
Parallel Numerical Methods
for Initial-Value Problems of ODEs

三井 斌友
(Taketomo MITSUI)

名古屋大学人間情報学研究科
(Graduate School of Human Informatics, Nagoya University)

後藤 彰
(Akira GOTO)
特許庁審査第五部

(Electronic Image Devices Division, Japanese Patent Office)

ABSTRACT
We propose a new A-stable 3-stage fourth order implicit Runge-Kutta (RK) for-.

mula that can be carried out in paraJlel. Our paraMel algorithm, which may faU in the
category of parallelism across stage, can be applied to large-scale linear ordinary differ-
ential equations. An actual implementation on parallel computers with 3 CPU’s and
shared memory shows that it attains 2.9 times speed-up for the equations of $y’=Ly$
over the usual sequential computation. Moreover, through some numerical experiments
we introduce a quantity κ_{IRK} which can be seen as an index of degree of accuracy in
the solution of the parallelized implicit RK method.

1 Parallelism in Numerical ODEs

Introduction of parallelism to numerical ODEs is a promising as well as a challenging issue..
Since the development of computer architecture in various kind of parallelism makes it pos-
sible to implement the organizations of computation beyond the traditional sequential one,
it should be very natural to think of their application to numerical methods for initial-value
problems of ODEs, especially for large-scale ones. Indeed recent research works are focusing
on this issue. For instance, a special international workshop was organized by A. BELLEN
and M. ZENNARO at Grado, Italy in September, 1991 (its Proceedings will appear in a
special issue of the journal Applied Numerical Methods).

What kind of parllelism can be carried into numerical ODEs? Of course, it depends
on what algorithm would be implemented. For example, a vector computer, a computer
equipped with vector arithmetic units, is highly applicable for the solution of simultaneous
linear equations often ocurring in the stepping of implicit discrete variable methods. The
solution of equations could be accelerated by the application of vector computers. Much
work has been devoted in this direction.

数理解析研究所講究録
第 841巻 1993年 232-245

233

However, what we are considering below is not of this type of parallelism. Rather we are
interested in the parallelism proper in the discrete variable formulation for numerical ODEs.
Although there is a difference of opinion between researchers, conceptually such parallelism
might be classified in the following way.

(i) Parallelism across System
Suppose that the underlying system of ODEs consists of two parts which are weakly
connecting with each other. Then one can proceed some steps to integrate each part
independently with possibly different methods and stepsizes. This can be organized in
parallel. Although such system of ODEs are seemingly popular in the real world, the
trial in this direction is rare as far as the present authors are aware.

(ii) ParaUelism across Time
This name, together with that of the next category, is motivated by the parallel solution
of space-discretized time-dependent PDEs. That is, some or whole numerical values
for the discrete points in space are assigned to one processor at the same time-level.
Parallelism occurs across different time-levels. Hence it is often called Parallelism
across the Method.
Typically this type of parallelism is carried out with predictor-corrector methods. Prob-
ably MIRANKER and LINIGERio were the first to exploit the method. Their idea can
be explained in the following simple example. For the initial-value problem

$\frac{dy}{dx}=f(x, y)(a<x<b)$, $y(a)=y_{0}$, (1)

usual Adams PC pair of second order is given by

$y_{n+1}^{p}=y_{n}^{c}+h[3f_{n}^{c}-f_{n-1}^{c}]/2,$ $y_{n+1}^{c}=y_{n}^{c}+h[f_{n+1}^{p}+f_{n}^{c}]/2$. (2)

Here the superscripts p and c are the indications of the predicted and the corrected
values, respectively. Since the computation will proceed in the manner

$...arrow y_{n+1}^{p}arrow f_{n+1}^{p}arrow y_{n+1}^{c}arrow f_{n+1}^{c}arrow\cdots$,

it can be done only sequentially.

Instead the following pair of formulae enables a parallel calculation for y_{n}^{c} and y_{n+1}^{p} :

$y_{n+1}^{p}=y_{n-1}^{c}+2hf_{n}^{p},$ $y_{n}^{c}=y_{n-1}^{c}+h[f_{n}^{p}+f_{n-1}^{c}]/2$. (3)

That is, a Milne-type predictor is introduced in the pair.

(iii) Parallelism across Space
Some discrete variable methods are known to be reformulated in the block predictor-
corrector method which allows a parallelism. Suppose that Y_{n+1} represents a vector
of block of s solution values of y , and that $F(Y_{n+1})$ represents the vector of block of
corresponding derivatives. A block PC method could be given by

$Y^{p}=A_{1}\otimes Y_{n}+hL_{1}\otimes F(Y_{n}),$ $Y^{c}=A_{2}\otimes Y_{n}+hL_{2}\otimes F(Y^{p})$, (4)

234

where $A_{1},A_{2},$ L_{1} and L_{2} are all matrices of dimension s . Note that an explicit Runge-
Kutta method as well as a linear multistep method can be written in the form. We
\ddagger nay therefore mix the integration formulae between the predictor and the corrector
$phases^{2,11}$.
In the model of space-discretized PDEs, this parallelism means numerical values for
different time-levels on a single space-discrete point are assigned to one processor. Thus
the name of Parallelism across the System is often given to this category.

(iv) Parallelism across Step
It might cause a confusion of names, but the waveform relaxation methods, which
now attract much attention of the experts in numerical ODEs, can be said to derive a
parallelism across step. As they are also called Pica.rd-Lindelof iteration, their another
organization may be considered as a parellelism across methods5.

(v) Parallelism across Stage
This is particular in the Runge-Kutta methods. Since the main drawbacks in RK lie
on the number of function evaluations per step, parallelism across stage may extend a
new perspective for RKs. The authors like to put emphasis on this topic and will give
some more detailed explanations in the next section.

Since we have a large-scale system in mind and it often exhibits stiffness, the stability as
well as the accuracy of the method should be still main elements to be analyzed.

2 Implicit Runge-Kutta Formula for Parallel Computation

From now on we will be concerned with parallelizable implicit Runge-Kutta methods, for
they are easy to implement on a multiprocessor machine with the shared-memory structure.
Taking the possible stiffness of ODEs into account, a good stability should be attained by
the targeted implicit Runge-Kutta (IRK) methods.

Consider a large-scale linear system of ODEs

$C(t) \frac{d}{t}u+A(t)u=f$. (5)

In a particular case, Eq.5 becomes to $y’=Ly$, where L is a constant matrix. KARAKASHIAN
and $RusT^{8,9}$ took such linear equations in mind and made a parallelizable 2-stage third order
IRK method of collocation type. What we’ propose below is along their guideline to make
a new paraUelizable A-stable 3-stage fourth order IRK formula, and to define its parallel
algorithm for equations with variable coefficients $\sqrt{}=L(t)y+g(t)$, too.

2.1 Family of 3-Stage Fourth Order IRK Formulae

To solve a system of ODEs in a general form as

$\frac{d}{dt}y=f(t,y)$, $y(t_{0})=y_{0}$

235

numerically, an implicit Runge-Kutta formula with stepsize h gives the value $y_{n+1}\approx y(t_{n+1})$

by a single step integration from $y_{n}\approx y(t_{n})$ in the following way.

$y_{n+1}=y_{n}+h \sum_{l=1}^{p}\beta_{l}k_{l}$, $k_{i}=f$ ($t_{n}+$ 窃 $h,$ $y_{n}+h \sum_{j=1}^{p}\alpha$胸). (6)

The matrix and vector notations for the formula parameters

$A=(\alpha:j)$, $b=(\beta_{l})$, $ci= \sum_{j=1}^{p}\alpha_{ij}$

are conventional.
As can be seen above, Eq.6 is not fit for parallelism in its naive form, because during the

single step integration, every k_{i} is functionally dependent to all other $k_{j}’ s$. Thus we have
restricted ourselves to get a parallel implementation of IRK for the linear ODEs Eq.5 or the
constant coefficient case. In the latter case, IRK reduces to

$y_{n+1}=y_{n}+h \sum_{\ell=1}^{p}\beta_{\ell}k_{\ell}$, $k_{i}=L(y_{n}+h \sum_{j=1}^{p}\alpha_{ij}k_{j})$. (7)

It is well known that a collocation type IRK formula can be identified either by the pair
$\{A, b\}$ or by the fractions $\{c_{1}, c_{2}, \ldots, c_{p}\}$ provided all $c_{i}’ s$ are distinct. Since we are seeking
for a 3-stage fourth order IRK formula of collocation type, the formula parameters should
satisfy the 7 equations

$\{\begin{array}{l}S_{1}S_{2}S_{3}\end{array}$ $===$

.

$\lambda_{1}\lambda_{1}^{1}\lambda_{2}^{+_{2}}+_{3}^{2}\lambda^{+_{2}}\lambda^{\lambda_{3^{3}}}+\lambda_{3}\lambda_{1}\lambda\lambda\lambda^{\lambda}$

’ (8)

$\{\begin{array}{l}S_{1}=\frac{c_{1}+c_{2}+c_{3}}{3}S_{2}=\frac{c_{1}c_{2}+c_{2}c_{3}+c_{3}c_{1}}{6}S_{3}=\frac{c_{1}c_{2}c_{3}}{6}\end{array}$ (9)

$\frac{1}{24}-\frac{1}{6}S_{1}+.\frac{1}{2}S_{2}-S_{3}=0$. (10)

Here $\lambda_{1},$ $\lambda_{2},$ λ_{3} are the eigenvalues of the matrix A . Eventually we can derive that the degree
of freedom is two for the above system of nonlinear equations with six unknowns $c_{1},$ $c_{2},$ c_{3} ,
$\lambda_{1},$ $\lambda_{2},$ λ_{3} . Therefore λ_{1} and c_{1} may become to the free parameters.

In this context a straightforward calculation leads to solutions of the equations Eqs.8, 9
and 10 as follows:

$c_{2},$
$c_{3}= \frac{H\pm\sqrt{K}}{D}$. (11)

Here $H,$ K and D are polynomials of c_{1} and λ_{1} with their total degrees 4, 8 and 3, respectively.
Furthermore

$\lambda_{2},$
$\lambda_{3}=\frac{U\pm\sqrt{V}}{W}$, (12)

236

where $U,$ V and W are again polynomiaJs of c_{1} and λ_{1} with total degrees 4, 8 and 3, respec-
tively. It should be remarked that the condition $K>0$ is necessary for the collocation type
formula, whereas the parallel implementation within the real number arithmetic imposes the
condition $V>0$.

Once we get the distinct real eigenvalues λ_{j} , we can take advantage of the similarity
transformation of A

$A=S^{-1}\Lambda S$, $\Lambda=diag(\lambda_{1}, \lambda_{2}, \lambda_{3})$, $S=(s:j)$ (13)

for parallel computation.

2.2 A-Stability Considemtion

As usual in the collocation type IRK, we define the polynomial $N(t)$ by

$N(t) \equiv\sum_{j=0}^{3}\frac{(-1)^{j}S_{j}t^{3-j}}{(3-j)!}$, (14)

where S_{j} is the elementary symmetric polynomial of $\lambda_{1},$ λ_{2} and λ_{3} of j-th degree.
Let $P(z)$ and $Q(z)$ be the following.

$P(z)$ \equiv $N(0)z^{3}+N’(0)z^{2}+N’’(0)Z+N^{(3)}(0)$,
$Q(z)$ \equiv $N(1)z^{3}+N’(1)z^{2}+N^{n}(1)Z+N^{(3)}(1)$.

The stability function $R(z)$ of the collocation type RK formula becomesl to $R(z)=Q(z)/P(z)$.
Thus we can compute so-called E-polynomial as

$E(y)\equiv|Q(iy)|^{2}-|P(iy)|^{2}$,

which is a rational function with respect to c_{1} and λ_{1} . We omit its functional form here, but
take notice that the denominator turns out to square of a polynomial. If $E(y)\leq 0$ for any
y , then our formula is A-stable whenever $\lambda_{i}>0$. Since the equation

$R(\infty)\equiv\lim_{zarrow\infty}R(z)=-\frac{(1-c_{1})(1-c_{2})(1-c_{3})}{c_{1}c_{2}c_{3}}$

holds in our case, we are interested in the case of $c_{1}=1$ for L-stability.

2.3 The Region of Parameters Giving an A-Stable Formula

We are going to determine the region of parameters (c_{1}, λ_{1}) where they satisfy the conditions
$K>0$ (collocation type), $V>0$ (parallelizability), $\lambda_{i}>0$ and $E(y)<0$ (A-stability). In
fact, the conditions $\lambda_{i}>0$ are equivalent to $U^{2}-V>0$ and $WU>0$. On the $c_{1}-\lambda_{1}$ plane,
superposing all these conditions, in Figure 1 we get the desired region of parameters (the
hatched region).

Since the straight line $c_{1}=1$ does not have any intersection with the region in Fig. 1,
we get the following.

237

Theorem 1 Any collocation IRK formula of our type cannot be L-stable.
Moreover, in Fig. 1 we observe that the condition for A-stability isn’t compatible with those
of $V>0$ for $0<c_{1}<1$, in short there are no parallelizable A-stable formulae for these c_{1} .

However the region in Fig. 1 implies much possibility to select the pair (c_{1}, λ_{1}) . We will
fix them through numerical investigation in the following section.

3 Parallel Algorithm for the Constant Coefflcient Case

At first our parallel algorithm is applied to solve a linear system of ODEs with the constant
coefficient case $y’=Ly$. Through this case we will tune up the value of parameters λ_{1} and
c_{1} within the allowable region in the previous section.

3.1 Parallel Algorithm.

The heat equation on the interval $[0,1]$ with the conduction constant $1/c$ subject to the
initial condition $\sin\pi x$ and the Dirichlet boundary condition turns out to the m-dimensional
linear ODEs with tridiagonal constant matrix through usual centered differencing. This is
our model equation.

The linear case reduces the IRK stepping Eq.6 to the following:

$y_{n+1}=y_{n}+h \sum_{l=1}^{3}\beta_{l}k_{l}$, $k_{i}=L(y_{n}+h \sum_{j=1}^{3}\alpha:k)$, (15)

Taking Eq.13 into account and introducing new varaibles
$u_{i}\equiv L^{-1}(s:1k_{1}+s_{i2}k_{2}+s_{13}k_{3})$, $v_{i}^{n}\equiv(s_{i1}+s_{i2}+s_{i3})y_{n}$, (16)

then we arrive at

$(\begin{array}{lll}I-h\lambda_{1}L 0 00 I-h\lambda_{2}L 00 0 I-h\lambda_{3}L\end{array})(\begin{array}{l}u_{1}u_{2}u_{3}\end{array})=(\begin{array}{l}v_{l}^{n}v_{2}^{n}v_{3}^{n}\end{array})$, (17)

$(v_{n+^{1}}^{1}v_{3}^{n+^{1}}v_{2}^{n+_{1}})=(1-b^{t}A^{-1_{e}})(\begin{array}{l}v_{1}^{n}v_{2}^{n}v_{3}^{n}\end{array})+(\begin{array}{l}\gamma_{11}u_{1}+\gamma_{l2}u_{2}+\gamma_{l3^{Tl}3}\gamma_{21}u_{l}+\gamma_{22}u_{2}+\gamma_{23}u_{3}\gamma_{31}e\iota_{1}+\gamma_{32}u_{2}+\gamma_{33}u_{3}\end{array})$, (18)

$(\gamma_{ij})=\Gamma=S(eb^{t})A^{-1}S^{-1}$, $e=(1,1,1)^{t}$.
Applying the above formulae, we can give our parallel algorithm (IRK34) as follows:

(i) Compute v_{i}^{0} by initial value y_{0} and Eq.16.

(ii) Iterate the following processes for $n=0,1,2,$ \cdots .
(a) Solve Eq.17 in parallel.
(b) Compute v_{i}^{n+1} from Eq.18 in parallel.

(iii) Transform v_{i}^{n} into y_{n} by Eq.16.
Figure 2 shows the flowchart of this algorithm. It is suitable to the shared-memory multi-
processor parallel computers such as CARY Y-MP or CONVEX240.

238

3.2 Tuning of the Parameters

We solved the model equation for $0\leq t\leq 16$ with the time-step $h=1/4$ by our parallel
algorithm varying the parameters λ_{1} and c_{1} . Problem parameters were $c=100\pi^{2},$ $m=5000$.
The results are listed in Table 1, which shows that the smaller the value KIRK is, the more
accurate the solution becomes. Here we define

$\kappa_{IRK}\equiv$ (the minimum eigenvalue of the matrixA) $(1-b^{t}A^{-1}e)^{2}$

The following Theorem suggests this phenomena.

Theorem 2 Given two linear systems of equations by

$(I-h\lambda_{1}L)x=b$,

$(I-h\lambda_{2}L)_{X}=b$.
Let κ_{1} and κ_{2} be the condition numbers of above equations, respectively. Suppose L is a
symmetric negative definite matrix and the eigenvalues of L are all distinct. If $0<\lambda_{1}<\lambda_{2}$

then $\kappa_{1}<\kappa_{2}$. Namely, there is a positive constant C , which depends on h and the eigenvalues
of L , satisfying the inequality

$\kappa_{2}-\kappa_{1}\leq C(\lambda_{2}-\lambda_{1})$.
Specifically, if the eigenvalues of L are the same, then $C=0$, in short $\kappa_{1}=\kappa_{2}$.

Application of this Theorem to $(I-h\lambda_{i}L)u_{i}=v_{1}^{n}$ in Eq.17 supports the phenomena.
From the region of parameters (c_{1}, λ_{1}) in Fig. 1 satisfying all the imposed conditions, we

fix the pairs
$c_{1}=8$, $\lambda_{1}=\frac{3}{2}$.

Then the other formula parameters are given through Eqs.11 and 12 as

$c_{2}= \frac{1229-\sqrt{770563}}{778}$, $c_{3}= \frac{1229+\sqrt{770563}}{778}$,

$\lambda_{2}=\frac{5181+\sqrt{3166665}}{4688}$, $\lambda_{3}=\frac{5181-\sqrt{3166665}}{4688}$.
These values determine the 3-stage fourth order A-stable IRK which will be implemented
hereafter.

Table 1. The effect of the parameter choosing.

239

3.3 Companson with Voss’ Method

Voss’ method12 is another type IRK method to solve autonoumous ODEs. When applied to
$f(y)=Ly$, Voss’ method, which can be considered as one of mono-implicit $RKs4$, is given
by

y_{n+1} $=$ $y_{n}+h \sum_{\nu=1}^{7}w_{\nu}k_{\nu}$,

$k_{i}=L(y_{n+1}+h \sum_{j=1}^{i-1}a_{j}k_{j})$ $(1 \leq i\leq 4)$,

$k_{i}=L(y_{n}+h \sum_{j=5}^{1-1}a_{ij}k_{j})$ $(5\leq i\leq 7)$.

The formula parameters $w_{\nu},$ $a_{j},$ a_{ij} were specified by him.
The parallel algorithm of Voss’ method is given in Fig. 3 as its flowchart form. Here we

introduoe $F(y_{n})$ and C_{i} as

$B \{y_{n})\equiv-h\sum_{\nu=1}^{4}w_{\nu}L(y_{n+1}+h\sum_{j=1}^{\nu-1}a_{j}k_{j}’)-h\sum_{\nu=5}^{7}w_{\nu}L(y_{n}+h\sum_{j=5}^{\nu-1}a_{\nu j}k_{j}’)$,

$Ci \equiv\frac{w_{i}^{3}}{\Pi_{j1j\overline{\overline{\neq}}i}^{4}(w_{i}-w_{j})}$

$1\leq i\leq 4$.

Like as in our algoritm, it can be carried out on the shared-memory multiprocessor parallel.
computers.

We compared two nethods (IRK34 and Voss’ methods) on the parallel computers, CRAY
Y-MP and CONVEX240 through the test problem given in this section. The results for the
numerical integration of the model equation with $h=1/4$ are listed in Tables 2 and 3. The
accuracy turned out $to-\log_{10}(error)=8.936$ in IRK34 case while to– $\log_{10}(error)=8.371$

in Voss’ case. We can observe from both Tables that parallel IRKs attain speedup almost
equal to the number of stages of the formula. This may be a siginificant feature of parallel
IRKs. Secondly our method is less in the elapsed time than Voss’ method, which takes
one stage more than ours. This also suggests that for a parallel IRK with less parallel
performance in comparison with the increase of stage numbers, the sequencial computation
may win over the parallel one when the computational costs of k_{i} is cheap.

4 Parallel Algorithm for the Variable Coefflcient Case

In this section we will consider the case of variable coefficient ODEs $y’=L(t)y+g(t)$.

4.1 Parallel Algorithm

Let us introduce the following notations.

$L_{i}^{n}\equiv L(t_{n}+c_{i}h)$, $g_{i}^{n}\equiv g(t_{n}+c_{i}h)$, $f_{i}^{n}\equiv L_{i}^{n}y_{n}+g_{i}^{n}$,

240

$L_{n}\equiv(\begin{array}{lll}L_{1}^{n} o oo L_{2}^{n} oo o L_{3}^{n}\end{array})$, $K\equiv(\begin{array}{l}k_{l}k_{2}k_{3}\end{array})$, $F_{n}\equiv(\begin{array}{l}f_{l}^{n}f_{2}^{n}f_{3}^{n}\end{array})$.

To get k_{i} , we have to solve the equation

$\Phi(K)\equiv(I-hL_{n}(A\otimes I))K-F_{n}=0$. (19)

In order to keep the parallelism, we apply Newton’s iteration on the equation in spite of the
fact that Eq.19 is a system of linear equations. Newton’s iteration generates.a sequence of
approximations $K^{(l)}$ by the recurrence

$K^{(l+1)}=K^{(l)}-(I-hL_{n}(A\otimes I))^{-1}\Phi(K^{(l)})$ $l=0,1,$ \cdots . (20)

Taking advantage of the diagonalization of the matrix A and of the approximate equality
$L_{n}(S^{-1}\otimes I)\approx(S^{-1}\otimes I)L_{n}$, we convert Eq.20 to

$(I-hL_{n}(\Lambda\otimes I))\Delta U=(S\otimes I)\Phi($五$\prec))$ (21)

and
$O^{(l+1)}=$ ひ l) $-\Delta U$ $l=0,1,$ \cdots , (22)

where $U^{(l)}\equiv(S\otimes I)K^{(l)}$.
After all, for the variable coefficient case the parallel algorithm $(IRK34V)$ becomes the

following:
Repeat the following processes for $n=0,1,2,$ \cdots .

(i) Compute f_{i}^{n} $(i=1,2,3)$

(ii) $x_{i}=S_{i1}f_{1}^{n}+:2$ $(i=1,2,3)$

(iii) Decompose $(I-h\lambda_{i}L_{i})$ and solve $(I-h\lambda_{i}L_{i})u_{i}=x_{i}$ $(i=1,2,3)$.

(iv) Iterate the processes.

(a) $k_{i}=p_{i1}u_{1}+p_{i2}u_{2}+p_{i3}u_{3}$ $(i=1,2,3)$

(b) $r_{i}=k_{i}-hL_{i}(\alpha_{i1}k_{1}+\alpha_{i2}k_{2}+\alpha_{i3}k_{3})-f_{i^{n}}$ $(i=1,2,3)$

(c) $z_{i}=\Vert r_{i}\Vert$ $(i=1,2,3)$

(d) If first iteration, then
$z_{0}= \max(z_{1}, z_{2}, z_{3})$ and if $z_{0}<\epsilon_{TOL}$ then go to step(v)
else
if $\max(z_{1}, z_{2}, z_{3})<\epsilon_{TOL}z_{0}$ then go to step(v)

(e) $q_{i}=s_{i1}r_{1}+S_{i2’2}+S_{i3}r_{3}$ $(i=1,2,3)$

(f) Solve $(I-h\lambda_{i}L_{i})u_{i}’=q_{i}$ $(i=1,2,3)$ with the latest decomposition.
(g) $u_{i}arrow u_{i}-u_{i}’$ $(i=1,2,3)$

(v) $y_{n+1}=y_{n}+h\Sigma_{l=1}^{3}\beta_{l}k_{l}$

Note that the above algorithm can be computed in parallel with 3 processors.

241

4.2 Numerical $E\varphi eriments$

After fixing the number of inner iterations so as to achieve a sufficient accuracy, we made
numerical experiments for the problem derived from the space-discretized Burgers equation
whose analytical solution is known3. The ODEs are derived via the space-discretization with
Kawamura-Kuwahara’s third order finite differenoe scheme. The stiffness ratio for $m=1000$
is approximately equal to 10^{5} .

We compared our algorithm (IRK34) with Gear’s method (LSODE in netlib). The result
is given in Table 4. This shows that regrettably our method is worse than Gear’s. The
reason is likely that the approximation $\tilde{u}_{j}=u_{j}(t_{n})\approx u_{j}(t_{n}+c_{i}h)$ is poor because of $c_{1}=8$.
However no formula in our consideration exists in $0<c_{1}<1$ as pointed in Section 2. More
investigation might be called for a wider class of parallelizable implicit RKs.

5 Conclusion and Future Works

In this note we get the followings.

1. Our new 3-stage fourth order formula is A-stable and using the parallel algorithm,
2.9 speed-up is aatained. This fact strongly suggests that in the type of parallelizable
IRKs considered in this note parallelism across stage would be much more efficient in
the large number of stages.

2. The minimum eigenvalue of the formula parameter matrix A , together with the square
of the stability factor $R(\infty)$, influences the accuracy of numerical solution. Thus we
define the quantity κ_{IRK} .

3. No L-stable formula exists in this collocation type.

4. Our algorithm for $y’=L(t)y+g(t)$ is worse than Gear’s method from the viewpoint
of CPU time.

Future works are expected in several points.

Stepsize control. Taking advantage of parallel computers, we might be able to control the
stepsize h by computing fourth and third formulae in parallel.

Extension to DAEs $M(t)y’=f(t,y)$. In this case, we expect that the matrices $(I-h\lambda_{i}L_{:}^{n})$

in the step (iii) as well as (f) in (iv) of the algorithm in Section 4 are replaced by the
matrices $(M-h\lambda_{i}J)$, where $J \equiv\frac{\partial_{f}}{\partial y}$.

Acknowledgement
The parallel computations were performed through the kind help by Mr. Yutaka MAT-

SUNAGA (Tokyo Electron, Inc.) and Dr. Qasim SHEIKH (Cray Research, Inc.). The algo-
rithm in Section 3.3 is given by the courtesy of Prof. Dave Voss (Western Illinois University).

242

References

1. Bales, L. A., Karakashian, O. A. and Serbin, S. M., On the A_{0}-acceptability of rational
approximations to the exponential function with only real poles, BIT, 28 (1988), 70-
79.

2. Burrage, K., Efficient block predictor-corrector methods with a small number of correc-
tions, Proceedings of 13th $IMACS$ World Congress on Computation and Applied Math-
ematics 1991, pp268–269.

3. Byrne, G.D., Hindmarsh, A.C. and Brown, H.G., A comparison of two ODE codes
GEAR and EPISODE, Comput. Chem. Eng., 1 (1977), 133–147.

4. Cash, J. R. and Singhal, A., Mono-implicit Runge-Kutta formulae for the numerical
integration of stiff systems, IMA J. Numer. Anal., 2 (1982), 211–217.

5. Gear, C.W., Waveform methods for space and time parallelism, J. Comput. Appl. Math.,
38(1991), 137–147.

6. Goto, A. and Mitsui, T., A 3-stage fourth order RK formula for parallel computers,
Trans. Japan SIAM, 1(1991), 291–304 (in Japanese).

7. Jackson, K.R., A survey of parallel numerical methods for initial value problems for
ordinary differential equations, IEEE Trans. Magnetics, 27(1991), 3792–3797.

8. Karakashian, O. A. and Rust, W., On the parallel implementation of implicit Runge-
Kutta methods, SIAM J. Sci. Stat. Comput., 9 (1988), 1085–1090.

9. Karakashian, O. A., On Runge-Kutta methods for parabolic problems with time-
dependent coefficients, Math. Comp., 47 (1986), 77–101.

10. Miranker, W.L. &Liniger, W., Parallel methods for the numerical integration of ordi-
nary differential equations, Math. Comp., 21(1967), 303–320.

11. Van der Houwen, P.J. &Sommeijer, B.P., Parallel iteration of high-order Runge-Kutta
methods with stepsize control, J. Comput. Appl. Math., 29(1990), 111–127.

12. Voss, D. A., Parallel Runge-Kutta methods for stiff ODEs, submitted to publication.

243

Table 2. IRK34

Table 3. Voss’ method

Table 4. The comparison with Gear’s method.

Figure 1. The region of the desired A-stable formula

λ_{1}

244

Figure 2. Flowchart of IRK34

245

Figure 3. Flowchart of Voss’ method.

