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Abstract

This paper introduces two new approaches to determine the optimal parame-
ter in the mehod of regularization. One is based on the error analysis made in [4]
and [5]. The other is based on, what is called in [2], L-curve, which is formulated
and analyzed in [3].

1 Introduction
One of the most important problems in approximating the solution of a linear ill-posed
problems by the method of regularization resides in the selection of the otimal regu-
larization parameter. we present new two approaches to the optimal regularization.

We consider the ill-conditioned linear systems arising from Fredholm integral equa-
tions of the first kind of the form

$\int_{a}^{b}k(s, t)f(t)dt=\hat{g}(s)$ , $s_{m1n}\leq s\leq s_{\max}$ , (1)

where $K(s, t)$ and $\hat{g}(s)$ are known $L_{2}$ functions and $t$ is the unknown function in
$L_{2}[a, b]$ . This equation is known to be an ill-posed problem in the sense that $\hat{f}$ dose not
depend on $\hat{g}$ continuously, namely, any small perturbation in $\hat{g}$ results in arbitrarily
large change in $f$ . Via some discretization process, one can reduce (1) to the equation

$Tf=g$, (2)
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with $f=(f_{1}, f_{2}, \ldots, f_{n})\in R^{n},$ $g=(g_{1}, g_{2}, \ldots, g_{m})\in R^{m}$ and $T:R^{n}\mapsto R^{m}$ .

The ill-posedness of (1) results from the fact that the operator $\hat{T}$ which is the inte-
gral operator in (1) dose not have a bounded inverse, which in turn, implies that the
condition number of the matrix $T$ increases rapidly as $m$ and $n$ increase. Consequently,
any attempts to solve (2) by a conventional least squares method may produce dis-
astrous results. A number of methods are available to mitigate the effect of this ill-
conditioning. Best known of them are the truncation of the singular value decomposi-
tion and the method of regularization.

2 Optimal regularization
The method of regularization solves the related well-posed problem of minimizing a
smoothing functional. In other words:

For given $g_{\Delta}=g+\triangle g\in R^{m}$ , find $f=f(\mu, \triangle g)\in R^{n}$ and $\mu\in[0, \infty$ ) for which

$\min_{f\in R^{n}}\{\Vert Tf-g_{\Delta}\Vert^{2}+\mu\Vert f\Vert^{2}\}$ (3)

is attained.

The parameter $\mu$ is called the regularization parameter, which controls the tradeoff
between the stabilty of the system (3) and the fidelity to the original equation. This
technique is known to be very successful in practice, provided that the optimal value
of the regularization parameter $\mu$ is determined appropriately [1, 4, 6].
We set, for further use,

$e(\mu;\triangle g)=T^{\dagger}g-f(\mu;\triangle g)$ , (4)

where $\tau\dagger$ denotes the Moore-Penrose generalized inverse of $T$ and $f(\mu;\triangle g)$ represents
the minimizer of the smoothing functional (3).

We define the optimal regularization parameter as follows.

Definition 1 We call $\mu_{0}$ the optimal regularization parameter if

$\mu_{0}\in\{\overline{\mu}|\min \Vert e(\mu)\Vert=\Vert e(\overline{\mu})\Vert\}$ . (5)
$\mu\in[0,\infty)$
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Hereafter we may write $f(\mu)=f(\mu;\triangle g)$ , etc. for simplicity.

3 New approaches to the optimal regularization
We present the following two new approaches to this problem:

1) The first approach is by introducing a function to determin the optimal parameter.
The method chooses the value of $\mu$ for which

$\min_{\mu\in P_{\sigma}}\zeta(\mu)$ with $\zeta(\mu)=||\frac{d}{d\xi}f(\mu;\Delta g)\Vert$ (6)

is attained, where $P_{\sigma}$ is the set of singular values of $T^{t}T$ and $\xi=\log\mu$ . We monitor
the values of the function $\zeta(\mu)$ among the values of $\sigma^{2}:s$ , where $\sigma_{i},$ $i=1,2,$ $\ldots,$

$n$ , are
singular values of T. Then we employ the value of $\mu$ which gives the minimum of $\zeta(\mu)$ .
Namely, one advantage of this method is that the number of the evaluation of the
function is at most $n$ . The theoretical aspect which explains why this method works
out well is discussed in [4] and the practical numerical algorithm together with some
numerical experiments are given in [5].

2) The second approach uses the notion of L-curve which is termed by [2] and is defined
as the graph of

(1I $r_{\mu}^{\Delta}\Vert$ , II $f(\mu)\Vert$ ) with $r_{\mu}^{\Delta}=Tf(\mu)-g_{\Delta}$ (7)

which is parametrized by $\mu$ . The name of L-curve comes from the numerical obserbation
that the graph (7) has a steep bend in its middle and it looks like L. Moreover, the
corner of the L-curve gives a good estimation for the optimal regularization parameter
$\mu_{0}$ .

The maximizer of the curvature of the L-curve is employed as the optimal param-
eter. The formulatin of this method with numerical examples is given in [3]. The
explicit expression of $\kappa(\mu)$ using the singular system, which is not simple at all but we
can compute anyway, is given as follows;

$\kappa(\mu)=\frac{1}{(\Vert r_{\mu}^{\Delta}\Vert^{2}+\mu^{2}\Vert f(\mu)\Vert^{2})^{\frac{3}{2}}}|\frac{\Vert r_{\mu}^{\Delta}\Vert^{2}\Vert f(\mu)||^{2}(\Sigma_{1}(\mu)+3\mu\Sigma_{2}(\mu))}{\Sigma_{3}(\mu)^{2}}-\mu(\mu\Vert r_{\mu}^{\Delta}\Vert^{2}+\Vert f(\mu)\Vert^{2})|$

(8)



101

where

$\Sigma_{1}(\mu)\equiv\sum_{1=1}^{k}\frac{\sigma_{i}^{2}(\sigma^{2}:-2\mu)}{(\sigma^{2}+\mu)^{4}}(u;, g_{\Delta})_{m}^{2}$ (9)

$\Sigma_{2}(\mu)\equiv\sum_{i=1}^{k}\frac{\sigma_{i}^{2}}{(\sigma_{i}^{2}+\mu)^{4}}(u_{i},g_{\Delta})_{m}^{2}$ (10)

$\Sigma_{3}(\mu)\equiv\sum_{:-1}^{k}\frac{\sigma_{i}^{2}}{(\sigma_{i}^{2}+\mu)^{3}}(u_{i},g_{\Delta})_{m}^{2}$ (11)

with $u_{i}’ s$ are the left singular vectors of $T$ and $k=rank(T)$ .
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