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RATIONAL COHOMOLOGY OF WITT GROUPS
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Let k be an algebraically closed field of characteristic p and for each n > 0 let W(n)
denote the group of Witt vectors of length n. W(n) is a commutative algebraic group.
For reference, see Jacobson [2], Serre [6]. One of the important properties of the Witt
groups is the following: Every commutative algebraic k-group whose underlying variety
is an affine space is a homomorphic image of products of W(n). We compute the rational
cohomology of W(n) for n > 2.

HY(W(n), k) = S((V"")7'BL¥) ® E(R**L¥),

where B is the Bockstein, V, the shift and R the restriction homomorphism and where
L# is the graded dual of the restricted Lie algebra End(G,) identified with the first
cohomology group H!(G,; k) & @kzP’l. We also show the existence of the higher Bockstein
for 1-dimensional cohomology classes of algebraic groups. As an application, we compute
the rational cohomology of a family of commutative unipotent groups V(n) and discuss
the connection of these cohomology rings with that of the Steenrod algebra.

1 The ring of Witt vectors

Let W = Q(z:,y;, 2¢), 0 < 1,7,k < m be a polynomial Q algebra and let W,, = Wx-.-xW
be an n-fold product of W with componentwise addition “ + ” and multiplication - ”.
Define a new addition “ @ ” and multiplication “® ” on W, as follows:

a®b = ¢\ (gatgb) (1)
a®b = ¢7(ga- ¢b),
where, for ¢ = (ao,...,am-1), $a = (dao, ..., Pan-1) with da, = 20 p’a’J LIP s inverse
#~! is defined inductively as: ¢~'ag = ap and ¢~ 'a, = pl (ar — S22 pi(671a;)? ). The

triple (W,,®,®) is a commutative ring over Q with 1 = (1,0,...,0) as identity and
(0,...,0) as zero element. The map ¢ : W, — W, is a ring 1somorphlsm from (W, ®, Q)
onto (Wn, +,-).

Consider generic vectors = (Zg,...,Zm-1) and Yy = (Yo,-..,Ym—1), with z; and y; inde-
terminate as above, then each component of z @y and z © y are in fact a polynomial with
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integral coefficient. (z ® y),, (z ® ¥)r € Z[zZo,¥o,---,¥-] for 0 < r < m. For example:
(z®y) = zo+ Yo

121 o

cou: = mtn-13 (P)as G
1

(z@y)o = zoyo

(zO@yh = zhy1 + T1yh + pTath.

For an arbitrary commutative ring A of characteristic p, let W,,(A) be the set of m-
tuples (ag,...,am—1) with a; € A and with addition and multiplication defined via the
polynomials (z @ y), and (z @ y), as follows: For any three elements a, b, ¢ € W,,(4),
let s : Z[z;,yi, 2] = Wn(A) be the map sending z;, yi, z; to ai, b;, c; respectively.
Then W,,,(A) becomes an associative commutative ring of characteristic p with (a © ), =
s(z ® y), and (a © b), = s(z O y),), called the ring of Witt vectors of length m. In fact,
W, is a functor from commutative rings of characteristic p to commutative rings. The
prime ring of W,,,(A) is isomorphic to Fpm. It consists of Witt vectors with coefficients in
F,, the prime ring of A.

2 Witt groups

The underlying abelian group of W,,, denoted by W(n) is a commutative algebraic group.
It is commonly known as the Witt group of dimension, or length n. There are natural
homomorphisms among W (n) for various n > 1:

(1) The Frobenius homomorphism: F: W,, — W, : F(a) = (a§,...,a5,),
(2) The restriction homomorphism: R: W, — Wp,_1: R(a) = (ao,...,an-2),
(3) The shift homomorphism ViWn = Wit V(a) =(0,a0,...,a51).

R, F and V commute with each other and their product RFV is multiplication by p.

Similar to the ring W, the Hopf algebra associated to W(n) is constructed first in charac-
teristic 0, then followed by reduction mod p. Over the field of rational numbers Q, consider
the associated algebra Q[yo, - -, yn_l] of the additive Q-vector group G%. For 0 < j < nlet
z; =Y(yi) = Py;+p Y5 +- --+y%" . The Z lattice Z[zo, . . . , Tn_1] of Q[V] generated
by the z;’s is closed under comultiplication, counit and antlpode That is % is an automor-
phism on Q[yo, ..., yn—1] Whose restriction to the Z-lattice Z[yo, . . . , yn—1] induces a Hopf
algebra structure on its image Z|[zo, . . . , zn—1]. For any field k of characteristic p > 0, W(n)
is defined to be the algebraic group associated to Z[zo,...,zn—1] ® k = k[zo,...,Tn-1]-
The generator z; is the function z;(a) = a; for a € W(n)(A). The first few examples are
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Azo=20Q®1+1Q® o and from (2)

1 i —i

3 Cohomology of W(n)

Let G be an algebraic group defined over a field k and k[G] be its coordinate algebra. For -
a G module M, the rational cohomology H*(G; M) is the homology of the cobar complex.

C™"(G,M) =M ® I"; I isthe augmentation ideal of k[G],
with the coboundary & : C(G, M) — C**(G, M)

3 (fo®...0f:) = i(—l)ffo&..@(A(f,-)—f,-@_l—l@f,-)&..®f,- + fo®...0£i®1, (4)

7=0

Let k[G,] = k[z] be the associted algebra of the additive algebraic group G,. The rational
cohomology of G, is given (see Cline, Parshall, Scott and van der Kallen, 4.1 in [1}),

(G k)= | S(BL*) @ E(L#) forp >3
H (Ga,k) "{S(L#) » fOl’p=2,
where L is the restricted Lie algebra End(G. ), which can be identified with the infinite sum
2okz?'. Let z(z) denotes the dual basis to 7' and identify it with the first cohomology
class of 1 ® z#' € CY(G,, k). S(—) and E(—) are the symmetric and exterior algebra and
B denotes the (algebraic) Bockstein induced from the map B : CY(Ga, k) — C*Ga, k).
For any monomial z*

- . 1 p-1 P\ ;: .
B = 15 (]) 2 @ i) (5)

P =

Remark 3.1 For p = 2 we have fz(i) = z(i)>. However for p > 3 B is not the usual
Bockstein 3 in the ordinary cohomology, which is induced from the long exact sequence

from the extension
0—k—W(2)(k)—k—0,

but it is BP° (for detail see the appendix A1.5.2 in Ravenel [5]). Indeed, for H*(G,; k),
P is the Frobenius homomorphism in L, P°z(i) = z(i + 1) and Bz(:) = Bz(i + 1).
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In terms of z(z) and Bz(z) := y(i + 1) we write

QLo kly(i +1)] ® E(z(3)) forp>3
20 k[z(3)] forp=2.

Now we consider the cohomology of W(n). For each pair of positive integers n, m, the
homomorphisms R and V induce an extension

0 - W(m)—- W(n+m)—> W(n)—0.

H*(Ga; ) {

In particular, for n — 1 and 1 we have the extension
05 G, = W(n)>WHn-1)—0 (6)
which corresponds to the coextension of Hopf algebras:
k[zp-1] « k[zo,...,Zn-1] « K[zo,...,Tn2],

To compute H*(W (n); k) for n > 2 we apply the Hochschild-Serre’s spectral sequence

Ep*(n) = H\(W(n — 1);H*(Ga; k)) = H*(W(n); k).
Forn=2and p >3

B3(2) = @ Holi + 1), 1+ ] ® Blaali), 21(6)

=0
The differential in C*(W(n), k) is given by (3), (4) and (5)
61x’1’i = Ax’l" - (211,.- ®1-1® le,.-) = ﬂmgi.

So the induced differential in the spectral sequence is d2z1 (%) = yo(i + 1). Hence

E3*(2) = Q klyi (i + 1)] ® E(zo(i))-
=0
By Cartan-Serre’s transgression theorem (see the appendix A.1.5.2 in [5])
daya (i + 1) = d3(BP 2, (3)) = BP°dyzy (i) = AP yo(i + 1) = Byo(i + 2) = 0.
Therefore E3™(2) & E%*(2) and we have just proved the following theorem for n = 2.

Theorem 3.2 (Compare VII, 9, Lemma 4 in [6]). For any integer n > 1,

B (W(n);k) = @k{yn_amnw(wo(i)) forp>3 (1)
> @k, ()]® Ewali))  forp=2 ®)

=0
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Proof: The map of extensions

0 = G. 5% W2 — G, — 0
” an-—2 | an-l

0 - G, 5 W(n) — W(mn-1) — 0
induces a map of spectral sequences
E;’*(n) ~ H*(W(n-—1);H*(G,;k)) = H*(W(n);k)
lvn—2* . an—2*
B = HY(Gu;H(Guk) = H(W()k).
By induction, we assume -
H(W(n — 1); £) 2 &) klyaoali + 1)] ® Elza(i)).
=0 .

Since V™ 2*y;(i + 1) = yj_n+2(¢ + 1), and V*"2*z;(3) = z;_n42(i), where y;(i + 1) =
z;() = 0 for j < 0, we get ~

d2Zy-1(2) = Yn—2(¢ + 1) modulo the ideal (zo(2)),

from the naturality and from the result for n = 2. Hence E3™(n) is isomorphic to the
formular in the theorem, and we see that E3™*(n) = EX*(n) by the same reason as in the
case n = 2. ‘

The proof for the case p = 2 is by similar arguments exchanging y;(: + 1) with z;(¢)%. O
Corollary 3.3 The map F* on H*(W(n); k) induced from the Frobenius map is injective.

Proof: This follows from the Theorem since F*z;(i) = z;(¢+1) and F*y;(:+1) = y;(t+2).
O

4 Higher Bockstein operations

Recall that H*(W(n); k) is generated by y,—1(¢ + 1) and zo(¢). We may and will hereafter
assume that y,_1(¢ + 1) € H*(W(n); k) has a representative in C*(W(n + 1),k) of the
form . . . .

Y =02 =Azf — (22 ®1+1Q@z7)
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since V™ 1*(Az,) = Az, and 829 (z') = 0 in C3(W(n + 1), k), so Y is a cocycle. For
n = 1 we have the Bockstein Bzo(i) = yo(i +1). For n > 1 we define the higher Bockstein
Br for W(n) by: Bnzo(i) = yn—1(¢ + 1), setting B = B1. In general

Definition 4.1 Let G be an algebraic group defined over k. For an element z € H'(G; k)
and an integer n > 1 we define the higher Bockstein of z to be an element B,z = y in
H%(G; k) if there is a map q : G — W(n) of algebraic k-groups such that the induced map
q* : H*(W(n); k) — H*(G; k) satisfies ¢*zo(0) = = and ¢*yn—1(1) = y.

Theorem 4.2 Let G be an algebraic k-group. For each element x € H'(G; k) such that
ﬂl(x) = Bn(z) =0, then Bny1(z) is defined.

Proof: For an element z € HY(G;k), let 2 € CY(G, k) be a representative of z. Then
0'% = 0 implies that # is primitive and we get a Hopf algebra homomorphism:

k[G.] = k[Z] — k[G]

which induces a homomorphism of algebraic groups ¢ : G — G, such that ¢*z(0) = z.
Hence the theorem is true for n = 1.

Now suppose iz = --- = B,z = 0. The last equality implies there is an algebraic group
homomorphism ¢ : G — W(n) with ¢*z¢(0) = = and ¢*y,—1(1) = 0 in H*(G; k). Let
& € C'(G; k) be such that 3'% represents ¢*y,-1(1) in C?(G, k). Define a map

é: k[W(n+1)] — k[G]

as follows: @|i(zo,...zay] = ¢ and ¢(z,) = Z. The map ¢ is a map of Hopf algebra such
that ¢*zo(0) =  and ¢*y,(1) := Bas1z. This finishes the proof of the theorem. O

As a consequence of this Theorem, we can explicitly write down Br in the cobar complex.
For any sequence I = (i,...), with ¢, > 0, for all s > 0, let a’ denote afa}! ---. Take
€17y € k such that

(a @® b)r =a, + br + ZéIJraIbJ

If z € HY(G;k) and Biz = --- = B,z = 0, then there are z1,...,z, such that dz, =
S érrzl @ xf for 1 < r < n and we can define ‘

Brrz = Ermz’ @ 7.

QUESTION It is still an open question whether the higher Bockstein ﬂn can be extended
to all of H*(G; k).

We have the following nonvanishing lemma for the higher Bockstein.



116

Lemma 4.3 Let G be an algebraic k-group. Consider the spectral sequence induced from
a central extension 0 — G, — G 5 G' — 1. For any integer n > 1, if in the Hochschild-
“Serre’s spectral sequence, dyz(0) = Bn(z’) # 0 for z(0) € H(G,; k) and 2’ € HY(G';k).
Then Bnyr(m*z’) # 0 in H*(G; k). '

Proof: Since B,(7*z') = 0 in H*(G; k), there exists a map ¢, : G — W(n) inducing a map.

of extensions

0 - G, — G — — 0

Gl
lQa lqn IQn—l
0 - Go — Whn) — Wh-1) —- 0

with ¢&_;z0(0) = 2’. Since ¢}yn—2(1) = Bn-1(z’) # 0 in the E, term of the spectral
sequence associated to the first extension, we know that ¢*z,—1(0) # 0 in H*(G,; k) since
d2%p-1(0) = yn-2(1) € H*(W(n —1),k). Hence ¢ yn-1(1) = ¢:Bzn-1(0) # 0 in E3™. Since
Yn—1(1) is permanent, so is q}yn—1(1) which is B,(7*2z’). O

5 The group V(n)

Every commutative affine algebraic group over k£ whose underlying varity is an affine n-
space is isogeneous to a product of Witt groups. L.e. it is an extension of a product of
Witt groups by a finite abelian group. Those groups that are of interest to us in this
work are the ones that are isomorphic as algebraic group to a product [I™* W(n;), when
n; < ni+1 and Y n; = n. For n = m we get the additive vector group G% and for m =1
we get W(n). See [6].

For each integer n > 2, let V(n) be the commutative linear algebraic group isomorphic to
a subgroup of the unipotent group U(n) consisting of n X n upper triangular matrices such
that each entry along an off diagonal is constant. More precisely, a matrix [a; ;] € V(n) if
a;j = b;; fori > j, and a;j = @iy, 4. for i < j and 0 < r < n—i. The coordinate algebra
k[V(n)] is a polynomial algebra k[ay, . .., @n—1] with comultiplication Aa; = T, a;®a:_;,
where, by convension, ap = 1. V(n) is the so called big Witt group of length n, or Witt
group at all prime simultaneously. It isomorphic as an algebraic group to a product of

Witt groups. ‘
Wﬂgng% (9)

where for each 7, r; is the smallest positive integer such that p™ > n/i. See [6] chapter
5. This decomposition, together with the rational cohomology of W(n) computed in the
previous section immediately yield H*(V(n); k). However we can compute H*(V(n); k)
directly. Using the higher Bockstein operation we will prove (9) by showing that there is
a tensor decomposition of H*(V(n); k) in terms of H*(W(m); k).
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Like in W(n), there exist the Frobenius, the restriction and the shift homomorphisms
for V(n) and we will also denote them by F, R and V respectively. These maps induce
various extensions, in particular

0—-G,—»V(n+1) - V(n)—0. (10)
with the associated Hochschild-Serre’s spectral sequence
E¥(n +1) = H?(V(n); H(G,; k)) = HPY(V(n + 1); k). (11)

Let us denote by S(n) (resp. E(n)) the symmetric algebra S(®kyn(i + 1)) (resp. exterior
algebra E(®kz,(2))). For p = 2, let y,.(i + 1) = za(2)%

Theorem 5.1 For alln > 2,

(¢) V(n) = Iy W(ri)
(b)) B¥(V(n); k) 2 Qppl, S("1) ® E(i),

where r; is the smallest integer such that p™i > n and B,;z:i(j) = ypri-1:(§ + 1).

The proof of the Theorem follows from the following Lemmas which may be useful for
other results. Let G be a unipotent algebraic group obtained from an extension of a
product of Witt groups by G.. '

0—G,— G- [[W(s:) = 0. (12)
=1

If we write k[W(s;)] = k[zio,...,%is-1] and k[G,] = k[z], then their cohomologies are
H*(W(s:); k) = Q320k[yi,0i-1(/+1)]® E(2i0(5)), and H*(Ga; k) = ®F20k[y(j+1)|® E(2(7))
respectively, by Theorem 3.2.

Lemma 5.2 In the spectral sequence induced from the extension (12);
(1) If 32(0) = 0, then G = (n W(s,-)) x Ga,

(2) If dyx(0) = y;,,-1(1) for some 1 < j < m, theﬁ G = (I'[#,- W(s;)) xWi(sj+1).
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Proof: Consider the coextension associated to the extension (12)
k[z,] — k[G] — Qk[W(s;)].
If dpz(0) = 0, then 0 # (0) € H(G; k) induces a map

7:G— (H W(s,-)) x Ga,

which induces an epimorphism in the coordinate algebras. Since k[G] is polynomial, 1t
also induces an isomorphism of groups by dimension countmg argument. ‘

Next consider the case d22(0) = y;,,-1(1). Since y;,;,-1(1) = Bs;2;0(0), by Lemma 4.3
Bs;+1250(0) # 0 in H*(G; k). Let ¥ : G — W(s; + 1) be the map defining S,;417;,0(0).
We get

G- (II W(s,.)) x W(s; +1).
i#]
Since d2z(0) = yj,5;-1(1) = Bs;Z;,0(0). In the cobar complex C?(G) we have
'z = 72(B,;zj0) = 72(8'xj,s;) = Oz,
Therefore 81(:5 —7lz;,;) = 0 but dz:c(()) # 0. Hencez = itnlzj,; in k[G,), fori : G, — G.

This means 7* is surjective and hence 7 is an 1somorphlsm of groups. O

Lemma 5.3 Let G be a commutative unipotent group defined in (12). Then in the asso-
ctated spectral sequence

daz(0) = D pi(8)yiei-1(s),  pi(s) € k.

Proof: Suppose p > 3. Write
d2$(0) = Z )‘i,j(k, l)zi,o(k)xj,o(l) + Eﬂi(s)yi,ai—l (3),

for X;;(k,1) and p;(s) € k. This means that there is an element a € C(G) such that a
belongs to the ideal (z;;), i.e. the image of a in C*(G,) = 0 and

al 37 - a) Z/\t J(k l szJ,O + Z#'(S)(ﬂag—lxt 0) ’

in C%(G). Since G is a commutative group, the coboundary 8! must be cocommutative.
This implies that §'(z — a) is invariant under the twist, 7(c® d) = d ® ¢, in C*(G).
Therefore A;;(k,1) = Xji(l,k). But z;io(k)zjo(l) = —z;0()zi0(k) in HEIIW (s;); k),
which forces A; j(k,1) = 0 for all 7, j, k,I. Hence d2z(0) = Y p:(8)ys,5,-1(8)-
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The case p = 2 is proved by replacing yio(k + 1) by =;0(k) ® :r,o(k) and use similar
argument as in the case p > 2. O

Proof of Theorem 5.1. Assume p > 3. It is clear that the lemma is true for n = 2.
Assume true for n > 2 and induct on n. The group V(n + 1) can be obtained from
V(n) by extension by G,, i.e. it is the extension (12) with the following replacements:
G ~ V(n+1), s; ~ r;, p{i,r; the smallest positive integer such that pmi > n — 1,
Tij ~» Tipi and ¢ ~» z,. Recall that the weight w(zi(j)) = w(yi(j)) = ip’, which, of
course, is preserved by the differential. From Lemma 5.3, we have

 _ [py=(1) if pin,
d274(0) - {0 ’ otherwise, (13)

because the other elements of the same degree are also of the same weight, hence they are
all of the form y}%(s) for some s > 2. But these elements do not appear in the assumption

(b) for n — 1.

We will now show that p # 0. First take n = p, we will show that V(p+1) 2 G2 =
Ga X +++ X G,. For simplicity in the notation, we denote a matrix [a;;] € V(n) by
its first row entries: [a;;] = (1,a1,...,8n-1). For n +1 = p + 1 consider the matrix
A =[aij] = (1,1,0,...,0) € V(p+1). Then A? =(1,0,...,0,1) # I, with the non trivial
entries in position 1 and p + 1. Hence V(p + 1) is not a product of G,. Now, if u = 0,
by induction and Lemma 4.3 implies that V(p + 1) is a product of G,, which leads to a
contradiction.

Let n+1=mp+1andlet:: V(p+1)— V(mp+1) be an inclusion of V(p +1) into
V(mp + 1) defined as

L(al,...,ap)=(1,g,... 0,a1,0,...,0,a3,...,0,...,0,a,)

?
v~ v
m m m

By the naturality with respect to ¢ of the spectral sequences, d2z,(0) = y1(1) induces
d2Zmp(0) = ym(1). The Frobenius F* then implies

(i) = yz(i +1) if pin, 14
22n(3) {OP otherwise. (14)

This proves Theorem 5.1 (b) for the case n + 1. The Bockstein is given by Lemma 4.3.
Part (a) follows from Lemma 4.3. The case p = 2 is proved similarly by replacing y;(i +1)
with z;(z)2. O

Remark 5.4 The subalgebra k[zo,2% ]| C klxo, xl] = k[W(2)] is a Hopf subalgebra.
Hence there is a group W,(2) isogenic to W(2). For the extension.

0> G, —W,(2) -G, —0
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the differential of the induced spectral sequence is d2z1(0) = yo(s + 1). And hence
H(We(2); ) 2( @i S0(i)) @2uma SW1(7))) @Fo Ezal))

6 Frobenius Kernel and the Steenrood Algebra

Let r be a positive integer and let G, be the r** Frobenius kernel of an algebraic k-group
G, i.e. it is the kernel of the r** power of the Frobenius homomorphism

0— G, — G656 —o.
It is easy to obtain the similar results as in Sections 3 to 5 for the rational cohomology
H*(G,; k). For example : '
: r—1 k
H* (W (n),; k) = Q) klyn-1(i + 1)] @ E(zo(3)),
=0
and Bu(2o(i) = Yn-1(i + 1).

Let G(n) be the subgroup of the unipotent group U(n) such that a matrix [a;;] € G(n)
ifa;j=6;;fori>j and a?’; = @iyrj+r for t < j and 0 < r < n —¢. The coordinate ring
k[G(n)] is a polynomial algebra k[ay,...,an—1] with the comultiplication

i .
Na; = E a; ® af'f_j.
j=0

On the otherhand, let P(n) be the finite dimensional suba,lgebfa of the Steenrod algebra
generated by the reduced powers PP, ..., PP". Its dual Hopf algebra is

P(n)* = k[Eh"'?f’H'l]/(éf 7£gn""£z+1)1

with Aé =5, 6 ® {f-’i ;- There is a Hopf é,lgebra epimorphism by (3.3) in [4].

n+41

k[G(n)n-1] — P(n — 2)".

Therefore H*(G(n),-1; k) is important in homotopy theories. However the computations
seem difficult except for p = 2 and n < 3 which we now show.
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Consider the spectral sequence arises from the extension 1 — G,2 — G(3)2 — Gaz — 1
E3™ = k[z1(0), 22(0), z1(1), 22(1)],
with dyz2(0) = 21(0)1(1) and dzz2(1) = z1(1)z1(2) = 0. Therefore we have
E3™ 2 k[21(0), 21(1)]/(21(0)21(1)) ® K[z2(0)?, z2(1)].
The next differential is (see Al, 5.2 in [5])
ds22(0)" = ds5q 7(0) = §¢ (201 (1))

= 5¢'2(0)5¢°z1(1) + 54" 21(0)5q 71 (1)
= $1(1)3.

Therefore we get

Ep” 22 k[22(0)*, 22(1)] ® (k[z1(0), 21(1)]/(21(0)z1(1), 21(1)®) & K[1(0)]z1(0)z2(0)?),

and this is isomorphic to EX*. This result is essentially obtained by Liuevicius. See for
example, 3.1.24 in [5], where their notation is the following k1o = z1(0), k11 = z1(1),
w = x2(0)* and v = z,(0)z,(0)?, and

H*(G(3)2; k) = Extpg)«(k; k) ® k[z2(1)].
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