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0. Introduction
In this note, we will explain a part of a preprint [MY], where a Fredholm property

of the Goursat problem in (formal) Gevrey space is characterized by the Hilbert fac-
torizability of Toeplitz symbol associated with the Gevrey space in which the Goursat
problem should be solved. To do so, the norm inequality for the (finite section) Toeplitz
operator which holds under the Hilbert factorizability condition plays a cruicial role.

In the preceding papers ([M2], [MH]), Miyake studied the Goursat problem in Gevrey
space, and made clear the meaning of Newton polygon associated with the operatcr
which will be defined below. In these papers, he proved that the Gevrey index of
Gevrey space in which the Goursat problem should be solved is determined from the
slopes of sides of Newton polygon for various type of linear partial differential operators.
The main purpose of these papers was to give a relation between the slopes of sides of
Newton polygon and the Gevrey indices, and the analysis was done mainly for the
vertices of Newton polygon and the solvability of the Goursat problem in Gevrey space
of Roumieu type or of Beurling type was proved. Moreover, it was proved that if the
Goursat problem is formulated from an interior point of a side of Newton polygon,
then the Goursat problem is uniquely solvable under the so called spectral condition.
On the other hand, if we remove the spectral condition, the problem turns to be more
complicated, and we have to make a delicate anaysis of interior points of spectral radius.
Such an analysis was first done by Leray for the Goursat problem in the category of
local holomorphic functions by a simple example of equations ([L]) (See Example 1 in
Section 2.) After the work of Leray, Yoshino published a series of papers on the spectral
problem of the Goursat problem in the category of local holomorphic functions ([Ysl],
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[Ys2], [Ys3], [Ys4], [Ys5]). Recently, Miyake has extended Leray’s results to the Goursat
problem in (formal) Gevrey space, and the spectral problem of the Goursat problem
was interpreted clearly as a spectral problem of integro-differential operators on Banach
space of (formal) Gevrey functions ([M3]).

The preprint [MY] intends to give a unification of these individual results by the
Hilbert factorizablity condition of Toeplitz symbol for holomorphic linear partial differ-
ential operators defined in a neighbourhood of the origin of $C^{2}$ .

We remark that the Newton polygon defined below is an extension of Ramis’ one
([R1], [R2]). In these papers, he studied the irregurality or the index theorem of ordinary
differential operators on Gevrey space, and the Newton polygon plays a crucial role to
describe and understand his results. It is the purpose of a series of papers ([M2], [M3],
[MH] and [MY]) to give some analogues of Ramis’ results to linear partial differential
operators.

1. Statement of result
Let $P\equiv P(t, x;D_{t}, D_{x})$ be a linear partial differential operator of finite order with

holomorphic coefficients in a neighbourhood of the origin of $C_{t}\cross C_{x}$ , and write it in
the form,

(1.1)
$P= \sum_{\sigma\in N}$

$\sum_{f,\alpha\in N}^{inite}a_{\sigma j\alpha}(x)t^{\sigma}D_{t}^{j}D_{x}^{\alpha}$ ,

where $N$ denotes the set of nonnegative integers.
For a triplet $(\sigma, j, \alpha)\in N^{3}$ , we associate a left half line $Q(\sigma,j, \alpha)$ in a $(u, v)$ -plane

defined by,
$Q(\sigma, j, \alpha)$ $;=\{(u, \sigma-j)\in R^{2} ; u\leq\alpha+j\}$.

Then the Newton polygon $N(P)$ of the operator $P$ is defined by

(1.2) $N(P)$ $:=$ ch $\{Q(\sigma, j, \alpha) ; a_{\sigma j\alpha}(x)\not\equiv 0\}$ ,

where ch $\{\cdot\}$ denotes the convex hull.
We denote by $C[[t, x]]$ the set of formal power series of variables $t,$ $x\in C$ , and $\mathcal{O}(\Omega)$

the set of holomorphic functions on a complex domain $\Omega$ .
Let $s,$ $w,$ $R>0$ . Then we define $\mathcal{G}_{w}^{s}(R)$ , a Gevrey space with an index $s$ , by the

following isomorphism of Frech\’et spaces,

(1.3) $C[[t,$ $X]]\supset \mathcal{G}_{w}^{s}(R)$ $arrow$ $\mathcal{O}((|t|/w)^{1/s}+|X|<R)$ ,
Borel trans,$f$.
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where the Borel transformation is defined by

$\mathcal{G}_{w}^{s}(R)\ni\sum_{j,\alpha\in N}u_{j\alpha}\frac{t^{i}x^{\alpha}}{j!\alpha!}arrow\rangle\sum_{j,\alpha\in N}u_{j\alpha}\frac{t^{i}x^{\alpha}}{(sj)!\alpha!}\in \mathcal{O}((|t|/w)^{1/s}+|x|<R)$.

The factorial is defined by the gamma function, $r!$ $:=\Gamma(r+1)$ for $r\geq 0$ .

Remark 1 ([MY, Proposition 5.1]).

$u(t, x)= \sum u_{j\alpha}t^{j}x^{\alpha}/j!\alpha!\in \mathcal{G}_{w}^{s}(R)\Leftrightarrow 0<\forall_{r}<R,$ $\exists C(u, r)\geq 0$ s.t.

(1.4) $|u_{j\alpha}| \leq C(u, r)\frac{(sj+\alpha)!}{e\dot{\theta}r^{sj+\alpha}}$ .

This implies that $u_{j}(x)= \sum_{\alpha\in N}u_{j\alpha}x^{\alpha}/\alpha!\in \mathcal{O}(|x|<R)(^{\forall}j\in N)$ and

$u_{j}(x) \ll C(u, r)\frac{r}{w^{j}}\frac{(sj)!}{(r-x)^{sj+1}}$ $(0<\forall_{r}<R)$ ,

where $\sum a_{\alpha}x^{\alpha}\ll\sum A_{\alpha}x^{\alpha}$ means that $|a_{\alpha}|\leq A_{\alpha}$ for $\forall_{\alpha}$ . This is the reason why we call
$\mathcal{G}_{w}^{s}(R)$ the Gevrey space with an index $s$ . We define

(1.5) $\mathcal{G}_{w}^{s}$

$:= \bigcup_{R>0}\mathcal{G}_{w}^{s}(R)(0<w<\infty)$
, $\mathcal{G}_{0}^{s}$

$:= \bigcup_{w>0}\mathcal{G}_{w}^{s}$
, $\mathcal{G}_{\infty}^{\theta}$

$:= \bigcap_{w>0}\mathcal{G}_{w}^{s}$
.

It is often that $\mathcal{G}_{0}^{s}$ (resp. $\mathcal{G}_{\infty}^{s}$ ) is called of Roumieu type (resp. of Beurling type).

We consider the following Goursat problem in $\mathcal{G}_{w}^{s}$ with zero Goursat data,

(G) $\{\begin{array}{l}Pu(t,x)=f(t,x)\in \mathcal{G}_{w}^{l}u(t,x)=O(t^{l}x^{\beta})in\mathcal{G}_{w)}^{\delta}\end{array}$

where $u(t, x)=O(t^{l}x^{\beta})$ in $\mathcal{G}_{w}^{s}$ means that $t^{-l}x^{-\beta}u(t, x)\in \mathcal{G}_{w}^{s}$ . It is the same to consider
the following mapping,

(G) $P$ : $t^{l}x^{\beta}\mathcal{G}_{w}^{s}arrow \mathcal{G}_{w}^{s}$ .

In order to study the problem (G), let us define the principal part and the Toeplitz
symbol as follows.

For a given $s>0$ , we draw a line $L_{s}$ in the plane with slope $k$ $:=1/(s-1)\in R\cup\{\infty\}$

which contacts on a side or at a vertex of $N(P)$ . Therefore, when $0<s<1$ it is assumed,
a priori, that the operator $P$ has polynomial coefficients in the variable $t$ .
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We put $N_{\theta}$ $:=N(P)\cap L,$ , and

$N_{s}^{o}$ $:=\{(j, \alpha)\in N^{2} ; a_{0j\alpha}(0)\neq 0, (j+\alpha, -j)\in N_{s}\}$ .

As a fundamental hypothesis, we assume the following condition thrughout this note.

(A)
む

$s\neq\phi$ .

The principal part $P_{s}\equiv P_{s}(D_{t}, D_{x})$ and the Toeplitz symbol $f_{s}(z)$ of the problem (G)

are defined by,

(1.6) $P_{\epsilon}$

$:=(j, \alpha)\in N\sum_{o}a_{0j\alpha}(0)\dot{\Pi}_{t}D_{x}^{\alpha}$

, $f_{s}(z)$

$:= \sum_{(j,\alpha)\in N_{\epsilon}^{o}}a_{0j\alpha}(O)z^{-j}$

.

Now our result in this note is the following,

Theorem A. Let $(l, \beta)\in N^{2}$ belong to ch $\{N_{s}^{o}\}$ , and assume

$(H)_{w}$ $f_{s}(z)\neq 0$ on $|z|=w$ , and $\oint_{\text{国}=w}d(\log f_{s}(z)z^{l})=0$ .

Then the Goursat problem (G) has a Fredholm property, that is, the mapping $P$ :
$t^{l}x^{\beta}\mathcal{G}_{w}^{s}arrow \mathcal{G}_{w}^{s}$ has the same finite dimensional kernel and cokernel. Furthermore, if
one of the following conditions is satisfied, then the problem (G) is uniquely solvable in

$\mathcal{G}_{w}^{s}$ :

(i) $(l, \beta)$ is an end point of ch $\{N_{s}^{o}\}$ .
(ii) There exists $c>0$ such that $\{f_{\theta}(z)z^{l} ; |z|=c\}$ is a segment.
(iii) There exists $c>0$ such that $O\not\in ch\{f_{\theta}(z)z^{l} ; |z|=c\}$ .

Moreover, every formal solution $u(t, x)\in C[[t, x]]$ of the problem (G) (if it exists) belongs
to $\mathcal{G}_{w}^{s}$ . Precisely, the mapping

$P$ : $t^{l}x^{\beta}C[[t, x]]/t^{l}x^{\beta}\mathcal{G}_{w}^{s}arrow C[[t, x]]/\mathcal{G}_{w}^{s}$

is bijective.

Remark 2. (i) If $s$ is an irrational, then $N_{s}^{\text{む}}$ consists of a point whenever the as-
sumption (A) is satisfied, and the problem (G) is uniquely solvable in $\mathcal{G}_{w}^{s}$ for every
$0\leq w\leq\infty$ . Since this case was studied precisely in [MH], our interest is in the case
where $s\in Q,and$

$N_{s}^{\text{む}}$ includes at least two elements.
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(ii) When $(l, \beta)$ is a lower (resp. an upper) end point of ch $\{N_{s}^{o}\}$ , the problem
(G) is uniquely solvable in $\mathcal{G}_{0}^{s}$ (resp. in $\mathcal{G}_{\infty}^{s}$ ). Because in this case $f_{s}(z)z^{l}\in C[z]$ (resp.
$\in C[z^{-1}])$ with non zero constant term and the condition $(H)_{w}$ is satisfied for sufficiently

small $w>0$ (resp. large $w>0$ ). In the case where $(l, \beta)$ is an interior point of ch $\{N_{s}^{o}\}$ ,
it is known that the problem (G) is uniquely solvable in $\mathcal{G}_{w}^{s}$ under the so called spectral
condition ([MH, Theorem $B]$ , see also [W], [M1] and [M2]));

(S) $|a_{0I\beta}(0)|>$ $\sum$ $|a_{0j\alpha}(0)|w^{l-j}$ .
$(j)\alpha)\in N_{*}\backslash (l,\beta)\circ$

(iii) If $s\geq 1$ , we may assume that the coefficients of the operator belong to $\mathcal{G}_{w}^{s}$ .

The proof of Theorem A is long, so we give only a course of the proof in the below.
(See [MY] for detail. In this preprint, the case of nonpositive Gevrey index is also
studied.)

2. Reduction to the spectral problem of an integro-differential operator
Composing the following mappings,

$\mathcal{G}_{w}^{s}(R)arrow t^{l_{X}\beta}\mathcal{G}_{w}^{s}(R)D_{\ell x}^{-\iota_{\sim^{D}}-\beta}arrow^{P}\mathcal{G}_{w}^{s}(R)$ ,

Theorem A is proved by converting the Goursat problem or the mapping (G) to the
Fredholm property of an integro-differential operator $L$ $:=PD_{t}^{-l}D_{x}^{-\beta}$ on a Banach
space $G_{w}^{s}(R)$ associated with the space $\mathcal{G}_{w}^{s}(R)$ which is defined as follows.

We put $U(t, x)= \sum U_{j\alpha}t^{j}x^{\alpha}/j!\alpha!\in C[[t, x]]$ . Then we define

, (2.1) U(ち $x$ ) $\in G_{w}^{s}(R)\Leftrightarrow def||U||_{w}^{(s)_{R}}:=\sum_{j,\alpha\in N}|U_{j\alpha}|\frac{c\dot{d}R^{sj+\alpha}}{(sj+\alpha)!}<\infty$.

It should be mentioned that $G_{w}^{s}(R)$ is a Banach algebra when $s\geq 1$ which implies the
fact (iii) in Remark 2. From (1.4) we see that it holds that

(2.2)
$\mathcal{G}_{w}^{s}(R)=\bigcap_{0<r<R}G_{w}^{s}(r)$

.

The above consideration shows that it is sufficient to study the Fredholm property
of the following mapping,

(2.3) $L$ : $G_{w}^{s}(R)arrow G_{w}^{s}(R)$ .
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For this purpose, we rewrite the operator $L=PD_{t}^{-l}D_{x}^{-\beta}$ as

(2.4)
$L= \sum_{\sigma\in N}$

$\sum_{f,\alpha\in Z}^{inite}a_{\sigma j\alpha}(x)t^{\sigma}D_{t}^{i}D_{x}^{\alpha}$ ,

where $Z$ denotes the set of integers. The symbol $D_{t}^{-1}$ denotes the integration in the
variable $t$ from $0$ to $t$ in the formal sence, and it is the same for $D_{x}^{-1}$ .

By the condition for the Newton polygon of the operator $P$ , we know that the Newton
polygon $N(L)$ of the operator $L$ has a side $N_{s}$ with slope $k=1/(s-1)$ which includes
the origin. This assumption implies that

(25) $\{sjsj++(1-s)\sigma(1-s)\sigma++\alpha\alpha=\leq 00(a_{\sigma j\alpha}(x)\not\equiv 0)ififa_{\sigma j\alpha}(x)\not\equiv 0$

,

and only if $(j+\alpha, \sigma-j)\in N_{s}$ .

We note that the assumption (A) is equivalent to

$N_{s}^{o}\equiv\{(j, \alpha)\in Z^{2} ; a_{0j\alpha}(0)\neq 0, (j+\alpha, -j)\in N_{s}\}\neq\emptyset$ ,

and ch $\{N_{s}^{o}\}\ni 0$ . The principal part $L_{0}\equiv L_{0}(D_{t}, D_{x})$ and the Toeplitz symbol $f(z)$ of
the mapping (2.3) are defined by

$L_{0}=P_{s}D_{t}^{-l}D_{x}^{-\beta}$ , $f(z)=f_{s}(z)z^{l}$ .

The condition $(H)_{w}$ is rewritten in the form,

$(H)_{w}$ $f(z)\neq 0$ on $|z|=w$ , and $\oint_{|z|=w}d(\log f(z))=0$ .

Remark 3. The condition $(H)_{w}$ is equivalent that the Toeplitz symbol $f(z)$ is de-
composed into $f(z)=f_{+}(z)f_{-}(z)$ , where $f_{+}(z)$ (resp. $f_{-}(z)$ ) is holomorphic and does
not vanish on $\{z\in C;|z|\leq w\}$ (resp. on $\{z\in C;w\leq|z|\leq\infty\}$ ). Such a decom-
position is called a Hilbert factorization of the symbol $f(z)$ with respect to a circle
$\{z\in C ; |z|=w\}$ .

Let us decompose the operator $L$ as follows.

(26) $L(t, x;D_{t}, D_{x})=L_{0}(D_{t}, D_{x})+L_{1}(t, x;D_{t}, D_{x})+L_{2}(t, x;D_{t}, D_{x})$,

where
$L_{1}= \sum_{sj+(1-s)\sigma+\alpha=0}a_{\sigma j\alpha}(x)t^{\sigma}D_{t}^{i}D_{x}^{\alpha}$

( $\sigma>0$ or $a_{\sigma j\alpha}(0)=0$),

$L_{2}=$ $\sum_{sj+(f-s)\sigma+\alpha<0}^{inite}a_{j\sigma\alpha}(t, x)t^{\sigma}D_{t}^{i}D_{x}^{\alpha}$ .
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The following facts are fundamental ([MY, Lemmas 4.2, 4.3]): There exists a positive
constant $R_{O}$ such that

(i) $L_{2}$ is a compact operator on $G_{w}^{s}(R)(w>0,0<R<R_{0})$ .

(ii) $L_{j}(j=1,2)$ are bounded operators on $G_{w}^{\theta}(R)(0<R<R_{0})$ and their operator
norms are estimated by 11 $L_{j}||=o(1)$ as $Rarrow 0$ .

Now Theorem A follows from the following,

Theorem B. Under the assumption (A), $L_{0}$ is a Fredholm operator on $G_{w}^{s}(R)$ if and
only if the condition $(H)_{w}$ is $satisfied_{f}$ and the index is always equal to $0$ . Moreover, if
one of the following conditions is satisfied, then $L_{0}$ is invertible:

(i) $f(z)$ is a polynomial of $z$ or $z^{-1}$ . This is the case where the origin is an end

point of ch $\{N_{s}^{o}\}$ .
(ii) There exists $c>0$ such that $\{f(z);|z|=c\}$ is a segment. In this case the set of

eigenvalues of $L_{0}$ is dense on this segment, and the resolvent set of the operator $L_{0}$ on
$G_{w}^{s}(R)$ is independent of $R>0$ (which we denote by $\rho$ ( $L_{0}$ ; $G_{w}^{s}$ )) and is given by,

(2.7) $p(L_{0} ; G_{w}^{s})=$ { $\lambda\in C;(H)_{w}$ is satisfied for $f(z)-\lambda$ } $=:\Gamma_{f}(w)$ .

(iii) There exists $c>0$ such that $0\not\in$ ch $\{f(z);|z|=c\}$ . In this case the set of
eigenvalues of $L_{0}$ which is contained in $\Gamma_{f}(w)$ consists of finite points.

As a corollary to this Theorem and the fundamental facts cited above, we have the
following,

Corollary. Suppose $L_{1}=0$ in the decomposition of L. Then $L$ is a Fredholm opemtor
on $G_{w}^{s}(R)$ for some $R>0$ if and only if the condition $(H)_{w}$ is satisfied. Furthermore
we have

(2.8) $\rho(L_{0} ; G_{w}^{s})=\bigcup_{R>0}\rho(L;G_{w}^{s}(R)))$

where $\rho(L;G_{w}^{s}(R))$ denotes the resolvent set of the operator $L$ on $G_{w}^{s}(R)$ ,

Here we give some examples.

Example 1 ([L],[M2]). Let $L_{0}=D_{t}^{p}D_{x}^{-p-}’+D_{t^{-p}}D_{x^{+\alpha}}^{p}(p\geq 1,p+\alpha>0)$ . Then
the Gevrey index of this operator is $s=1+(\alpha/p)>0$ , and the Toeplitz symbol is
$f(z)=z^{-p}+z^{p}$ . Since $\{f(z))|z|=1\}=[-2,2]$ , by (ii) in Theorem $B$ we have

$\rho(L_{0} ; G_{w}^{\theta})=C\backslash ch\{f(z);|z|=w\}$

$=\{\lambda\in C$ ; $( \frac{{\rm Re}\lambda}{w^{p}+w^{-p}})^{2}+(\frac{{\rm Im}\lambda}{w^{p}-w^{-p}})^{2}>1\}(\subset C\backslash [-2,2])$ .
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The set of eigenvalues $\sigma_{p}(L_{0} ; G_{w}^{s})$ is dense on [-2, 2], and is given exactly by

$\sigma_{p}(L_{0} ; G_{w}^{s})=\bigcup_{n=0}^{\infty}\{2\cos\pi\theta;\sin(n+2)\pi\theta=0,0<\theta<1\}$ .

In [M2] the case $w=1$ was studied, and it was proved that $p(L_{0} ; G_{1}^{s})=C\backslash [-2,2]$

$(= \bigcup_{w>0}\rho(L_{0} ; G_{w}^{s} ))$ .
Next, let us consider the following equation in $\mathcal{G}_{0}^{s}$ .

(2.9) $\{\lambda-L_{0}\}U(t, x)=F(t, x)\in \mathcal{G}_{0}^{s}$

It is easily seen that the equation is uniquely solvable in $\mathcal{G}_{0}^{s}$ if $\lambda\in C\backslash [-2,2]$ . In the
case where $\lambda\in[-2,2]$ , the situation is somewhat complicated. For $\lambda\in(-2,2)$ , we set
$\lambda=2\cos\pi\theta(0<\theta<1)$ and introduce an auxiliary function $p(\lambda)$ by

(2.10) $p(\lambda)$ $:= \lim_{\ni}\inf_{n}|\sin(n\pi\theta)|^{1/n}$ .

Then the equation is uniquley solvable in $\mathcal{G}_{0}^{s}$ if and only if $\rho(\lambda)>0$ or $\lambda=\pm 2$ . Leray
and Pisot ([LP]) proved that the set of $\lambda\in(-2,2)$ such that $\rho(\lambda)=0$ is uncountable
with Lebegue measure $0$ . Therefore, for an irratinal $\theta(0<\theta<1)$ such that $\rho(\lambda)=0$ ,
the Fredholm property does not hold for the equation (2.9). Indeed, the uniqueness
of solutions does not imply the solvability. We note that such a phenomenon was first
discovered by Leray [L] for the operator $L_{0}=D_{t}D_{x}^{-1}+D_{t}^{-1}D_{x}$ on $\mathcal{G}_{0}^{1}$ .

Example 2. Let $L_{0}= \frac{4}{3}D_{t}^{-2}D_{x}^{2+2\alpha}+3D_{t}^{-1}D_{x}^{1+\alpha}-\frac{9}{4}D_{t}D_{x}^{-1}$
‘ $\alpha$ where $\alpha\geq 1$ . Then

the Gevrey index is given by $s=1+\alpha\geq 2$ and the Toeplitz symbol is given by
$f(z)= \frac{4}{3}z^{2}+3z-\frac{9}{4}z^{-1}=(\frac{4}{3}-z^{-1})(z+\frac{3}{2})^{2}$ . This implies taht the condition $(H)_{w}$ is
satisfied for $\frac{3}{4}<w<\frac{3}{2}$ Therefore, $L_{0}$ is a Fredholm operator on $G_{w}^{s}(R)$ for such $w$ .
In this case, it is easy to see that $0 \in\bigcap_{3/4<w<3/2}$ ch $\{f(z);|z|=w\}$ , and $L_{0}$ has $1+\alpha$

dimensional kernel and cokernel on $G_{w}^{s}(R)$ .

$w=0.8$ $w=1$ $w=1.3$

We return to the proof of Theorem B. Let us define an ideal $\mathcal{M}^{s}[N]$ of $C[[t, x]]$ by

’

$\mathcal{M}^{s}[N]:.=$ { $U(t,$ $x)\in C[[t,$ $x]];U_{j\alpha}=0$ for $sj+\alpha<N$ },
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where $U(t, x)= \sum U_{j\alpha}t^{j}x^{\alpha}/j!\alpha!$ , and define $G_{w}^{s}(R)[N]$ $:=G_{w}^{s}(R)\cap \mathcal{M}^{s}[N]$ . It is easy

to see that $L_{0}$ (and also $L$ ) maps $\mathcal{M}^{s}[N]$ into itself.
Now we consider the following property:

$(P)$ There exists $N$ such that $L_{0}$ is invertible on $G_{w}^{s}(R)[N]$ and also on $\mathcal{M}^{s}[N]$ .

Then Theorem $B$ follows from the following,

Theorem C. The property $(P)$ holds if and only if the condition $(H)_{w}$ is satisfied.
Therefore, if the condition $(H)_{w}$ is satisfied, then $L_{0}$ is bijective on $C[[t, x]]/G_{w}^{s}(R)$ .

3. Wiener-Hopf equation and Theorem $C$

Theorem $C$ is proved by the finite section Wiener-Hopf technique. We shall explain
how the problem is reduced to the finite section Wiener-Hopf equation.

We define a Banach space $l_{1,w}$ by

(3.1) $l_{1,w}$ $:= \{u(z)=\sum_{j=-\infty}^{\infty}u_{j}z^{j} ; ||u||_{1,w} :=\sum_{j=-\infty}^{\infty}|u_{j}|c\dot{d}<\infty\}$ .

We, sometimes, identify $u(z)\in l_{1,w}$ with a sequence $u=\{u_{j}\}_{j\in Z}$ with the above defined
norm. We denote by $l_{1}^{+_{w}}$

, the set of $u(z)\in l_{1,w}$ with $u_{j}=0$ for $j<0$ , and the projection
$P$ : $l_{1,w}arrow l_{1}^{+_{w}}$, is defined naturally.

Let $f(z)= \sum_{i=-m}^{n}f_{j}z^{j}\in C[z, z^{-1}]$ , the set of polynomials of $z$ and $z^{-1}$ . Then the
Wiener-Hopf equation on $l_{1}^{+_{w}}$ with symbol $f(z)$ is defined by

(3.2) $P_{f}[u]:=P(fu)=g(z)\in.l_{1}^{+_{w}}$ $(u(z)\in l_{1}^{+_{w}})$ .

The operator $P_{f}$ is called a Toeplitz operator with symbol $f(z)$ . The matrix represen-
taion $T_{f}$ of the operator $P_{f}$ is given by

(3.3) $T_{f}$ $:=(f_{j-k})_{j,k=0,1,2},\cdots$ ,

and $T_{f}$ is called a Toeplitz matrix associated with $f(z)$ . The Wiener-Hopf equation is
rewritten in the form,

(3.2) $T_{f}u=g\in l_{1}^{+_{w}}$ $(u\in l_{1,w}^{+})$ .

It is obvious that $T_{f}$ defines a bounded operator on $l_{1w}^{+_{)}}$ with operator norm $||T_{f}||=$

$||f||_{1,w}$ . Suppose that the symbol $f(z)$ is decomposed into $f(z)=f_{+}(z)f_{-}(z)$ , where
$f_{+}(z)\in C[z]$ and $f_{-}(z)\in C[z^{-1}]$ . Then we have the following decomposition of $T_{f}$ ,

(3.4) $T_{f}=T_{f+}T_{f-}$ ,
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where $T_{f+}$ (resp. $T_{J-}$ ) is a lower (resp. an upper) triangle matrix of infinite order. This
decomposition shows that if $f\pm(z)^{-1}\in l_{1,w}$ , then $T_{f}$ is invertible on $l_{1}^{+_{w}}$

, and the inverse
matrix is given by

(3.5) $T_{f}^{-1}=T_{J_{-}^{-1}}T_{f_{+}^{-1}}(=T_{f-}^{-1}T_{f+}^{-1})$ .

The operator norm of $T_{f}^{-1}$ is estimated by

(3.6) $||T_{f}^{-1}||\leq||T_{J_{-}^{-1}}||||T_{J_{+}^{-1}}||=||f_{-}^{-1}||_{1,w}||f_{+}^{-1}||_{1,w}$ .

Thus we have seen that if the Toeplitz symbol $f(z)$ satisfies the condition $(H)_{w}$ which
means that $f(z)$ is Hibert factorizable with respect to the circle $\{z\in C;|z|=w\}$ , then
$T_{f}$ is invertible on $l_{1}^{+_{w}},\cdot$ The important fact is that the converse does hold.

Proposition 3.1. The toeplitz matrix $T_{f}$ is invertible on $l_{1}^{+_{w}}$ if and only if the condition
$(H)_{w}$ is satisfied. Moreover, suppose that $f(z)\neq 0$ on $\{z\in C;|z|=w\}$ and

(3.7) $I_{\dot{w}}(f)$ $;= \frac{1}{2\pi i}\oint_{|z|=w}d(\log f(z))=k\neq 0$ .

If $k>0$ then $T_{f}$ is injective with $k$ dimensional cokernel, and if $k<0$ then $T_{f}$ is
surjective with $-k$ dimensional kernel.

For the proof, see [MY, Proposition 2.1]. We note that this result was proved by
Calder\’on, Spitzer and Widom ([CSW]), in the case of $l^{\infty}$ space.

Next, we consider the finite section Wiener-Hopf equation defined as follows. Let
$u^{(N)}(z)= \sum_{i=0}^{N}u_{j}z^{j}$ and $g^{(N)}(z)= \sum_{j=0}^{N}g_{j}z^{j}$ for $N\in$ N. Then the N-th finite
section Wienr$=hopf$ equation with symbol $f(z)$ is defined by

(38) $P_{f}[u^{N)}]-g^{(N)}(z)=O(z^{N+1})$ ,

where $O(z^{N+1})$ denotes the formal power series with power greater than $N$ . We intro-
duce an N-th finite section Toeplitz matrix, $T_{f}(N)$ by

(3.9) $T_{f}(N):=(f_{j-k})_{j,k=0,1,2,\cdots,N}$ .

Then the equation (3.8) is written by

(3.8) $T_{f}(N)u^{(N)}=g^{(N)}\in C^{N+1}$ .

For $u^{(N)}={}^{t}(u_{0}, u_{1}, u_{2}, \cdots U_{N})\in C^{N+1}$ , we take an induced norm $||u||_{1,w;N}$ from $l_{1}^{+_{w}}$ ,
that is,

(3.10) $||u||_{1,w;N}$ $:= \sum_{i=0}^{N}|u_{j}|w^{j}$ .

We denote by $l_{1,w}[N]$ the space $C^{N+1}$ equipped with this norm.
Now the following proposition plays a key role in the proof of our result.
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Proposition 3.2. Let $f(z)$ satisfy the condition $(H)_{w}$ . Then fhere exists $N_{0}\in N$ such
that for any $N\geq N_{0}$ the N-th finite section Wiener-Hopf equation is uniquely solvable
and the following norm inequality holds.

(3.11) $||u^{(N)}||_{1,w;N}\leq K||g^{(N)}||_{1,w;N}$

for a positive constant $K$ independent of N. Conversely, this norm inequality holds only

if the condition $(H)_{w}$ is satisfied.
We follow the argument of Baxter ([B]) for the proof of the norm inequality under the

condition $(H)_{w}$ . For the proof, see [MY, Proposition 2.3]. We remark that the condition
$(H)_{w})$ does not control every $N$ . Concerning this, we can prove the following,

Proposition 3.3. If $O\not\in ch\{f(z);|z|=c\}$ for some $c>0$ , then $T_{f}(N)$ is ivertible for
every $N\in N$ . If there exists $c>0$ such that $\{f(z);|z|=c\}$ is a segment, then the set

of eigenvalues of $T_{f}(N)$ is dense in this segment.

We note that the latter half is known as Szeg\"o’s Theorem ([GS]).
We are now in a position to explain how our problem is reduced to the results.
Let $L_{0}=L_{0}(D_{t}, D_{x})$ be the principal part, and $s\in Q$ be the Gevrey index of $L_{0}$ .

Remember that we are interested in the case where $s$ is a rational number and $N_{s}^{o}$

includes at least two elements. Let $s=q/p$ be an irreducible fraction of $s$ . We notice

that $(j, \alpha)\in N_{s}^{o}$ only if $sj+\alpha=0$ . Therefore, the principal part $L_{0}$ and the Toeplitz
symbol $f(z)$ are rewritten by

(3.12) $L_{0}= \sum_{j=-m}^{n}f_{j}D_{t}^{-jp}D_{x^{q}}^{i}$ , $f(z)= \sum_{j=-m}^{n}f_{j}z^{jp}$ .

According to the irreducible fraction $s=q/p$, we decompose the Banach space $G_{w}^{s}(R)$

into an infinite direct product of finite section spaces as follows. We choose a lattice
point $(l, \beta)\in N^{2}$ such that $l-p<0$ , and put $d(l, \beta)=\max\{j;\beta-qj\in N\}$ . Let
$U(t, x)= \sum U_{j\alpha}t^{j}x^{\alpha}/j!\alpha!\in G_{w}^{s}(R)$ . We define a vector $\mathcal{U}^{(l,\beta)}\in l_{1,w}[d(l, \beta)]$ by

(3.13) $\mathcal{U}^{(l,\beta)}$ $:={}^{t}(U_{l,\beta}, U_{l+p,\beta-q}, \cdots , U_{l+d(l,\beta)p,\beta-d(l,\beta)q})$ .

Then we have

(3.14) $||U||_{w}^{(s)_{R}}= \sum_{l,\beta}/||U^{(l,\beta)}||_{1,w;d(l,\beta)}\frac{w^{l}R^{sl+\beta}}{(sl+\beta)!}$ ,
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where $\sum_{l,\beta}’$ denotes the summation over such $l,$ $\beta$ mentioned above. Thus the Banach
space $G_{w}^{s}(R)$ is decomposed into an infinite direct product of finite section spaces.

According to this decomposition of the Banach space, the equation $L_{0}U(t, x)=$

$F(t, x)\in G_{w}^{s}(R)$ is decomposed an ininite direct product of finite section Wiener-Hopf
equations as follows. Let

$T_{l,\beta}$ $:=(f_{j-k})_{j,k=0,1,2,\cdots,d(l,\beta)}$ ,

be the $d(l, \beta)$-th finite section Toeplitz matrix with symbol $f(z)= \sum_{i=m}^{n}f_{i}z^{j}$ , where
$(l, \beta)$ is taken as above. Then the equation $L_{0}U(t, x)=F(t, x)\in G_{w}^{s}(R)$ is decomposed
into finite section equations,

(3.15) $T_{l,\beta}\mathcal{U}^{(l,\beta)}=\mathcal{F}^{(l,\beta)}\in l_{1,w}[d(l, \beta)]$,

where $\mathcal{F}^{(l,\beta)}$ is defined from $F(t, x)$ similarly.
Therefore, we see that the property $(P)$ holds if and only if there exists $N\in N$ such

that for any $(l, \beta)$ such that $d(l, \beta)\geq NT_{l,\beta}$ is invertible on $l_{1,w}[d(l, \beta)]$ and the norm
inequality (3.11) holds for a positive constant $K$ independent of $l,$ $\beta$ .

Summing up these results we have the following Theorem which is a precision of
Theorem C.

Theorem D. The following statements are equivalent:
(i) The property $(P)$ holds.
(ii) The Toeplitz matrix $T_{f}$ is invertible on $l_{1,w}$ .
(iii) There exists $N$ such that the norm inequality

(3.16) $||\mathcal{U}^{(l,\beta)}||_{1,w;d(l,\beta)}\leq K||\mathcal{F}^{(l,\beta)}||_{1,w;d(l,\beta)}$

holds for every $l,$ $\beta$ such that $d(l, \beta)\geq N_{f}$ where $K$ is a positive constant independent
of $l,\beta$ .

(iv) The Toeplitz symbol $f(z)$ is Hilbert factorizable with respect to the circle $\{z\in$

$C;|z|=w\}$ .
(v) The condition $(H)_{w}$ is satisfied.
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