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Linear independence results on values related to

higher dimensional continued fractions

Jun-ichi TAMURA (International Junior College)

SUMMARY: We are intending to describe our results [T4,T6] in a rather self-
contained fashion with some remarks. We shall give no proofs of our theorems.
Let s21, k21 be fixed integers, A:={ao.a.. ' ',a.} be a set, and let sEHom(A*, A*)
be a monoid homomorphism defined by

i(ao):=ao*a,, 6(a.):=a;+: (1¢i¢s-1), d(as):=a,,

where A* denotes the free monoid generated by A. A homomorphism t€Hom(A*,B*) can
be extended to A*UA™ by defining t(uiuz - un---):=t(ui)t(uz) - 1(ua) - (uan€A),
where A® denotes the set of all infinite words (to the right) over A. We denote

by 0=WoWy - twa - c=lim i™(ao) (w.EA) the fixed point of the ¢ prefixed by a,,

where ¢™ is the m-fold iteration of the ¢ (¢° is the identity map on A*UA™),

and lim ¢"(ao) indicates the word w€A” having ¢"(ao) as its prefix for all m20.

We can show that there exists uniquely a number a=a(s,k) such that
f(a)=0, a>1, f(x):=x**'-kx*-1€Z [x].
Throughout the paper, H(h) denotes the height of h, i. e.,
H(h) :=max{ ho|, |hil, -, The|}, hi=(ho,hy, -+, h.)EZ="".
Theorem 1. Let k2s21, 2¢g€Z, and let 8; be numbers defined by

0.=0,(g;s,k):= X g ! (0¢i¢s).

Wn=a;j
Then
s a(a*-1)/(a-1)
| Z, hiﬂi l > K—/H(h)
1=0 -
for all h€Z **' with h#0:=(0,0, --,0), and

1 %(‘l) hiei | < K+/H(},_1)a(a ~1)/(a"1)
1:
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for infinitely many h€Z **', where x-, k. are positive constants independent of
h.

Corollary 1. The s+l numbers 6; are linearly indepndent éver Q; the s+2
numbers 1, and 8; are linearly dependent over Q.

For a given t€Hom(A*,B*) (B:={0,1, --,g8-1}, 28¢gEN), we denote by M(r1) fhe
(s+1)xg matrix (lt(ai)li)osi<s.o0si<e-1, where |ul; is the number of ocurrences

of j(€B) appearing in a word u(€B*). For a given word v€B®, .0.v indicates the

number defined by the g-adic expansion:

£0.v:i= ﬁ%% Va8 " (2¢8€EZ ), v=viVz  Va - (V,EB).

Theorem 2. Let (s,k)EN? with (s,k)#(t,1) (t22). Let t€Hom(A*,B*) such
that the rank of M(t) is greater than one. Then ;O.r(w) is a transcendental
number for all g with 2¢g€Z .

Corollary 2. Let 6; be as in Theorem 1. Then the numbers §; (0{ils) are
transcendental.

It is remarkable that the numbers 0:; have explicit digits in base g:

Example 1. (s,k)=(2,2): ¢®-20%-1=0, ¢=2.2055694 . Put as=a, a,=b, a.=c.
>Then ¢ (a)=aab, ¢(b)=c, ¢(c)=a, and

w:aabaabcaabaabcaaabaabcaabaabcaaabaabaabCaabaabcaaabaabcaabaabcaaabéabaabcm.
00=,0.1101100110110011101100110110011101101100110110011101100110110011101101100~
,=¢0.0010010001001000010010001001000010010010001001000010010001001000010010010~
8.=,0.0000001000000100000001000000100000000001000000100000001000000100000000001 .

It follows from Theorem 1 that
2
| =, hib;[>1/H(h)*
i=0 B
holds for all heZ ?® with h#0, and
2
| S b <1/H )
i= :

holds for infinitely many h€Z ®, where g=e(a+1)=7.0701059" - -.
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Theorem 3. Let (s,k)ENZ?, and let g, §;, a be as in Theorem 1. Put §:=

max{1l,[8l; f(8)=0, (e#peC)}. Then

(log §)/log @
*-1 -1 1 H(h
1 _éé ht 1S K_/(H(b)a(a )/ (e )K( og H(h)) | )

for all heZ **' with h#0, and

(log §)/log a
log H(h 1)/ (a1
DS na | e D) PRUICEIATRE

for infinitely many h€Z **', where k.>0, ¥->0, and &>l are constants independent
of h.
Remark 1. 1£5<a holds. The polynomial f(x) is irreducible for all s21, k2i.
The ¢ is not always a Pisot number, for instance, §>1 if (s,k)=(5,1). If the o
is a Pisot number, then =1, so that the estimates in Theorem 3 turn out to be
exact ones as in Theorem 1.
Corollary 3. The number §;(g;s,k) is a non-Liouville number for all 0¢ifs,
"2¢gf7Z , and (s,k)EN?Z?.
Let s21, and k22 be integers, and let EEHom(K*,A*) (A:={a-.,a0, - -,a.})
be a monoid homomorphism defined by
d(a-1):=a-,*, 0(ao):=acaa-, * 2,
o(a;):=a_,a;41a-1""2 (18j<s-1), olas):=aca-,* '.
We denote by @=aoa: 0. - (0.€A) the fixed point of the s prefixed by a,. Then
we can show

Theorem 4. Let ¢:=9:(g;s,k) be numbers defined by

i

pi:=0(g ) (0Si€Z, 2%g€Z),

~

p(z)=0(z;k,s):= > z".
: wnE{ao,as}
Then
k(k*-1)/(k-1
| Szo boos |y o< ETTD/ED
1:

for all h€Z **' with h#0, and



k(k=-1)/(k-1
| Szo hioi | < k. /H(h) /)
1:
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for infinitely many h€Z **', where t+, £- are positive constants independent of

h.
Corollary 4. The number ¢(g~') is a non-Liouville number for all g with
24gEZ . |
Corollary 5. Let i20 be an integer. Then, the s+l numbers ¢i, 9i+1,
pi+s are linearly independent over Q; the s+2 numbers 1, and ¢:, ¢:i+.1, )
9i+s are linearly dependent over Q.
Example 2. (s,k):(i,Z): Put a-,=c, ao:a,.alzb. Then, o(a)=ab, ¢(b)=ac,
i(c)=c?, and the base-g expansion of the numbers ¢; (i20) is given by
W=a b a ¢ a b ¢ ¢ a b a ¢ ¢ ¢ ¢ ¢ a b a
9o=1. 1 1 0o 1 1 0 0 1 1 1 0 O O 0 0 1 I 1
p;=1. 01 01 00 Ol 0l 00 00 Ol 0l Ol 00 00 00 00 00 OL Ol Ol --,

¢z:1.00010001000000010001000OOOOOOOOIOOO10001000OOOOOOOOOOOOOOOOOOOO100010001"')

i ~ X
. The base-g expansion of ¢i/g2 is written by ¢0.t(s) with t€Hom(A ,B*)

2'-1

defined by t(a)=1(b):=0 1, T(b):=02‘.

with

We denote by 0=wo0:---wa.- - (0.€A) the fixed point of ¢ prefixed by a,
geHom(A ,A ) defined by
¢(a-1):=a-1*, g(ao):=aoa-," *ay,

~

o(a;)i=a-1*ta;4r (14§¢s-1), o(as):=a-* 'ap ,k22.

Then, we can show

by

Theorem 5. Let 3:=7:(g;s,k) be numbers defined

1::=1(g ) (0&iss, 2¢g€Z),

1(z)=1(z;s,k):= = gz (rL) k-1
Qn:ao

Then the same assertion with 7; in place of ¢; in Theorem 4 holds.
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Corollary 8. The number 7(g) is a non-Liouville number for all g with
28gEZ .

Corollary 7. Let i20 be an integer. Then, the s+l numbers 7%, %i+1, -,
Ti+s are linearly independent over Q; the s+2 numbers 1, and 7, 7:i+1,

Ti+s are linearly dependent over Q.

We refer to the fact that our results have some connection with higher
dimensional continued fractions, and certain Boolean equations, cf. [T4, T6].
For instance, let x=x (9;a0,2.) with @ of Theorem 4, where yx (u;p,q,r, - -)
denotes the set defined by

x (u;p,q,r, - ):={n20; u.€{p,q,r, - }}
for u=uou,uz- - €EA*UA™ (u.€A), p.q,r, - -€A. Then, considering an automaton, wé
can show that X=x is a solution of a Boolean equation
(1) X = kXU (k**'X+(k*-1)/(k-1)), ¢#XCNU{0},

which implies

(k*-1)/(k-1)  Kk=*!
9(z ,

(2) : p(z)=9(z")+z
where pX+q:={px+q; x€X}, and ¢(z) is the function given in Theorem 4. Using the
functional eqution (2), we can construct a formal s-dimensional continued

fraction:

(3) p(z) =1 + : ,

kn

|1 N

where

¥ (z):=($.(2),82(2), - ,4:(2)),
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(k'-1)/(k-1) k k2 k!
d),’(Z)::Z /(¢5(Z )‘bS(Z )"‘le(Z ) (lélgs_l, 822),

bs(z):=0(z)/p(2*) (s21),

1:=(0,0, - -,0,1)ER =",
and
c ,
o= C(]./ds, dl/ds,"',ds—l/ds)
(dy,dz, - -,ds)
for given ¢, d;, dz, -, d:€C (d.#0). We can show that the nth convergent

of the continued fraction (3) converges component-wise to $(z) if z=1/g with

2¢g€Z . Using (3), we can give the following expansion of $(1/g) by the Jacobi-

Perron algorithm:

(4) ¥(1/8) = bol +

bn:=g (n#0 (mod s+1)),

ke=1) (k*~1)/(k** -1 |
:g( ) (k"-1)/( ) (=0 (nod s+1)).

cf. [T6]. The continued fraction (4) is a regular one in the sense of Korobov
[K], p. 84. We can apply a result due to Korobov ([K], p. 91) on higher
dimensional regular continued fractions, and we obtain the exact measure, except
for O -constants, of linear independence for the values ¢; as in Theorem 4.

Theorem 5 has a conection with the following continued fraction:

1
(5) i(z) =zl +

kn

where
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HUz)=(1:(2), L=(2), -, 1 (2)),

k kz i
Lilz) =1/t (z )iz )tz )) (18iss-1, s22),
{o(z):=n(2)/n(z*) (s21).

We can show that (5) follows from the functional equation
s+ 1

1(z)=z1(z*)+n(z ), 1(z)== z™",
mex
where X is a solution of the Boolean equation
(8) ‘ X=(kX-1)Uk***'X
with countable set XC R such that X is bouded from the left, or from the right.
We note that (6) with k23 has no solutions under ¢#XCNUB (B is a finite
subset of Z), but (B) has a unique solution under ¢#ZXC Z, so that X is
unbounded from both sides, and {(z) can not be well-defined in the case ¢#XC Z .
Nevertheless, we can show that the equation (6) has a unique solution given by
X=(k-1)"" x (a;@0)+(k-1)""
with o in Theorem 5 under the condition
= XC (k-1)"'N.
The solution X=x (@;a0,a.) of (1) is also a unique one. In general, it will be
difficult to solve such a uniqueness problem. In fact, we can show the following
Remark 2. The Boolean equation
3X+1= (BX+1)U (XN (BN-2) (1EXCN)
has a solution X=N. Suppose that X=N is the unique solution, then one can
prove that Syracuse conjecture holds, and vice versa. (Syracuse conjecture is a
well-known conjecture as the so called 3x+1 problem, or Collatz problem, or
Kakutani’s problem, that is still open. The conjecture states that. for any given
positive integer m, there exist a positive integer n=n(m) satisfing F*(m)=1,
where F(m):=3m+1 (m: odd), :=m/2 (m: even), and F" denotes the n-fold iteration

of the map F.)
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It is convenient to use a locally catinative formula among the words ¢” (ao)
(n20) to construct a higher dimensional continued fraction connected with
Theorems 1, 3, cf. [T4]. Let 6; be as in Theorem 1. Then, the following

continued fraction is a corresponding one to Theorems 1, and 3:

. 1
(7) 1=1(8;s,k) = " (g22, s21, k21)
C11 +
- 1
c21 +
1 ool +
with
( K) fa %ﬁ% hf.+s
Ca=Ca(g;s,k)=:8 g ,
h=0

for=kfa_+fa-s-1 (n2s5+2), f.:=(k"-1)/(k-1) (1<nss+l1),
and
Y:(Y“),T(Z),"',Y(S)),
S
PO =0 o X ps005)/0, (1€igs),
J=1

(Pj(i))dgigs.0§j§sZ:Q_‘, Q=(gd; ‘"7 )osiss. o0

A
[
IA
]

(1) %i% hfjx > (0<i<jss)
q; = g _ g $14J8s),
h=0 mex (* (o' (ao));a:)
q: ‘=1 (08i¢s), q; =0 (0£j<iss),

where we denote by ¢ the morphism defined in the first paragraph, and by ®u the
word uiur-, - u.EA* for a given word uiuz - -u: (u=€A). We note that p; ‘"’ are
integers, since QESL:(s+1;Z ). Thus, using the result df Korobov [K], we can
find the exact mesure of linear independence for the s+l numbers 1, and 7,72,
~++,7s when ¢ is a Pisot number, from where we get Theorem 1, see Remark 1. The
continued fraction (7) can be regarded as a higher dimensional version of some
of the classical results, see, for example [B], [D], [M], [Bul, see also [K-S-T],
[T1-T3]. Related to our transcendence result (Theorem 2), we note that functions

8:(z) (0¢i¢s), o(z), and 73(z) appearing in our theorems are transcendental
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functions, which follows from a Theorem due to Fatou [F]. We can prove Theorem 2
by Roth’s theorem, estimating the irrationality measure of the number 0.1 (@)
from below. The estimate from above is not easy in general. But, in some cases,
we can find the exact value of the irrationality measure of the number (0.1 (a)
under a minor condition on t, cf. [T7]. We gave Theorems 1-3, and Theorems 4-5,
respectively, in [T4], and in [T6]. We gave a higher dimensional version of the
Ramanujan’s continued fraction, and the linear independece measure, which is
also an exact one except for O -constants, of values of certain g-series, cf.

[T5].
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