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On Certain Number Fields with Small Regulators

東京都立大学理学部 中村憲 (Ken Nakamula)

1. Introduction.

Motivation. In [3] and [4], we have given a general effective algorithm called cyclo-

elliptic method (cf. [5]) to compute the class $n$ umber of any subfield of an abelian extension

of an imaginary quadratic field. To get the computational time complexity of the cyclo-

elliptic method, two estimations are required. One is to majorize the size of cyclotomic

or elliptic units. The other is to minorize the regulator of a number field. In both cases,

it is desirable from our viewpoint to $estinJa.te$ without using the class number. While,

the latter arises from any method of computing fundamental units and has been treated

by several authors. In particular, explici1 fundamental units have been obtained when

one could construct a family of fields wilh rcgulator as small as possible. It is not still

clear what is the smallest possible regulator if we omit the class number as parameter.

So some detailed study to find fields with small regulators will give us new information

on the behaviour of the regulator.
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Notation. We prepare a few symbols used throughout.

$F$ a subfield of $C$ of degree finite over $Q$

$n=n(F)$ the degree of $F/Q$

$r=r(F)$ the unit rank of $F$

$R=R_{F}$ the regulator of $F$

$D=D_{F}$ the discriminant of $F$

$h$ the class number of $F$

Fix $n>1$ and $r$ . Once $R$ is known exactly, evaluation of $h$ is reduced to that of $\zeta$-functions.

In the simplest case where $(n, r)=(2,0)$ , we have $R=1$ and

$h|D|^{-1/2}w^{-1}= \frac{1}{2\pi}L(1,$ $(^{\underline{D}}))$ .

Here $w$ is the number of roots of 1 in $F$ and $(^{\underline{D}})$ is the Kronecker symbol. Moreover, an

asymptotic behaviour of $h$ is derived only from that of $R$ by the Brauer-Siegel theorem

$1 og(hR)\sim\frac{1}{2}\log|D|$ $(|D|arrow\infty)$ .

We are interested in small $R$ , i.e. large $h$ . How small does $R$ become? We are going to

consider the following problem.

Problem. Fixing $n>1$ and $r$ , minorize $R$ by an explicit function $B$ of $D$ , and construct

infinitely many $F$ so that $R$ is asymptotically equal to $B$ as $|D|arrow\infty$ .

Application. Before going into this problem, we refer to some related useful facts on

such number fields with small regulators. Namely, important invariants of those con-

structed $F$ are known together.
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1. An integral basis of $F$ is given. Because, we usually $se_{C}\backslash xch$ a unit with discriminant

exactly $D$ to find units with small logarithInic norm, and then we obtain a power

integral basis.

2. Fundamental units of $F$ are given. Because, we always get a set $S$ of units of $F$ with

regulator $R’=R_{F}(S)$ close to $B$ , in most cases $2B>R’$ , and then $R’=R$ since

$2R>R’\geq R$ , hence $S$ is a set of fundamental units.

3. Therefore it is not so difficult to compute the ideal class group of $F$ . Especially $h$ is

known by evaluating (-functions. As is mentioned above, we obtain infinitely many

examples of $F$ with the largest possible $h$ .

2. Known Examples.

Let us first give known results to see what is explained in the introduction much better.

Case $(n, r)=(2,1)$ . For real quadratic fields, the answer is complete as follows, see for

example Pohst [7]. A minorization is given by

$R$ $\geq$
$\log\frac{D^{1/2}+(D-4)^{1/2}}{2}$

$=$ $\frac{1}{2}\log D+o(1)$ $(Darrow\infty)$ .

In this minorization, the equality holds if and only if $D=s^{2}+4$ with $s\in N$ , narrow R-D

type. This type of $F$ is studied by many authors. There are infinitely many such $F$ . For
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these $F$ , we have

$hD^{-1/2} \log\frac{D^{1/2}+(D-4)^{1/2}}{2}=\frac{1}{2}L(1,$ $(^{\underline{D}}))$

and

$\log h\sim\frac{1}{2}\log D$ $(Darrow\infty)$ .

Case $(n, r)=(3,1)$ . For cubic fields with $D<0$ , the following minorization is given by

Artin, see for example [2].

$R$ $>$ $\frac{1}{3}\log\frac{|D+24|}{4}$

$=$ $\frac{1}{3}\log\frac{|D|}{4}+o(1)$ $(|D|arrow\infty)$ .

For this minorization, a family of $F$ with $R$ asymptotically equal to the lower bound is

constructed and studied by Ishida [2]. Namely, let $F=Q(\epsilon),$ $\epsilon>1,$ $f(\epsilon)=0$ , where

$f=X^{3}-sX^{2}-1$

with $s\in N$ such that $D=-4s^{3}-27$ and $R=\log\epsilon$ . Then

$R= \frac{1}{3}\log\frac{|D|}{4}+o(1)$ $(|D|arrow\infty)$ .

There are infinitely many such $F$ . To compute $h$ , we can use the formula

$h|D|^{-1/2}R= \frac{1}{2\pi}L_{Q(\sqrt{D})}(1, \chi)$ .

Here $\chi$ is a Hecke character corresponding to the cyclic extension $F(\sqrt{D})$ of $Q(\sqrt{D})$ .

We also have

$\log h\sim\frac{1}{2}1og|D|$ $(|D|arrow\infty)$ .
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Case $(n, r)=(3,2)$ . For cubic field with $D>0$ , the following minorization is given by

Pohst [7].

$R$ $\geq$ $\frac{1}{16}\log^{2}\frac{D}{4}+\frac{3}{4}\log^{2}x_{D}$

$=$ $\frac{1}{16}\log^{2}\frac{D}{4}+o(1)$ $(Darrow\infty)$ .

For this minorization, a family of $F$ , the simplest cubic fields, with $R$ asymptotically

equal to the lower bound is constructed and studied by Shanks [8] and others. Namely,

let $F=Q(\epsilon),$ $\epsilon>1,$ $f(\epsilon)=0$ , where

$f=X^{3}-sX^{2}-(s+3)X-1$

with $s\in N$ such that $D=(s^{2}+3s+9)^{2}$ and $\vee^{\wedge,1}+\epsilon$ are fundamental units of $F$ . Then

$R= \frac{1}{16}\log^{2}D+o(1)$ $(Darrow\infty)$ .

There are infinitely many such $F$ . To compute $h$ , we can use the formula

$h|D|^{-1/2}R=| \frac{1}{2}L(1, \chi)|^{2}$

Here $\chi$ is a Dirichlet character corresponding to the cyclic extension $F/Q$ . We also have

$\log h\sim\frac{1}{2}\log D$ $(Darrow\infty)$ .

3. Minorization of $R$ .

Let us now consider general minorization of $R$ . Let $r_{0}$ be the maximum of $r(K)$ of all

proper subfileds $K$ of $F$ . Then there exist explicit constants $c$ and $d$ depending only on
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$n$ such that

$R>c\log^{r-r_{0}}(d|D|)$ .

This estimate is given by J. H. Silverman [9]. It is conjectured that $r-r_{0}$ cannot be

replaced by a larger exponent when $n,$ $r$ and $r_{0}$ are fixed. On the other hand, there is a

refined formulation proved by K. Uchida [10]. Let $k>1$ . Further let $K$ be a maximal

subfield of $F$ such that

$n(K)^{-k}\log|D_{K}|<n^{-k}\log|D|$ .

Then there exist explicit constants $c$ and $d$ depending only on $n$ and $k$ such that

$R>c\log^{r-r(K)}(d|D|)$ .

It is not known whether these estimations cannot be replaced by a better one. Is $r-r_{0}$

(or $r-r(K)$ ) best possible? The previous examples show the answer is yes for $n\leq 3$ .

But, for $n\geq 4$ , it seems to be difficult to construct $F$ with $R$ asymptotically attaining

these lower bounds. So far, the only known example supporting Silverman’s conjecture is

given for $(n, r,r_{0})=(4,3,1)$ by Cusick [1] as follows. Let $F=Q(\sqrt{2},$ $\sqrt{s^{2}+1}),$ $s\in Z$ ,

$s>1$ , such that

$x^{2}-2s^{2}=1$ for some $x\in Z$ .

Then $R=O(\log^{2}D)$ . Recall that $R\geq c\log^{2}D$ with a constant $c>0$ . The author could

not reproduce any proof of the existence of infinitely many such $F$ , and asked it as a

question at the talk. After the talk, Ryotaro Okazaki has obtained a proof by means of

Thue’s theorem.
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One of the reasons why it is not so simple to construct infinitely many $F$ for $n\geq 4$

supporting Silverman’s conjecture is that the parametric polynomial

$f=X^{n}-sX^{n-1}+\cdots\pm 1$

always has the discriminant of the form

$D_{f}=(\pm 1)^{n-2}\uparrow x^{n}s^{n}+\cdots$ .

Note that the degree of $D_{f}$ in $s$ is equal to $n$ . We usually encounter the next question

in the course of constructing such $F$ with small $R$ . Is $D_{j}$ squarefree for infinitely many

$s\in Z$ ? As is well known, we do not have a general answer for this when $n\geq 4$ . So we

shall try to get a sharper estimate of $R$ in a slightly different form for a special case.

we can utilize $K$ . For CM fields, i.e. $r=r_{0}=1$ ,

$R \geq\log(\frac{3+\sqrt{5}}{2})$ ,

where the equality holds if and only if $K=Q(\sqrt{5})$ , this is of course best possible.

Then a minorization of $R$ is

given by using $D$ and $D_{K}$ . Indeed, we can prove that there exist explicit constants $c,$ $d$

and $e$ such that

$R>c\log^{r-r(K)}(d|D|)1og^{r(K)}(e|D_{K}|)$ .

Precise results are stated in [6], see also the theorems below.

We now ask the next question. Is this estimation best possible? The answer is yes as

in the following.
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4. Quartic Relative Units

Let us define a parametric polynomial giving a quartic relative unit. All examples of $F$

with asymptotically minimal $R$ are obtained from this polynomial. For $s,$ $t,$ $u\in Z,$ $s>0$ ,

$u^{2}=1,$ $(s, t, u)\neq(1, -1,1)$ , let

$f=X^{4}-sX^{3}+(t+2u)X^{2}-usX+1$ .

Then $D_{f}=D_{1}^{2}D_{2}$ , where

$D_{1}=s^{2}-4t$ , $D_{2}=(t+4u)^{2}-4us^{2}$ .

Let $F=Q(\epsilon),$ $\epsilon\in C,$ $|\epsilon|\geq 1,$ $f(\epsilon)=0$ , and

$K=Q(\sqrt{D_{1}})$ , $L=Q(\sqrt{D_{2}})$ .

Then we have

Proposition 1. Let $K\neq Q,$ $L\neq Q,$ $D_{J\backslash }\cdot=D_{1)}D_{L}=D_{2}$ . Then $F$ is a non-CM

quadratic extension of the quadratic field $\Lambda’$ , and is non-galois (resp. cyclic) over $Q$ if
$K\neq L$ (resp. $K=L$). Moreover

$(r, r_{0})=\{\begin{array}{l}(1,0)(2,1)(3,1)\end{array}$
$otherwiseifD_{2}^{1}<0ifD<0_{)}.$

’

Especially, if $K\neq L$ , then $D=D_{f}$ and, in each case above, there exist infinitely many

such $F$ .
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Till the end of this section, let the assumption be the same as in the proposition above.

If $K\neq L$ , the ring of integers of $F$ is given by $Z[\epsilon]$ . Let $E=E_{F}$ be the group of units

of $F$ , and $W$ the group of roots of 1 in $F$ . Then we obtain explicit fundamental units as

follows.

Proposition 2. Let $D_{K}<0$ , so $(r, r_{0})=(1,0),$ $t>0$ . Then $E=W\cross\langle\epsilon$ ) unless

$(s, t, u)=(3,3,1),$ $(4,5,1),$ $(5,7,1),$ $(1,1, -1)$ .

Fixing $(s, u)\in N\cross\{\pm 1\}$ , one has

$R= \frac{1}{4}\log\frac{D}{16}+o(1)$ as $Darrow\infty$ .

Recall $E’$ $:=\{\epsilon\in E|\epsilon>0,$ $N_{F/K}(\epsilon)=1\}\cong Z,$ $E’\cap E_{K}=1$ , and $Q$ $:=(E:E’\cross E_{K})|$

$2$ when $(r,r_{0})=(2,1)$ . Then we have

Proposition 3. Let $D_{L}<0_{y}(s, t)\neq(1, -5)$ , so $(r, r_{0})=(2,1),$ $u=1$ . Then $E’=\langle\epsilon\rangle$ .

Fixing $t\in Z\backslash ((2+4Z)U\{0, -4\})$ , one has

$\frac{QR}{R_{K}}=\frac{1}{3}\log\frac{|D|}{4}+o(1)$ as $|D|arrow\infty$ .

If $t=\pm 1,$ $(s, t)\neq(3,1)$ , then $E_{K}=\langle-1,\epsilon+\epsilon^{-1}\rangle,$ $Q=1,$ $E=\langle-1, \epsilon, \epsilon+\epsilon^{-1}\rangle$ , and

$R_{K}= \frac{1}{2}\log D_{K}+o(1)$ as $D_{K}arrow\infty$ .

We have a similar result when $D_{K}>0$ and $D_{L}>0$ , i.e. $(r, r_{0})=(3,1)$ , but is omitted,

see [6].



139

5. Theorems.

Lastly, we state the answer of the problem for imprimitive non-CM quartic fields as

theorems.

Theorem 1. Let $(r, r_{0})=(1,0)$ . Then there is an explicit minorization $R\geq B$ such that

$B= \frac{1}{4}\log^{2}\frac{D}{16}+o(1)$ $(Darrow\infty)$ ,

and there are infinitely many non-galois $F$ such that $\lim_{Darrow\infty}(R-B)=0$ , or equivalently

$R= \frac{1}{4}\log^{2}\frac{D}{16}+o(1)$ $(Darrow\infty)$ .

Theorem 2. Let $(r,r_{0})=(2,1)$ and $K$ be the quadratic subfield of F. Then there are

explicit minorizations $R_{K}\geq B_{1}$ and $R/R_{K}\geq B_{2}$ , so $R\geq B_{1}B_{2}$ , such that

$B_{1}= \frac{1}{2}\log D_{K}+o(1)$ $(D_{K}arrow\infty)$ ,

$B_{2}= \frac{1}{6}\log\frac{|D|}{4}+o(1)$ $(|D|arrow\infty)$ ,

and there are infinitely many $F$ such that $R\sim 2B_{1}B_{2}$ as $D_{K_{J}}|D|arrow\infty$ , or exactly

$R_{K}= \frac{1}{2}\log D_{K}+o(1)$ $(D_{K}arrow\infty)$

$\frac{R}{R_{K}}=\frac{1}{3}\log\frac{|D|}{4}+o(1)$ $(|D|arrow\infty)$ .

Theorem 3. Let $(r, r_{0})=(3,1)$ . $(i)$ Let $F$ contain a unique quadratic subfield K. Then

there are explicit minorizations $R_{K}\geq B_{1}$ and $R/R_{K}\geq B_{2}$ , so $R\geq B_{1}B_{2}$ , such that

$B_{I}= \frac{1}{2}\log D_{K}+o(1)$ $(D_{K}arrow\infty)$
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$B_{2}= \frac{\sqrt{3}}{80}\log^{2}\frac{D}{16}$ ,

and there are infinitely many non-galois $F$ such that $R\sim(20\sqrt{3}/27)B_{1}B_{2}$ as $D_{K_{J}}Darrow$

$\infty$ , or exactly

$R_{K}= \frac{1}{2}\log D_{K}+o(1)$ $(D_{K}arrow\infty)$

$\frac{R}{R_{K}}=\frac{1}{36}\log\frac{D}{16}\log\frac{D}{2^{10}}+o(1)$ $(Darrow\infty)$ .

(ii) The case where $F$ has distinct quadratic subfields $If_{1},$ $K_{2},$ $K_{3}$ is omitted.

Remarks We add a few remarks about the proofs of the theorems.

1. To minorize $R$ , we employ Artin’s elementary idea to majorize $|D|$ by a “good”

polynomial of a unit.

2. To decide $E$ , we remove finite exceptions with very small regulators (or relative

regulators) between $R$ and $2R$ (or $R/R_{I\backslash ’}$ and $2R/R_{K}$ ) by virtue of the obtained

lower bounds.

3. To get precise results, symbolic manipulation (computer algebra) is used everywhere.
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