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Two-Stage Point Estimation with a Shrinkage Stopping Rule

University of Tokyo, Tatsuya Kubokawa (& {£J11 &)

Consider the problem of estimating a mean vector in a p-variate normal distribu-
tion under two-stage sequential sampling schemes. The paper proposes a stopping rule
motivated by the James-Stein shrinkage estimator, and shows that the stopping rule
and the corresponding shrinkage estimator asymptotically dominate the usual two-stage
procedures under a sequence of local alternatives for p > 3. Also the results of Monte
Carlo simulation for average sample sizes and risks of estimators are given and it is re-
vealed that the improvements of the proposed shrinkage procedures are great when a

noncentrality parameter is small.
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1. Introduction

Let X;,X,,... be a sequence of mutually independent random vectors, X; having
p-variate normal distribution N,(#,0?I,) where 6 is an unknown vector and ¢? is an
unknown scalar. Consider the problem of finding estimator & of the mean vector 6 such

that for a pre-assigned constant € > 0,
R(w,8) = E[|6 - 6]"] < ¢ (1.1)

uniformly for unknown parameters w = (8, 02), where || - || denotes the Eucledian norm.
This subject requires the boundedness of the risk function and it may be called a bounded
risk problem.

When sample X, ..., X, for fixed size n is taken, the MLE of 4 is the sample mean
X, =n"t Y X; with risk R(w, X,,) = p&2/n. If 02 is known, the risk is equal to ¢
for

n=ng = po’/e. ' (1.2)

For simplicity, we shall, henceforth assume ng to be a positive integer. For unknown o?

)

however, there does not exist any fixed sample size that satisfies (1.1) for all w. Motivated

from (1.2), the following two-stage sampling rule is then proposed (Rao(1973)):

(i) Start with an initial sample X, ..., X,, of size m(> 1+ 2/p).
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(ii) Define the stopping number by
No = max{m, [po?2,/¢]} (1.3)

where [u] is the smallest integer > « and

o2, =Y |IXi — Xl /{p(m - 1) - 2}. (1.4)
i=1
(iii) Take another sample X,,41,..., XN,-

We estimate § by Xp,, which satisfies (1.1) because
R(w,Xp,) = po?E[N; '] < €E[0?/02] = &.

Similarly to Mukhopadhyay(1980) and Ghosh and Mukhopadhyay(1981), it can be easily
checked that if m = O(¢~%) for 0 < d < 1, then the following asymptotic properties hold:

| liII(l) E[No)/no =1 (asymptotic efficiency), (1.5)

lix% R(w,Xn,)/e =1 (asymptotic consistency). (1.6)

For fixed sample sizes, Stein(1956) and James and Stein(1961) established the in-
admissibility of the sample mean under the quadratic loss for p > 3. As an analogous
result, Ghosh and Sen(1983) developed James-Stein type estimators dominating the two-
stage sequential estimator X, for p > 3. Further, Takada(1984), Ghosh, Nickerson and
Sen(1987) and Nickerson(1987) have shown the similar risk dominance results under
purely sequential sampling schemes where stopping rules were not made any shrimkage
methodology. These assert the improvements only of estimators by shrinkage estima-
tion. It seems, however, that the discussions about the improvements of stopping rules
are important in the sequential analysis. ;

The purpose of this note is to provide a shrinkage stopping rule and the correspond-
ing shrinkage estimator being superior to the usual ones Ny and Xy,. For this, we first
consider the James-Stein estimator

for fixed sample size n and known o2, which takes the risk

w5t =5 - [f ] ()
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as shown by James and Stein(1961). Here we like to incorporate shrinkage factors in the
stopping rule as well with a view to establish the dominance along with a smaller average

sample size. Since

o? a? 1

B—Z5]>—2 = ,
AlXKAIE = EnIXLIP] p+nll6l/o?

it is seen that

2 2 2
JSy .7 (P—2)c
R(w < p— .
(w,827) P p+ni n (1.7

where A = ||0]|?/o2. Hence R(w,8.°) < e if

o2 (-2’0

pn p+nA n ~

b

or
£ £
;fz\nz-i-(;—i——)\)pn—él(p—l) > 0. (1.8)

The minimum n satisfying (1.8) is given by

_ (A —¢/a)p+ /(A —¢/0?)?p? +16(p — 1)Ae/0?
2Xe/a? ’

(1.9)

and it can be easily checked that

4(p —~ 1 2
(p )Lsnlspf_
P € €

Since 02 and ) are unknown, they must be estimated. Kubokawa, Robert and Saleh(1993)
proposed, for example, the estimator A, of A as

1 Xm || _p 22X’
= max { ,m} (1.11)

for o2, defined by (1.4).

Using these estimators o2, and ),,, we can define a stopping rule N motivated by
the James-Stein shrinkage rule, by

N = max{m, [M]}, (1.12)

where

(Am —€/02)p+ /(Am — €/a2,)2p% + 16(p — 1))\,,,5/0
2Amefal,

Ny = (1.13)
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Based on the sample X4, ..., Xy, 4 is estimated by

2
aoy -

by =Xy — —_-Xu (1.14)
N|[Xn|* |

where a is a positive constant suitably chosen. Similar to (1.10), we observe

4(p—1) o2 ol
LT <N <L<p™2 1.1
D e — 1P e’ ( 5)
which implies that
N < Ny as,
so that
E[N] < E[No] (1.16)

for all w. This means that N has an exactly smaller average sample size than Ny. On
the other hand, it may be difficult to evaluate the risk function of 65 exactly. Thereby,
we discuss the asymptotic properties of N and .

Section 2 presents the asymptotic efficiency of N and the consistency of §5, that
is, lim, .oE[N]/no = 1 and lim._oR(w, §x5)/¢ = 1 for uniformly 6 # 0 and p > 3. From
(1.5) and (1.6), they mean that N and §x are asymptotically equivalent to Ng and Xy, .

In Section 3, to compare them for 8 close to zero, we consider a sequence of local
alternatives § = §,,, = n51/290 for fixed fp. Under the local alternatives, we get that
lim.oE[N]/no =1 and for p > 3,

.__11:_2)___“.]’ (1.17)

: a2
lim R(w,6n)/e =1 — —E
el_% (w N)/ | p [ X}z’(/\o)

where X,z,(/\o) denotes a noncentral chi square variate with p degrees of freedom and
noncentrality parameter Ag = ||fo||>/o2. From (1.6) and (1.17), we can see that, if
0 <a<2(p—2) then

lim{R(w,6n) — R(w, Xn,)}/e <0,

that is, 6 dominates Xy, asymptotically for p > 3. Also (1.17) means that §5 domi-
nates Xy asymptotically for the same shrinkage stopping rule N. In this way, we obtain
the shrinkage procedures N and éx such that N is exactly smaller than or equal to Ny
and 8y is asymptotically better than X, and Xy for p > 3.

The results of Monte Carlo simulation for the average sample sizes E[Ng], E[N] and
the risks R(w, Xx,), R(w,8x) are given in Section 4. This is done in the cases of m = 5;
p=4,8;c=1.0,0.5,0.3, and 1t is revealed that the improvements of N and 6 are great
when noncentrality parameter ||8]|*/o? is small.
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2. Asymptotic efficiency and consistency for fixed alternatives

We shall investigate the asymptotic properties of N and éy given by (1.12) and
(1.14) for any fixed 6 # 0.

Theorem 2.1. Assume that m = O(¢=%) for 0 < d < 1. Then for uniformly 6 # 0,
(1) llme_,oE[N]/no = 1,
(i1) im,oR(w,8n)/e=1 for p> 3.

For the proof, the following lemmas are essential.

Lemma 2.1. Assume that m = O(e™¢) for 0 < d < 1. Then,
(1) im,oN/ng =1 a.s.,
(ii) N/ng is uniformly integrable,
(iii) (ng/N)* is uniformly integrable for fixed a > 0.

Proof. From the definition (1.12),

Aol — e+ /(Amo?, —€)2 + 16(p — 1)eA 02, /p? < N

202\, ng <
Aol —e+ /(Mmoo —e)2 +16(p — 1)ed,02,/p2 m+1
PR +— (2.1)
m 0

From the condition of the lemma it is easy to see that m — oo and (m + 1)/ng — 0 as

2

€ — 0. Also, 02, — ¢? a.s. and A\, — X a.s. as m — oco. Then part (i) follows from

(2.1). For any d and 6§ > 0, we observe that

B[ Lipna] < 5[ ()] 2

No No

where Ipj denotes the indicator function. To prove (ii), it suffices to show

Sup0<e<eo{E[(N/n0)1+6]} < oo

for fixed ¢o > 0. From (1.15) and (2.1),

B[(2)™] < Ko{Bsup (ot /o7 +] + (2D (23
no m>2 o

for some constant Ky independent of e. By Doob’s maximal inequality for the reversed
martingale sequence, E[sup,,>,(02,/0%)'*%] < co. Also (m +1)/ng — 0 as € — 0, so
that sup0<e<€°{E[(N/no)1+6]i < 00, which proves (ii). For part (iii), similar to (2.2), we
show that

,5up {E[(no/N)***)]} < co. (2:4)
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From (1.15) and (2.1), for some constant K; > 0,

Bl(5)° )
< K, B{( )49
— I{I{p(m _ 1) _ 2}0:(1-}-6) F(p(m — 1)/2 — a(l + 6))2—&(14—6)’ (25)

I'(p(m —1)/2)
which is bounded by a constant independent of € and the proof is complete.
Lemma 2.2. Assume that m = O(¢™9) for 0 < d < 1. Then, for p > 3,
(i) no|| Xy — 6| is uniformly integrable,
(ii) nood /(N?||Xn]||?) is uniformly integrable,
(111) noafva(iN — 8)/(N|IXn|°) is uniformly integrable.

Proof. Similar to (2.2), it suffices to show that for § > 0,

sup {E{(nol[Xw — 6]%)+]} < oo. (2.6)
0<e<eg

By Holder’s inequality, for small §' > 0,

7 n oy 1/(1+6")
E[(no||Xn — 0]%)'*%] < {E[(_ﬁo)(1+6)(1+6 )]}

— et} 811487
« {BINVXy - gJP) 000407}

From (iii) of Lemma 2.1, sup0<€<EoE[(no/N)(1+6)(1+5')] < o0, and

B{(V[ K — 6]2)+D0+75) < Elsup,y o (l[K, — 6]7)0+0+1]
= B[(o?|)2"|[?)H+90+615',

which is also bounded, where

7* — \/H(Xn —_ 9)/0’ (2.7)
is Np(0,I,) independent of n. Hence we get (2.6) and prove (i). For part (ii), we shall
prove

4 1+6
su E|| —— < oo. 2.8
o<efeo [(NzuxNHZ) ]} (2.8)

By Holder’s inequality,

i) )= el )

y {E[U%m)(m')/s’]}” 1+ (2.9)
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For 4 = (1 + 6)(1 + &') with small §' > 0, clearly,
Eloy/"] < Elsup,5(o2")] < oo.

For small 6§ > 0,
o

E[(m)w]

n " " /(1+6 ') " 1/(1+6")
< {22y}’ {EI 570+ (2.10)

N ||X |
From the proof of (iii) of Lemma 2.1, we see that
SUPo<e <o Bl(mo/N)H*] < oo
By use of Z* in (2.7), n||X,||® is represented as
n||Xall* = 0?1 2* + Vrb/o|l’ = 0’ x} 420, = X + 0°X3 5,
where J,, follows a Poisson law with E[J,,] = n||8]|*/(2¢2). Since x?2 is independent of =,

E[(N|[Xn|*) 70+ < E[sup 5 (n][Xa||?) 77+

= E[sup,>,(c?x) + ¢ 2x35,) 0 *]

< E[(o2x2) (1487, (2.11)

which is bounded for p > 3 for sufficiently small §” > 0. Combining (2.9), (2.10) and
(2.11) yields part (ii). Since Xy (Xy = 8) < IXn||lIXn — 8|, we have that

E[t—ncﬁLq (Xn —9)|

NIXnlP
< [%;””)”W_”XN ol+)

nood . 1/2 % iz 1/2
< {ElGmmge) ™1} {Blmol R — oy}

so that part (iii) follows from (2.6) and (2.8).

‘Proof of Theorem 2.1. From (i) and (ii) of Lemma 2.1, we get lim..oE[N] /no = 1,
yielding part (i). For the proof of part (ii), we have that

R(w, 5N) = R(w,iN)

a’o}, 2a0% X

N2XNl* NIXN|




or

1 —_
R(w,éN)/e = ;;Z‘E[nOHXN - 0”2

a2n00'}lv 2anoaN
2 ~ 2 N( - 9)]‘
N XnlP  NIXnIP
We first consider the case of N > m. Let
Z=yv - 9)/0’
izm+1
U,, = \/ﬁ(im —8)/0,
m N m
Ye = ()" Un + (—57)2.
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(2.12)

(2.13)

Given N, Z is conditionally N,(0,1,), so that Z is independent of N or (X,,, 02,). Since

VNXy =o(Y. +VNb/o) and VN(Xy — ) = cY., we write

— n
ol Ky — 8117 = 2207V,

noo 'y _no o?(a% /o?)?
N?|Xy|> N ||Y.+VNO/o|*

nook = no o (Y. +VNO/o)Y.
——=Xy(Xn —0) = Vi =
N|IXn]| Y.+ VN8 o

which are convergent in distribution to ¢2||Z||*, 0 and 0, respectively, as ¢ — 0.

combining (2.12) and Lemmas 2.1 and 2.2 provides that
lim E({|65 — 011* /ey 5] = 1
Finally, we need to verify that
lim E({]16m — 6I*/e}v=m)] = 0.
From (2.12), it is sufficient to show that

lim E[no||Xm — 0’ Ty =m)] = 0,

(2.14)

(2.15)

(2.16)

Hence

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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Noting that {N = m} = {N; < m} C {02, < emp/4(p — 1)} by (1.15), from the
Chebyshev inequality, we observe that
LRV 4p—1,,
— —_— ) > (—
Bllpv=m] < P|(55)" > (=5 =]
emp on 1 49
— 0(52(1—d))

for large m or small €. Then applying Holder’s inequality gives that for 0 < 6 < 1,

E[nollx—m - 9”21[N=m]]
o _ . 8§ /(1+6) 1/(1+6)
< 2 LBl — 0+ { Bl }

— O(e1-D@/(+8)-1)),

which proves (2.19). For (2.20),

4 4
Nnoo,, Noo,,
[mzlli |I2I[N=m]] < E[Wl[a?,.semp/fi(p—l)]]
1
< 2 ’g EEE——
'no 1

) —

m)? ————
m ) (p—2)o?

= O(s1 d).

For (2.21), observe that

2
nNpo <! I~
E['——_:L m(xm_g)I[sz]]
m|| X"

< B[ Y/"%m VS| Ko = Ollpr=m]

Xl
< {E[ ””; 7= T S s S O |

Then combining (2.19) and (2.20) gives (2.21). Therefore the proof of Theorem 2.1 is

complete.
From the proof of Theorem 2.1, we can see that 5 and Xy for the shrinkage

stopping rule N are asymptotically risk-equivalent for fixed § # 0
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3. Asymptotic domination under local alternatives
To compare asymptotically the usual two-stage procedure and the proposed shrink-

age procedure for @ close to zero, we consider a sequence of the local alternatives:
6 =0,,=n;/%0, for fixed 6y € R?, (3.1)
where ng is defined by (1.2).

Theorem 3.1. Assume that m = O(¢~¢%) for 0 < d < 1. Then under the local alterna-
tives (3.1), | '

(i) lim,oE[N]/no =1,

(ii) lim.oR(w, 6nx)/e =1 — E[a(2(p — 2) — a)/{px2(X0)}], for p > 3, where x2(Ao)
designates a noncentral chi square random variate with degrees of freedom p and non-
centrality parameter Ao = ||60]|?/(202).

Proof. Letting Y = /m(X,, — 6,,)/0, we can see that Y has N,(0,I,) and that
m||Xm||® = o2|[Y + Vmb,,/e||*, which is convergent to ¢2||Y]||* as € — 0 by (3.1) and
the fact that m/ng — 0 as € — 0. Then from (2.1), we can show that N/nb — 1 as. as
€ — 0. The uniform integrability of N/ng can be verified by the same arguments as in
the proof of (i) of Lemma 2.1, and part (i) of Theorem 3.1 is proved. For part (ii), recall
that Z defined by (2.13) has N, (0,I,) independent of (X;n,02,). On the set {N > m},
from (2.14), (2.15) and (2.16), it follows that as £ — 0,

nolXn — 0> — 2||Z|° as.

— 2 — D) a.s.
N2 Xnl IZ + 6o/c|
2 2
T 5 N\AN ) - —-———-"——(Z + 90/0’) Z as..
N|Xn|? 1Z + 60/’

Here it will be noted that the uniform integrabilities given by Lemmas 2.1 and 2.2 can
be verified by the same arguments for the local alternatives (3.1). Also (2.18) can be
shown similarly. Hence from (2.12),

a2

I1Z + 6o/’

2a ,
_ _—||Z+00/o||2(z+00/0) z] (3.2)

R(, 60/ — B[+

as € — 0. Applying the Stein identity given by Stein(1981) to-the r.h.s. of (3.2) gives
the expression of Theorem 3.1 (ii), and the proof is complete.

From (1.6), (1.16) and Theorem 3.1, we can see
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Corollary 3.1. Assume that m = O(e™%) for 0 < d < 1. f p >3 and 0 < a <
2(p—2), then under the local alternatives (3.1), 65 dominates Xy, asymptotically while
N dominates Ny exactly. Also § 5 asymptotically dominates X for the same shrinkage
stopping rule N.

4. Simulation results

In this section we present the results of Monte Carlo simulation for the average
sample sizes E[Ng], E[N] and the risks R(w, Xn,), R(w,8x). This is done in the cases
of m=25; p=4,8 ¢=1.00.5,0.3; ||0||2 = 0.0,0.5,1.0,1.5; 02 = 0.5,1.0,2.0. Tables
1, 2 and Tables 3, 4 report the average values, respectively, of the stopping numbers
No, N and of the losses of the estimators Xy,, 65 based on 20000 replications. From
the tables, we see that N and 6y are relatively superior to Ny and Xy, and that their
improvements are great when noncentrality parameter ||§]|°/o? is small. When m = 5,
p=28,¢c=03,|/¢]° = 0.0 and ¢ = 2.0, for example, the gain in sampling E[No] — E[N]
is 12.8 and the relative risk improvement 100 x {R(w, Xx,) — R(w, 6x)}/R(w, Xn,) is
69%.

Acknowledgement. The authors wish to thank Professor P.K. Sen for his valuable
comments. Also they are grateful to Mr. T. Yoshiba for the help in numerical computa-
tion.
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Table 1. Average sample sizes E[Ng] and E[N] for m =5 and p = 4.
€ 1.0 0.5 0.3
9)> \e? 05 10 15[05 10 15][05 10 15
N 00 50 52 8052 80 162 |69 134 275
N 05 50 52 82|52 83 165 [72 139 281
N 1.0 50 52 83|53 86 168 |75 144 285
N 15 50 53 85|54 88 170 [7.7 146 28.8
No - 50 56 96|56 96 187 [81 157 31.0
Table 2. Average sample sizes E[Ny] and E[N] for m = 5 and p = 8.
€ 1.0 0.5 0.3
lol° \¢> 05 10 15]05 10 15|05 10 15
N 0.0 50 55 108 |54 108 245 | 88 19.7 44.6
N 05 50 57 113 [6.0 11.8 255 |10.3 214 46.2
N 10 50 6.0 11.8 | 6.7 127 26.5 [11.7 228 47.6
N 15 50 6.4 123 |72 135 273 |[125 241 489
No - 53 9.0 175 [9.0 175 345 [147 289 574
Table 3. Risks of estimators Xy, and §y5 for m =5 and p = 4.
€ 1.0 0.5 0.3
l6ll° \ «> 05 1.0 15 [05 1.0 15 [05 1.0 1.5
6y 0.0 24 43 83 |21 27 27 |.16 .16 .15
oy 0.5 B34 57 71 |32 40 40 | .24 -.26 .26
6y 1.0 36 64 81 |.34 43 44 | .26 .28 .28
by 1.5 37 68 84 |35 45 46 |.26 .28 .29
XN, - 40 .73 .91 [.36 .46 .48 | .26 .28 .29
Table 4. Risks of estimators Xy, and §x for m =5 and p = 8.
€ 1.0 0.5 0.3
lolI° \¢> 05 1.0 1.5 [05 1.0 1.5 (05 1.0 15
oy 0.0 24 40 .36 .20 .18 .16 |.11 .10 .09
oy 0.5 47 66 .64 |40 39 .38 | .28 .27 .25
oy 1.0 57 .81 .80 | .47 48 46 | .29 .30 .29
oy 1.5 62 .89 .91 |48 .50 .49 [.30 .31 .30
XN - 6 .93 97 | .46 48 49 [ .28 .29 .29




