(H-L_{b})^{2}$ for $t\in[L_{b}, m_{b}]$ . Under these conditions, (3.2) does not hold for
all $y\in(L_{b}, m_{b})$ . Therefore the inequality in (3.7) holds strictly for all $t\in(L_{b}, m_{b})$ .

By the above three inequalities, we have

(3.8) $H-x_{b}^{*}= \frac{2F_{b}(y)}{f_{b}(y)}<\frac{1}{f_{b}(m_{b})}\leq H-m_{b}+\frac{1}{2f_{b}(m_{b})}=H-x_{b}^{\#}$ ,

Which leads to (3.1).
It is easy to show that $x_{b}^{*}>L_{b}$ , thus we can conclude our proof. $\square$
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Remark 3.1 Note that we have not suppose any order relation between $L_{b}$ and $L,$ $H_{s}$ and $H$ .
According to the Axiom 2.2, if $[L_{b}, H]\subseteq[L, H]$ and $[L, H_{s}]\subseteq[L, H]$ , the intrinsic gap (Zeng,
Ohnishi and Chen (1992)) between the two estimates is zero. However, our results are not
restricted to this case. They hold even if the intrinsic gap is positive.

In Brams and Merrill (1991), the authors propose an improvement for the procedure FOA,
which is called “Final-Offer Arbitration with a Bonus”. They have also shown that the offers
of this procedure are closer than those of FOA, but that the final result of this procedures

are the same as under FOA. Differently, because FDOA’s result is also one of the offers or
the average, just as the same of FOA, the above theorem is strong, it tells us that FDOA is
intrinsically better than FOA.

4 Risk Attitude Effect for FDOA

For simplicity, we now assume that each party has a utility function in the following form:

(4.1) $U(p, \alpha)=p^{\frac{1}{Q}}$ for $p\geq 0$ ,

where $p$ is the profit and $\alpha$ is a parameter which is supposed to be positive. By Axiom 2.1, we
do not consider the case that $p<0$ .

This is a convenient functional form because, the risk preferences of the parties are com-
pletely determined by $\alpha$ . He is risk averse, risk neutral or risk loving as $\alpha$ is respectively,
greater than, equal to, or less than one. And he becomes more risk averse as ($y$ becomes larger.

Lemma 2.1 has the following corollary:

Corollary 4.1 In FDOA, when the disputant $b’ s$ utility function is in the form of $(4\cdot 1)$ , then
his prudent offer with parameter or $is$

(4.2) $x_{b}( \alpha)=H-\frac{2F_{b}(y_{b}(\alpha))}{\alpha f_{b}(y_{b}(\epsilon x))}$

where $y_{b}(\alpha)$ satisfies the following equation:

(4.3) $\alpha(H-y_{b}(\alpha))f_{b}(y_{b}(\alpha))=F_{b}(y_{b}(\alpha))(1+F_{b}^{\alpha}(y_{b}(\alpha)))$ .

Now we consider the problem how the offers are changed when the disputants become more
and more risk averse. We only consider disputant $b$ in this section, therefore we omit the
subscript $b$ , and denote $b’ s$ estimate density function as $f(t),$ $b’ s$ estimate distribution function
as $F(t)$ , his prudent offer in FDOA as $(x(\alpha), y(\alpha))$ , if there is no other illustration.

For simplicity, we suppose that $f(t)$ is concave and symmetrical in $[L_{b}, H]$ .

Lemma 4.1 The offer $y(\alpha)$ is a strictly increasing function of $\alpha$ , furthermore

(4.4) $\lim_{\alphaarrow\infty}y(\alpha)=H$ .
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Corollary 4.2
(4.5) $\lim_{\alphaarrow\infty}x(\alpha)=H$ .

By Lemma 4.1, $\lim_{\alphaarrow\infty}F(y(a))=1$ , therefore

(4.6) $\lim_{\alphaarrow\infty}(F(y(\alpha)))\frac{1}{1-F(y(0))}=\frac{1}{e}$

thus when $\alpha$ converges to $\infty,$ $F^{\alpha}(y(\alpha))$ converges if and only if $\alpha(1-F(y(\alpha)))$ converges.
As $f(t)$ is concave and symmetrical in $[L_{b}, H]$ for $t\in[m_{b}, H],$ $(H-t)f(i)/2\leq 1-F(t)\leq$

$(H-t)f(t)$ . According to (4.3), for $\alpha$ which is large enough,

(4.7)
$\leq$

$\frac{F(y(\alpha))[1+F^{\alpha}(y(\alpha))]}{\alpha(1-F(y(\alpha)))\leq F(y(2}\alpha$

)) $[1+F^{\alpha}(y(\alpha))]$ .

Combining (4.6) and (4.7), we can conclude that $\alpha(1-F(y(\alpha)))$ and $F^{\alpha}(y(\alpha)))$ cannot
simultaneously converge to $\infty$ and therefore they are bounded. Hence there are convergent
sequences:

$A= \lim_{\alpha_{n}arrow\infty}F^{\alpha_{n}}(y(\alpha_{n})))$ , $B= \lim_{\alpha_{n}arrow\infty}\alpha_{71}F(y(\alpha_{7l}))$ .

Lemma 4.2 The above lintit $A$ is bounded: $e^{-2}<A<e1/2$ .

Lemma 4.3 There exists $\alpha^{*}$ such that when $\alpha>a^{*},$ $x(\alpha)$ is also a strictly increasing function
of $\alpha$ .

Proof: Differentiate (4.2) with respect to $\alpha$ , the following equality holds:

$\alpha f(y(\alpha))x’(\alpha)=[-2f(y(\alpha))+\alpha(H-x(\alpha))f’(y(\alpha))]y’(\alpha)+(H-x(c\nu))f(y(\alpha))$ .

It is easy to check that

$-2f(y(\alpha))+\alpha(H-x(\alpha))f’(y(\alpha))<0$ .

Therefore what we want to prove is that when $\alpha$ is large enough,

$[2f(y(\alpha))-\alpha(H-x(\alpha))f’(y(\alpha))]y’(a)<(H-x(\alpha))f(y(\alpha))$ ,

which is equivalent to

(4.8) $2\alpha(H-y(\alpha))f^{2}(y(\alpha))$

$>$ $[- \ln F^{\alpha}(y(\alpha))]F^{\alpha+1}(y(\alpha))(\frac{2f(y(a))}{\alpha}-(H-x(\alpha))f’(y(\alpha)))$ .

The equivalence is due to the equations (4.2) and (4.3). According to Lemma 4.1, there exist $\alpha_{1}$

such that when $\alpha>a_{1},$ $y(\alpha)>m_{b}$ thus without loss of generality, we suppose that $f’(y(\alpha))<0$



68

in (4.8), $theref_{o1}\cdot e-f’(y(\alpha))\leq f(y(a))/(H-y(\alpha))$ as $f(t)$ is concave and decreasing in $[m_{b}, H]$ .
So the following inequality can assure (4.8).

(4.9) $2F(y(a))[1+F^{\alpha}(y(\alpha))]$

$>$ $[- \ln F^{\alpha}(y(a))]F^{\alpha+1}(y(\alpha))(\frac{2}{(y}+\frac{2}{1+F^{\alpha}(y(\alpha))})$ .

Let the left part of (4.9) be $L(\alpha)$ and the right part be $R(\alpha)$ , then by Lemma 4.2, for any
positive number $\epsilon<[(1+e^{-2})^{2}-2e^{-1/2}]/(1+e^{-2})$ , there exists $a^{*}$ such that when $\alpha>\alpha^{*}$ ,
$L(a)>2(1+e^{-2})-\epsilon>4e^{-1/2}/(1+e^{-2})+\epsilon$ , and $R(\alpha)<4e^{-1/2}/(1+e^{-2})+\epsilon$ , and therefore
(4.9) is right for $a>\alpha^{*}$ . $\square$

As $y(\alpha)$ is strictly increasing, it is easy to show that $\lim_{\alphaarrow 0+}y(\alpha)=L_{b}$ , and therefore
$\lim_{\alphaarrow}0+x(\alpha)=L_{b}$ . But $x(\alpha)$ is not an increasing function for all $a$ . For example, when
$f(t)=1$ for $t\in[0,1]=[L_{b}, H]$ , if $x(a)$ is decreasing, by (4.8), we have

(4.10) $(1+y^{\alpha}(\alpha))>-y^{\alpha}(\alpha)\ln y(\alpha)$

while (4.3) turns to be
(4.11) $\alpha(1-y(\alpha))=y(\alpha)(1+y^{\alpha}(a))$ .

By (4.10),

(4.12) $\frac{1+y^{\alpha_{y}}}{y^{\alpha_{y}}}>\ln\frac{1}{y}$ .

where we denote the $a$ which satisfies (4.11) by $\alpha_{y}$ while $y$ is given. As the right part of (4.12)
converges $to+\infty$ when $y$ converges $to+O,$ $(4.12)$ tells us that

(4.13) $\lim_{yarrow+0}y^{\alpha_{y}}=0$ ,

therefore, according to (4.11),

(4.14) $\lim_{yarrow+0}\frac{\alpha_{y}(1-y)}{y}=1$ .

Thus
$\lim_{yarrow+0}y^{\alpha_{y}}=\lim_{yarrow+0}y^{\frac{y}{1-y}}=\lim_{yarrow+0}(y^{y})^{\frac{1}{1-y}}=1$

which contradicts to (4.13).

The above Lemmas lead to the following theorem.

Theorem 4.1 If $f_{s}(t)(f_{b}(t))$ is concave and symmetrical in $[L, H_{s}]\subseteq[L, H]([L_{b}, H]\subseteq$

$[L, H])$ , then
a) $y_{s}(a)(y_{b}(\alpha))$ is strictly decreasing (increasing) function of $\alpha$ ;
b) There exist $a^{*}$ , such that when $a>\alpha^{*},$ $x_{s}(\alpha)(x_{b}(\alpha))$ is strictly decreasing (increasing)

function of $\alpha$ ;
c) $\lim_{\alphaarrow\infty}y_{s}(\alpha)=\lim_{\alphaarrow\infty}x_{s}(a)=L;\lim_{0arrow\infty}y_{b}(\alpha)=\lim_{\alphaarrow\infty}x_{b}(\alpha)=H$.
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This theorem tells us that when disputants $s$ and $b$ are risk averse enough, $s’ s$ offers $x_{s}$ wiu
be less than $b’ s$ offer $x_{b}$ so that they can reach agreement by themselves.

We have examples which show that the above property does not hold for arbitration pro-
cedure FOA, $b’ s$ prudent offer does not converges to $H$ while he becomes more and more risk
averse with expression (4.1) as his utility function form.
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