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1 Introduction
We have developed a finite element scheme for incompresible Navier-Stokes equations by
using an upwind approximation of third order accuracy to the convection term in order to
compute high-Reynolds-number flows stably and accurately [1]. We have shown the effec-
tiveness of the scheme by some numerical experiments. In the two-dimensional computation
of flows past a circular cylinder, we obtained numerical results showing the decrease and
the recovery of the drag coefficients $C_{D}$ at a high-Reynolds-number region. These behaviors
agreed well with experimental results qualitavely, but the obtained values of $C_{D}$ at high
Reynolds numbers were greater than experimental results [2]. At high Reynolds numbers
three-dimensional movements appear and it is reported in [3] that the $C_{D}s$ obtained by
two-dimensional analysis are greater than those by three-dimensional analysis. Our final
purpose is to confirm the result by our finite element scheme. In this paper, imposing pe-
riodic boundary conditions in the axial direction, we formulate the finite element scheme
and observe the three-dimensional behavior of flows.

2 Governing Equations and Boundary Conditions

2.1 Flow Problem around a Circular Cylinder
Let $\hat{\omega}$ be a domain in $R^{2}$ :

$\hat{\omega}\equiv\{x;|x|>1/2\}$ ,
$\hat{\Omega}$ be a domain in $R^{3}$ :

$\hat{\Omega}\equiv\hat{\omega}\cross R$

and $T$ be a positive constant. We consider the incompressible Navier-Stokes equations:

$\partial u/\partial t+(u\cdot grad)u+gradp=$ $(1/Re)\nabla^{2}u$ , (1)
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$divu=$ $0$ (2)

in $(x, t)\in\hat{\Omega}\cross(0, T)$ , subject to the rigid wall boundary condition on the cylinder surface:

$u=(O, 0,0)$ on $\Gamma_{0}\equiv\{x;x_{1}^{2}+x_{2}^{2}=(1/2)^{2}\}$ , (3)

an uniform flow condition at infinity in the $x_{1},$ $x_{2}$ directions:

$u=(1,0,0)$ 邸 $X_{1}^{2}+X_{2}^{2}arrow\infty$ (4)

and an initial condition:
$u=u^{0}$ in $\Omega$ , at $t=0$ , (5)

where $u=(u_{1}, u_{2}, u_{3})$ is the velocity, $p$ is the pressure, $Re$ is the Reynolds number and $u^{0}$

is a given velocity.

2.2 Approximate Problem in a Bounded Domain
We consider an approximate problem in a bounded domain to solve by the finite element
method.

Let $L_{in},$ $L_{out},$ $W>1/2$ and $H>0$ be constants, $\omega$ be a subdomain of $\hat{\omega}$ :

$\omega\equiv[(-L_{in}, L_{out})\cross(-W, W)]$ 寡 $\hat{\omega}$

and $\Omega$ be a subdomain of $\hat{\Omega}$ :
$\Omega\equiv\omega\cross(0, H)$ .

We consider the equations(1),(2) in $\Omega\cross(0, T)$ .
We replace the condition(4) by an uniform flow condition on the inflow plane:

$u=(1,0,0)$ on $\Gamma_{1}\equiv\{x\in\partial\Omega;x_{1}=-L_{in}\}$ , (6)

the symmetric conditions on the side planes:

$u_{2}=0$ , $\tau_{1}=\tau_{3}=0$ on $\Gamma_{2}\equiv\{x\in\partial\Omega;x_{2}=\pm W\}$ (7)

and the free stress condition on the outflow plane:

$\tau=(0,0,0)$ on $\Gamma_{3}\equiv\{x\in\partial\Omega;x_{1}=L_{out}\}$ , (8)

where $\tau_{i}=\sum_{j=1}^{3}\sigma_{ij}n_{j},$ $i=1,2,3$ , is the stress vector, $\sigma_{ij}$ is the stress tensor and $n=$
$(n_{1}, n_{2}, n_{3})$ is the unit outward normal to the boundary.

We assume that the phenomenon has periodicity of period $H$ in the $x_{3}$-direction:

$u(\cdot, \cdot,x_{3}+H ; )=u(\cdot, \cdot,x_{3} ; )$ , $p(\cdot, \cdot,x_{3}+H ; )=p(\cdot, \cdot, x_{3} ; )$ . (9)

Hence we impose periodic boundary conditions for the velocity and the pressure on a
bottom plane: $\Gamma_{b}\equiv\{x\in\partial\Omega;x_{3}=0\}$ and on a top plane: $\Gamma_{t}\equiv\{x\in\partial\Omega;x_{3}=H\}$ .
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3Programming of Periodic Boundary Conditions
The assembled finite element equations are

$(\overline{M}/\tau)u_{h}^{n+1}+B^{T}p_{h}^{n}$ $=$ $r^{n}$ , (10)
$Bu_{h}^{n+1}$ $=0$ , (11)

in the matrix form, where $\overline{M}$ is the lumped mass matrix, $B$ is the ‘divergence’ matrix, $\tau$

is the time step, $u_{h}^{n},$ $p_{h}^{n}$ are the values of $u_{h},p_{h}$ at time $n\tau$ and $r^{n}$ is a known vector.
We rewrite these equations for introducing periodic boundary conditions,

$\{\begin{array}{lll}A_{TT} A_{TI} A_{TB}A_{IT} A_{II} A_{IB}A_{BT} A_{BI} A_{BB}\end{array}\}\{\begin{array}{l}x_{T}x_{I}x_{B}\end{array}\}=\{\begin{array}{l}b_{T}b_{I}b_{B}\end{array}\}$ , (12)

where $x_{T},$ $x_{I}$ and $x_{B}$ are unknown values at the points on the top plane, in the interior of
the domain and on the bottom plane, respectively. The first(resp. last) row corresponds
ta the natural boundary condition on the top(resp. bottom) plane.

Now we impose the periodic conditions to eq.(12). We add the first row of eq.(12) to
the last row,

$\{\begin{array}{lll}A_{TT} A_{TI} A_{TB}A_{IT} A_{II} A_{IB}A_{BT}+A_{TT} A_{BI}+A_{TI} A_{BB}+A_{TB}\end{array}\}\{\begin{array}{l}x_{T}x_{I}x_{B}\end{array}\}=\{\begin{array}{l}b_{T}b_{I}b_{B}+b_{T}\end{array}\}$ , (13)

and replace the first row by the periodic boundary conditions,

$\{\begin{array}{lll}I 0 -IA_{IT} A_{II} A_{IB}A_{BT}+A_{TT} A_{BI}+A_{TI} A_{BB}+A_{TB}\end{array}\}\{\begin{array}{l}x_{T}x_{I}x_{B}\end{array}\}=\{\begin{array}{l}0b_{I}b_{B}+b_{T}\end{array}\}$ . (14)

Sweeping out the first column, we get

$\{\begin{array}{ll}A_{II} A_{IB}+A_{IT}A_{BI}+A_{TI} A_{BB}+A_{TB}+A_{BT}+A_{TT}\end{array}\}\{\begin{array}{l}x_{I}x_{B}\end{array}\}=\{\begin{array}{l}b_{I}b_{B}+b_{T}\end{array}\}$

‘ (15)

which leads a symmetric system of linear equations in $x_{I}$ and $x_{B}$ .
The other essential boundary conditions in (3),(6),(7) are imposed to Eq.(15) afterwards.

4 Numerical Results
We used a domain $\Omega$ such that $L_{in}=2.25,$ $L_{out}=6.75,$ $W=2.165$ and $H=1$ . Combining
a triangular subdivision of the domain $\omega$(the total number of elements is 678) and the
division of $(0, H)$ into $m$ equi-intervals ($m=4$ or 6), we subdivided the domain $\Omega$ to the
union of triangular prisms. Finite element subdivision was generated by dividing further
each prism into three tetrahedrons. The subdivision in the case of $m=6$ is shown in Fig.1.
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Figure 1: Finite element subdivision, $m=6$ .

The obtained subdivisions are symmetric with respect to the plane: $x_{2}=0$ and the
planes: $x_{3}=iH/m(i=0, \cdots, m-1)$ , where symmetric solutions with respect to those
planes may appear. But they are not uniform in the $x_{3}$-direction because of the character
of tetrahedral elements.

We used the Karman vortex shedding result of the corresponding two-dimensional com-
putation as the initial datum $u^{0}$ for each computation. A small disturbance: $g(t)=$
$\frac{a}{2}(1-\cos(\pi t))$ was added to the $x_{3}$-component of the velocity for $0\leq t\leq 2$ to see the
‘final’ state of the solution more quickly. We observed the solution sufficiently afterwards
$(t\geq 0)$ where the effect of the disturbance was considered to disappear. (We have checked
that the results are almost independent of $a(0\sim 0.5)$ later enough.) We computed the
cases $Re=100$ and $Re=1000$ .

We show the results in the case of $Re=1OO0,$ $m=6$ in Figs.2\sim 5. In Fig.2 the velocity
vectors on the horizontal planes $x_{3}=0$ and 0.5 are plotted at a moment when the lift
coefficient of the cylinder attains a relative maximum. The velocity vectors on the vertical
planes $x_{2}=0and\pm 0.866$ are plotted in Fig.3. The pressure contours on the same planes
are also plotted in Fig.4 and Fig.5. We can observe that movement in the $x_{3}$-direction
appears and the flow patterns are different in the horizontal planes.

In the computation of $m=4$ or the case of $Re=100$ , we could not observe such
three-dimensional behavior clearly. In Table.1 we show relative variations of $u_{1},$ $u_{2},p$ in
the $x_{3}$-direction:

$e$ ; $= \max_{\omega}$ ($\max_{x_{3}}|u_{i}$
一 $\overline{u_{1}}|)/\max_{tv}|$毎|, $i=1,2$ ,

$e_{p}$
$= \max_{\mathfrak{c}v}(\max_{x_{3}}|p-\overline{p}|)/\max_{(v}|\overline{p}|$ ,

and the relative quantity of $u_{3}$ :

$e_{3}= \max_{\Omega}|u_{3}|/\max_{\Omega}|u|$ ,

where $\overline{u_{i}}$ and $\overline{p}$ are mean values in the $x_{3}$-direction at each point in $\omega$ . We can see again
that three-dimensional behavior is large in the cse of $Re=1000,$ $m=6$ . In the case of
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Figure 2: Velocity vectors, $Re=1000,$ $t=82.28,$ $x_{3}=0(upper)$ and 0.5(1ower).
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Figure 3: Velocity vectors, $Re=1000,$ $t=82.28,$ $x_{2}=0.866,0and-0.866$ (from top).
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Figure 4: Pressure contours, $Re=1000,$ $t=82.28,$ $x_{3}=0(upper)$ and 0.5(1ower).
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Figure 5: Pressure contours, $Re=1OOO,$ $t=82.28,$ $x_{2}=0.866,0and-0.866$(from top).
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Table 1: Measure of three-dimensional behavior.

$Re=100$ , these values decrease as $m$. increases, therefore, the finite element solutions are
considered to converge to a solution with a two-dimensional structure. On the other hand,
we can see that the three-dimensional structure becomes clearer as $m$ increases in the case
of $Re=1000$ .

The subdivision of $\omega$ is not sufficient in the boundary layer for checking $C_{D}$ quantitatively.
We will do it using suitable finer subdivisions in the forthcoming paper.

$5\sim$ Concluding Remarks
We have considered three-dimensional flows around a circular cylinder subject to the pe-
riodic conditions in the axial direction of the cylinder. We have computed them by the
finite element scheme of third order accuracy and investigated the difference between two-
and three-dimensional problems in the case of $Re=100$ and $Re=1OOO$ .

In this paper we have set a priori the period $H=1$ . The consideration whether this
choice is sufficient or not to approximate the original flow problem will be done in near
future.
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