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Order Barrier for Adams type Linear Multistep Multiderivative
Methods with Nonnegative Coeflicients
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1 Adams type LMM method

Let consider the initial value problem

y'(IE) = f(.’I?, y)7 y(a’) =n TE [O’ mf]’ (1'1)

and consider the Adams type liner multistep multiderivative (LMM)
method

ko1 .
~ -1
Yn+k = Yntk-1 T 20 Zl h]ﬂijfy(»ii ) (1.2)
1=0 j=

for solving eq.(1.1), where
fz(J) = f(J)(xzayz)’ .7 = 07 te ’l_ 17
z; =1th, 1=0,1,---, N,
fO(z,y) = f(=,v),
f(J)(.’B,y) = af(]_l)(a%y)a .7 = ]-7 e 7l - 1.

We assume that the coefficients 3’s are subject to the constraints

(_1)j_113ij >0, 1=0,---,k—1, (13)
(1)1 > 0, (1.4)
j=1,,0

The method (1.2) is expected to be numerically accurate since the con-
ditions (1.3) and (1.4), say nonnegative conditions, work reasonably well

tovprevent the cancellation of significant figures during the computation.
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The method is stable for small step-size h since all the extraneous zeros
of the first characteristic polynomial p({) associated with the method is 0.
Moreover, the method (1.2) is expected to be stable even for large step-
size h because the nonnegative condition (1.4) is one of the necessary
conditions for the method is being A-stable.

To see this, consider the test equation

y = Ay. (1.5)

If we solve the eq.(1.5) by the method (1.2) then the stability polynomial
of the method is given by

m(¢52) = m(2)CF + M1 (2)C 4+ -+ mo(2), (1.6)

where z = hA, and 7;(z) are the polynbmials of degree< [ and given by
! , |
n,-(z)z—Zﬂijz’, 0Si<k—1,
i=1
l .
Mk-1(2) = =1 =3 Br-157’,
J=1

z .
m(2) =1 - 3 By 2.
j=1

We can easily see that the condition (1.4) constitutes a part of the well-
known Routh-Hurwitz criterion[4] that the polynomial 7;(z), the leading
coefficient of the polynomial 7((; z), does not vanish on the left half plane,
which is one of the necessary conditions for the LMM method being A-
stable [6].

" We shall consider the attainable order Pmaz Of the Adams type LMM
method (1.2) with the nonnegative conditions (1.3) and (1.4). In order
to discuss the order of the LMM method, we define the linear difference
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operator associated with the method (1.2) by
. .
Lly(z); bl = y(z +kh) —y(e+ (k= 1h) = 3 3 Fiih'yV (2 +4h), (L.7)
where y(z) is a sufficiently differentiable function on the interval [0, z¢].
The method (1.2) is said to be of order p, if and only if, in the power

series expansion of the operator
Lly(x); h] = Cp y(z) + Cy v W(z) h+ Cy y®(z) B2 + (18)
the following condition holds:
Co=Ci=--=Cp, =0, Cpy1 #0.

The next theorem gives the order barrier for the method (1.2):

Theorem 1  The attainable order of the method (1.2) is I + 1, if the
coefficients B’s are subject to the nonnegative conditions (1.8) and (1.4).
Proof. It can be easily shown that the maximal order p,,q; of the Adams

type LMM method with the nonnegative conditions is at least [+ 1 since
the method given by

_ [ I+1- 1)
=yt h n n h 71 U
Yntl = Yn + (l+1f+1+l+1f)+z (-1) (] an
(1.9)

is of order [ + 1; this method is based on the Padé approximation to e*
of order [+ 1, hence the method is of order [ 4+ 1. Next we show that the
method (1.2) cannot be of order> [+1 under the nonnegative conditions.

Consider the function y(z) = (z — k)" as an exact solution of (1.1).

Then the jth derivative of the function is given by

v (@) = () @ =k, G =1, (110)
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where . _
(r); = .7"(7‘—1)"'(1‘—]-{—1), T2
I 0, r<j.

If the method is of order p and r < p, then the numerical solution given
by the method (1.2) coincides with the exact solution y(z) = (z — k)"
regardless of the step-size h > 0, and therefore we have the following

relations:
yi =y(ih) = (sh — k), (1.11)
7Y = fU-D(Gh, y(ih)) = (r); (b — k)", (1.12)
i=0,-+-,N, j=1,---,l

Substituting these into (1.2) forr = 1,---,p, and taking h = 1 and n = 0,

we have
1 k . . |
1= §:1(r)j 2(“"1)]—1,3,-]-(15: —) i, r=1,---,p, (1.13)
j= i=

where we define 0° = 1. In particular we have for r > [

1= kil(k — )t zlj(r)j (=1Y 7Bk =), r=1+1,---,p. (1.14)
=0 j=1

We can easily see that at least one of the 3’s appearing on the right-
hand side is nonzero since the left-hand side is not 0. However, if some
of the B’s in this relation were nonzero then the expression on the right-
hand side would be an increasing function of r, but left-hand side is a
constant. We can conclude, from the fact, that even if the relation (1.14)
holds for some values of r, it cannot be true for more than two values of
r. Thus, the relation (1.14) cannot be valid for r > [ + 1, since we have
already had an example that the relation (1.14) is valid for 7 = [ +1; the
relation is valid for » = [ + 1 if the 3’s are those of the method(1.9). &
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2 Optimal Adams type LMM method

In this section we show that the Adams type LMM method (1.9) is the
optimal formula in the sense that the method minimizes the absolute
value of the error constant among the class of the Adams type LMM

methods having maximal order ppq;.

- Theorem 2 Let the Adams type LMM method (1.2) with nonnegative
conditions (1.3) and (1.4) be of order I+ 1. Then the error constant Ciyo

takes mintmum in modulus if

(-7 +1- )

o =1 ..
IBk] (l + 1)]' y J ’ 90y

1
Br—11 = 1 (2.1)
Bi; =0, otherwise, -

i.e., the method (1.9) is the optimal.
.Proof. The coefficients C, in the power series expansion (1.8) for the
method (1.2) is given by

min{v,I} % Vi

q;%{kv (k—1)"} + 21 Zﬂ”( —)

We must optimize the error constant Cj s under the condition that

,v=1,2---. (22

C]_=CQ="'=CI+]_:O, (2.3)

since the method is of order I + 1 by assumption.

The system of the constraints (2.3) together with the nonnegative con-
ditidns define a convex subset in (k + 1)I-dimensional vector space, since
the constraints (2.3) are linear in B’s. It is well known that a linear ob-
jective function defined on a convex subset takes optima at some extreme

points of the convex set [3]. In our case extreme points are the points
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which is’ expressed by the (k + 1)I-tuples such that some kI — 1 compo-
nents are specified as 0 and the other [ + 1 components are determined
so as to satisfy the linear equations (2.3).

In order to get the feasible extreme points, which are the candidates
for the optimal solution, we need one more component, say (s, (1 < s <
k, t=1,---,1), to be determined by the equation (2.3), because we have
already had ! nonzero components B;j, (7 = 1,---,1). Solving eq.(2.3) for

the variables (;; and B,:, we have

1 1<j<t,

(17748 = { L= (—1) () (k= ) ttB, t<j<t, OV
(—1Y‘HU%t=(k——sYJ‘l(Ltl)— (2.5)

Using these results we have the expression for the error constant Cj s

Chy:U+2E$L+Qﬂﬂk—s—na+2%+ﬂ. (26)

It is clear that | Cj;o | takes minimum at s = k — 1 and ¢ = 1. Taking
s =k —1 and t = 1 we have the coefficients $’s given by eq.(2.1) and the
optimum value of Cj,9
| (=1
Ciy2 = . 2.7
T +2)(0+1) 27)
This completes the proof of Theorem 2. |

As pointed out earlier, the optimal method (1.9) is based on the Padé
approximation to e®. In this case the numerator and the denominator
of the approximation function are the polynomials in z of degree 1 and
l, respectively. According to the theory of “order stars” the correspond-
ing approximation is A-acceptable for 1 < [ < 3, and in particular L-
acceptable for | = 2,3 [5], so that the method is A- and L-stable for
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1 <1< 3 and for [ = 2,3, respectively.

Corollary The trapezoidal rule is optimal in the class of the Adams type
linear multistep (LM) methods

Yntk = Ynth—1 + B(Befntk + - -+ + Bofn), (2.8)

with the nonnegative coefficients

Br>0, B;>0, i=0,---,k—1. (2.9)

3 Numerical example

Consider the scalar equation

y'(z) = ay(z) +p'(z) — ap(z), y(0) = p(0), (3.1)

exact solution : y(z) = p(z),

and the Obrechkoff method

h h2 (1) (1)
Yntl = Yn + E(fn+1 + fn) - E(fn+1 - fn )’ ‘ (32)

as an example of numerical methods for solving eq.(3.1). In solving the
equation by the method (3.2) we must solve at each step of the integration

the following scalar equation:

1 ah+a2h2 _ 1+ah+a2h2
Yn+1 = ) 12 YUn

h h?
+ §(un+1 + un) - E(”nﬂ - ’Un)', (3-3)

where

u(z) = p'(x) — ap(z),
v(z) = p"(z) — ’p(x).
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Although, in computing this recurrence relation, we must expect a loss
of significant figures due to the cancellation in 'vn.,_lv— vn, this will be
usually not a serious problem since the small coefficients ﬁ2 /12 is being
multiplied by v,,.; — v,. However, this may not be true in the case that
the magnitude of v(z) is so large compared with that of u(z), which
~ may happen, for example, when solving the equation (3.1) having large
constant | a |. Let p(z) be
p(z) = sin® (-721:1;) )

and a = —100 in eq.(3.1). In this case the value of |h?v(z)| is close to
that of |hu(z)| if x = 1 and h = 271%; we have |h?v(z)| ~ 9.55 x 1073 and
|hu(z)| = 9.77 x 1072, In the situations like this the use of the formula
having nonnegative coefficients such as (1.9) will be successful.

Let consider the method

2 3

bt = vnt 3G+ f) = i+ S, (39)
which corresponds to I = 3 in (1.9). As stated earlier, the method is of
order 4, same with the Obrechekoff method. We shall compare these two
methods by the total errors at = 1.03125 for varying step-size. The
results for a = —1 and a = =10 are shown in Fig.1 and 2. It is clear
from the figures that the LMM method with nonnegative conditions is
superior to the Obrechkoff method.

Next we trace the total errors of the two methods in the cases that
round-off errors are dominant over the discretization errors. The results
are shown in Fig.3 and 4. The superiority of the method (3.4) is also
clear from the figures. These computations have been performed on an
ACOS 2020 computer of Computer Center of Tohoku University, and the
language used is FORTRAN 77 in double precision mode.
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Figure 1. Total errors at « = 1.03125 for a = —1.
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Figure 2. Total errors at = 1.03125 for a = —10.
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Figure 3. Total error sequences for a = —1
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Figure 4. Total error sequences for a = —10.
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4 Concluding remarks

In this paper we have discussed the order barrier of the Adams type
LMM method, and derived some optimal method under the conditions
(1.3) and (1.4). However, as discussed in Sec. 3, these conditions are
somewhat restrictive in general situations. It is necessary to discuss the

~order barrier and an optimal method under the less restrictive condition
such that

/Bilzoa i=07"'5k'~1,
(=178 >0, j=1,---,1,

in which the coefficients 8;, (7 = 2,---,1, 1 < k) are not subject to any

constraints.
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5 Appendix
Here we will give a conjecture on the order barrier for the linear multistep
method
Yntk = —CQk—1Yntk—-1 — *** — QYn + h(Befuir + -+ + Bofn), (5.1)
where the coefficients a’s and 3’s are subject to the constraints
0 0,---,k—1, (5.2)

We demand, moreover, the LM method(5.1) to be zero-stable. It is well
known that no zero-stable k-step LM method can have order exceeding
k+2, and that if a zero-stable k-step LM method is of order k 4+ 2 then

the following conditions must be satisfied [1]:
1. The step number k is even.

2. All the zeros of the first characteristic polynomial p(¢), which is given
by
p(¢) =¢* + apaCF T+ -+ a,

are located on the unit circle.
3. In particular { = +1 are the zeros of p(¢).

It follows, from these conditions, that the characteristic polynomial p({)

associated with the method of maximal order has the form

p(0) = (= DII(C - 2cosb,C +1), (5.4)

and therefore ag = —1. Moreover the third of the above conditions leads
to
ap-1+ - +a; =0,
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implying that

a;=0, j=1,--,k—1,
since the coefficients —a’s are nonnegative. We can conclude, from this,
that if the LM method (5.1) with the nonnegative conditions (5.2) and

(5.3) has maximal order ppq; then the method must be the Newton-Cotes
type, i.e., the method must be of the form

Ynt+k = Ynt+k-1 T h(ﬂkfn+k +-ee ,BOfn) (55)

According to Davis and Rabinowitz[2], the coefficients 8’s of the Newton-
Cotes type formula of order k42, which is equivalent to the Newton-Cotes
type numerical quadrature formula, are given by |

[N
B = z'(k-—z’ t—l) =i+ 1Dt —1)---(t —k)dt,
1=20,---,k, (5.6)

and these coefficients have the asymptotical property

p= g S o ()], B 6

It can be easily seen from eq.(5.7) that the coefficient §; changes its sign

alternatively for sufficiently large k. Using formula (5.6) we can confirm

numerically that
e For k = 2,4,6,
Bi>20, 1=0,---,k.
e But for any even k satisfying 8 < k < 20

Bx Bi_, <O.

Thus, the attainable order p,., of the LM method is expected to be
8, if the coefficients o’s and ’s are subject to the constraints (5.2) and
(5.3).



