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Hadamard Matrices and Generalized Spin Models

九州大 (理) 山田美枝子 (Mieko Yamada)

Abstract

The concept of spin models was introduced by V.F. Jones in 1989. K.Kawagoe,
A.Munemasa and Y.Watatani generalized it by removing the condition of sym-
metry. Recently E.Bannai and E.Bannai further generalized the concept of spin
models which is called 4-weight spin models or generalized generalized spin mod-
els. On the otherhand, A.A. Ivanov and I.V. Chuvaeva showed that symmetric
amorphous association schemes of class 4 obtained from Hadamard matrices. An
infinite family of Hadamard matrices and of complex Hadamard matrices can be
constructed by fusing the relations of these amorphous association schemes.

We show the necessary and sufficient condition that these Hadamard matrices
give generalized spin models of symmetric Hadamard type and of pseudo-Jones
type. A special class of Hadamard matrices satisfies this necessary and sufficient
condition. Furthermore Hadamard matrices constructed by fusing amorphous asso-
ciation schemes are also contained in the special class if Hadamard matrices giving
these amorphous assoication schemes are contained in the special class. It means
that there exist infinite families of generalized spin models of symmetric Hadamard
type and of pseudo-Jones type.

1 Introduction

The concept of spin models was introduced by V.F. Jones [5] in 1989 to give the
Link invariant. K.Kawagoe, A.Munemasa and Y.Watatani [6] generalized it by removing
the condition of symmetry. Recently E.Bannai and E.Bannai [1] further gneralized the
concept of spin models which is called 4-weight spin models or generalized generalized
spin models.

Definition 1 [E.Bannai-E.Bannai, [1]] Let $X$ be a finite set and $w;,$ $(i=1,2,3,4)$ be
$functionsonX\cross XtoC$ . $Then(X, w_{1}, w_{2},w_{3}, w_{4})is4$-weight spin model of loop variable
Difthe following conditions are satisfied for any $\alpha,$

$\beta$ and $\gamma\in X$ :
(1) $w_{1}(\alpha, \beta)w_{3}(\beta,\alpha)=1,$ $w_{2}(\alpha,\beta)w_{4}(\beta, \alpha)=1$ ,
(2) $\Sigma_{x\in X}w_{1}(\alpha, x)w_{3}(x,\beta)=n\delta_{\alpha,\beta},$ $\Sigma_{x\in X}w_{2}(\alpha,x)w_{4}(x,\beta)=n\delta_{\alpha,\beta_{J}}$

$(3a)\Sigma_{x\in X}w_{1}(\alpha, x)w_{1}(x, \beta)w_{4}(\gamma,x)=Dw_{1}(\alpha, \beta)w_{4}(\gamma,\alpha)w_{4}(\gamma, \beta)$,
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$(3b)\Sigma_{x\in X}w_{1}(x, \alpha)w_{1}(\beta, x)w_{4}(x,\gamma)=Dw_{1}(\beta, \alpha)w_{4}(\alpha,\gamma)w_{4}(\beta,\gamma)$ ,
where $D^{2}=n=|X|$ .

Let $L$ be a diagram of an oriented link. We color the regions of $L$ in black and white
so that the unbounded region is colored white and adjacent regions have different colors.
We construct an oriented graph assigning a black region to a vertex and a crossing to an
edge. We get exactly four kinds of crossings according to the colors of the regions and
the orientations of links. Then we attach four weights, 1,2,3,4 to four kinds of edges,
namely to four kinds of crossings, respectively. Then we get an oriented graph with four
kinds of weights.

Denote the weight $n$ for an edge $\alphaarrow\beta$ by $n(\alphaarrow\beta)$ . Let $X$ be a finite set with
$|X|=n=D^{2}$ . Let $w_{1},$ $w_{2},$ $w_{3}$ and $w_{4}$ be complex valued functions defined on $X\cross X$ .
Under these assumptions, the partition function $Z_{L}$ is defined by

$Z_{L}=D^{-v(L)} \sum_{\alpha\sigma}\prod_{arrow\beta}w_{n(\alphaarrow\beta)}(\sigma(\alpha),\sigma(\beta))$

where a state $\sigma$ is a map from the vertices of the graph to $X$ and $v(L)$ is a number of
vertices of the graph.

If (X, $w_{1},$ $w_{2},$ $w_{3},$ $w_{4}$ ) is a 4-weight spin models with loop variable $D$ , then the partition
function $Z_{L}$ is invariant under the Reidemeister moves of types II and III. See the details
in [1].

We consider the special case of 4-weight spin models. Let $W_{i}=(w_{i}(\alpha, \beta))_{\alpha,\beta\in X}$ for
$i=1,2,3,4$ . Let $\epsilon$ and $\epsilon’$ be from $\{+, -\}$ . A 4-weghit spin models with $W_{1},$ $W_{2}\in\{.W_{\epsilon}, W_{\epsilon}^{t}\}$

and $W_{3},$ $W_{4}\in\{W_{\epsilon’}, W_{\epsilon}^{t},\}$ is called a generalized spin model of Jones type. A 4-weight spin
models with $W_{1},$ $W_{4}\in\{W_{\epsilon}, W_{\epsilon}^{t}\}$ and $W_{2},$ $W_{3}\in\{W_{\epsilon’}, W_{\epsilon}^{t},\}$ is called a generalized spin
model of pseudo-Jones type. Further, a 4-weight spin models with $W_{1},$ $W_{3}\in\{W_{\epsilon}, W_{\epsilon}^{t}\}$

and $W_{2},$ $W_{4}\in\{W_{\epsilon’}, W_{\epsilon}^{t},\}$ is called a generalized spin model of Hadamard type.
K. Nomura [7] constructed a family of symmetric spin models of Jones type of loop

variable $4\sqrt{n}$ from Hadamard matrices of order $4n$ . M. Wakimoto [8] showed that spin
models of Jones type and 4-weight spin models can be constructed by using Lie algebra.

We treat here generalized spin models of pseudo-Jones type and of symmetric Hadamard
type. First we give the definitions.

Definition 2 [E.Bannai-E.Bannai, [1]] (X, $w_{+},$ $w_{-}$ ) is a generalized spin model of pseudo-
Jones type if the following conditions are satisfied for any $\alpha,$

$\beta$ and $\gamma\in X$ .

(0) $w_{+}(\alpha,\beta)=w_{+}(\beta,\alpha),$ $w_{-}(\alpha, \beta)=w_{-}(\beta, \alpha)$ ,

(1J) $w_{+}(\alpha,\beta)w_{-}(\alpha, \beta)=1$ ,
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$(2J)\Sigma_{x\in X}w_{+}(\alpha, x)w_{-}(x, \beta)=n\delta_{\alpha,\beta}$,

$(3P)\Sigma_{x\in X}w_{+}(\alpha, x)w_{+}(x, \beta)w_{+}(\gamma, x)=Dw_{+}(\alpha,\beta)w_{+}(\gamma, \alpha)w_{+}(\gamma,\beta)$ .

Definition 3 [E.Bannai-E.Bannai, [1]] (X, $w_{+},$ $w_{-}$ ) is a generalized spin model of sym-
metric Hadamard type if the following conditions are satisfied for any $\alpha,$

$\beta$ and $\gamma\in X$ :

(0) $w_{+}(\alpha,\beta)=w_{+}(\beta, \alpha),$ $w_{-}(\alpha, \beta)=w_{-}(\beta, \alpha)$ ,

(1H) $W_{+}oW+=J,$ $W_{-}oW_{-}=J$,

$(2H)W_{+}^{2}=nI,$ $W_{-}^{2}=nI$ ,

$( 3H)\sum_{x\in X}w_{\epsilon’}(\alpha, x)w_{\epsilon’}(x, \beta)w_{\epsilon}(\gamma, x)=Dw_{\epsilon’}(\alpha, \beta)w_{\epsilon}(\gamma, \alpha)w_{\epsilon}(\gamma, \beta)$,

where $0$ is an Hadamard product, $J$ is the matrix whose entries are all 1 and $I$ is the
unit matrix.

2 Amorphous association schemes and Hadamard
matrices

Theorem 1 [A.A. Ivanov-I.V. Chuvaeva, [3]] Let $H=(h_{i,j})$ be an Hadamard matrix of
order $4n$ and $\Omega=\{0,1,2, \ldots, 4n-1\}$ . Put $X=\Omega\cross\Omega$ . The subsets $R_{i},$ $(0\leq i\leq 4)$ of
$X\cross X$ are defined by

$R_{4}=\{(x, x)|x\in X\}$ ,

$R_{1}=\{((x_{1}, x_{2}), (y_{1}, y_{2}))|x_{1}=y_{1}\}$ ,

$R_{2}=\{((x_{1}, x_{2}), (y_{1}, y_{2}))|x_{2}=y_{2}\}$ ,

$R_{3}=\{((x_{1}, x_{2}), (y_{1}, y_{2}))|h_{x_{1}x_{2}}h_{y_{1}y_{2}}h_{x_{1}y2}h_{y_{1}x_{2}}=1\}$ ,

$R_{4}=\{((x_{1}, x_{2}), (y_{1}, y_{2}))|h_{x_{1}x_{2}}h_{y_{1}y_{2}}h_{x_{1}y_{2}}h_{y_{1}x_{2}}=-1\}$ .

Then (X, $R_{0},$ $R_{1},$ $R_{2},$ $R_{3},$ $R_{4}$ ) is an amorphous association scheme of class 4.

Let $Y=(X, \{R_{i}\}_{0\leq i\leq d})$ be a commutative association scheme. A partition $\Lambda_{0},$ $\Lambda_{1},$

$\ldots,$

$\Lambda_{e}$

of the index set is said to be admissible if $\Lambda_{0}=\{0\},$ $\Lambda_{i}\neq\phi$ $(1 \leq i\leq e)$ and $\Lambda_{1}’=\Lambda_{j}$

for some $j,$ $(1\leq i,j\leq e)$ where $\Lambda_{i}’=\{\alpha’|\alpha\in\Lambda_{i}\},$ $R_{\alpha’}=\{(x, y)|(y, x)\in R_{\alpha}\}$ . Let
$R_{\Lambda_{i}}= \bigcup_{\alpha\in\Lambda_{i}}R_{\alpha}$ . If (X, $\{R_{\Lambda_{i}}\}_{0\leq i\leq e}$ ) becomes an association scheme for every admissble
partition, then $Y$ is defined to be amorphous.
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Corollary 1 [2] The valencies and intersection numbers of an amorphous association
scheme mentioned in Theorem 1 are given as follows:

(1) $k_{1}=k_{2}=4n-1,$ $k_{3}=(2n-1)(4n-1),$ $k_{4}=2n(4n-1)$

(2) $p!_{i}=g^{2}:-3g_{i}+4n,p_{||}j=g_{i}(g_{i}-1),p_{j}^{i}=_{k}k\lrcorner_{1}g_{i}(g_{i}-1),p_{*j}^{l}=g;g_{j}$

for $i\neq j\neq l,$ $0\leq i,j,$ $l\leq 4$ , where $g_{1}=g_{2}=1,$ $g_{3}=2n-1,g_{4}=2n$ .

We have the following theorem by using these amorphous association schemes.

Theorem 2 Let $A_{i},$ $(0\leq i\leq 4)$ be adjacency matrices of an amorphous association
scheme obtained from an Hadanard matrix of order $4n$ by Theorem 1. Then

(1) $M_{1}=A_{0}+A_{1}+A_{2}+A_{3}-A_{4},$ $M_{2}=A_{0}+A_{1}-A_{2}-A_{3}+A_{4},$ $M_{3}=A_{0}-A_{1}+A_{2}-A_{3}+A_{4}$

are regular symmetric Hadamard matrices of order $(4n)^{2}$ ,

(2) $L_{1}=A_{0}+A_{1}+A_{2}i+A_{3}i-A_{4}i$ and $L_{2}=A_{0}+A_{1}i+A_{2}+A_{3}i-A_{4}i$ are regular
symmetric complex Hadamard matrices of $(4n)^{2}$ ,

where $i$ is a primitive $4^{th}$ root of unity.

By using Theorems 1 and 2 repeatedly and by using the tensor products of matrices,
we have,

Corollary 2 (1) There exists an infinite family of regular symmetaric Hadamard ma-
trices of order $(4n)^{2l},$ $l$ : a positive integer,

(2) there exists an infinite family of regular symmetaric complex Hadamard matrices

of order $(4n)^{2l},$ $l$ : a positive integer.

3 Classes of Hadamard matrices
Definition 4 Two Hadamard matrices are said to be equivalent if one can be obtained
from the other by a sequence of the following operations:

(1) Permute rows(or columns),

(2) multiply any row(or column) by-l.
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Let $H=(h_{i,j})$ be an Hadamard matrix. Let $I=(i_{1},i_{2}, i_{3}, i_{4})$ be a 4-subset of the

index set $\Omega=\{0,1, \ldots,4n-1\}$ . We define

$N_{I}=N_{\langle i_{1},i_{2},i_{3},i_{4})}= \sum_{j=0}^{4n-1}hhhh$ .

Then $N_{I}$ is invariant under Hadamard transformation for columns. If we define

$S_{k}=\#\{(i_{1}, i_{2}, i_{3}, i_{4})|N_{\langle i_{1},i_{2},i_{3},i_{4})}=k\}$ ,

$C_{k}=S_{k}+S_{-k}$ ,

then $C_{k}$ is invariant under Hadamard transformation (1) and (2) in the above definition.
If $C_{k}’ s$ of two Hadamard matrices are different, they are inequivalent.

Lemma 1 $N_{I}\equiv 0(mod 4)$ .

Corollary 3 Let $H_{1}$ and $H_{2}$ be equivalent Hadamard matmces. Let $A_{i}$ and $A_{i}’,$ $i=$

0,1,2,3,4 be adjacency matnices obtained from $H_{1}$ and $H_{2}$ respectively. Then there exists

a permutation matrix $P$ such that

$A_{i}’=PA_{i}P$

for $0\leq i\leq 4$ .

4 Generalized spin models of symmeteric Hadamard
type

We give a necessary and sufficient condition that Hadamard matrices $M_{1},$ $M_{2}$ and $M_{3}$

in Theorem 2 give generalized spin models of symmetric Hadamard type.

Theorem 3 Let $H$ be a normalized Hadamard matrix of order $4n$ and $A_{1},$ $(0\leq i\leq 4)$

be adjacency matnces obtained from $H$ .

(1) $W+=W_{-}=M_{1}=A_{0}+A_{1}+A_{2}+A_{3}-A_{4}$ gives a generalized spin model of
symmetric Hadamard type if and only if the following conditions $(a),(b)$ are satisfied
for any $\beta_{1},$ $\beta_{2},\gamma_{1}$ and $\gamma_{2}\in\Omega^{*}=\{1,2, \ldots,4n-1\}$ :

$(a)$ when $(h_{\beta_{1}}\rho_{2}, h_{\gamma_{1}\gamma_{2}}, h_{\beta_{1}\gamma_{2}}, h_{\gamma_{1}\beta_{2}})=(1,1,1,1)_{f}(1,1,- 1,- 1)_{f}(1,- 1,- 1,1)$,
$(1,- 1,1,- 1),(- 1,- 1,- 1,- 1)$ ,

$\sum_{l=-n}^{n}\theta_{l}l=n$ ,
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$(b)$ when $(h_{\beta_{1}\beta_{2}}, h_{\gamma_{1}\gamma_{2}}, h_{\beta_{1}\gamma_{2}}, h_{\gamma_{1}\beta_{2}})=(1,1,- 1,),$ $(1_{J}- 1,- 1,- 1)$ ,

$\sum_{l=-n}^{n}\theta_{l}l=0$

where $\theta_{l}=\#\{x_{1}|h_{x_{1}\beta_{2}}h_{x_{1}\gamma_{2}}=1, N_{(0,\beta_{1},\gamma_{1},x_{1})}=4l\}$ .

(2) $W+=W_{-}=M_{2}=A_{0}+A_{1}-A_{2}-A_{3}+A_{4}$ gives a generalized spin model
of symmetric Hadamard type if and only if the above conditions $(a)$ and $(b)$ are
satisfied for any $\beta_{1},$ $\beta_{2},$

$\gamma_{1}$ and $\gamma_{2}\in\Omega^{*}$ .

(3) $W+=W_{-}=M_{3}=A_{0}-A_{1}+A_{2}-A_{3}+A_{4}$ gives a generalized spin model of
symmetric Hadamard type if and only if the transpose matrix $H^{t}$ satisfies the above
conditions $(a)$ and $(b)$ for any $\beta_{1},$ $\beta_{2},$

$\gamma_{1}$ and $\gamma_{2}\in\Omega^{*}$ .

To prove the Theorem 3, the following lemma is useful.

Lemma 2 Let $H$ be a normalized Hadamard matrex of order $4n$ . Choose three rows
$\alpha_{1}=0,$ $\beta_{1}$ and $\gamma_{1}$ . Then

$\sum_{l=-n}^{n}\xi_{l}l=n$

where $\xi_{l}=\#\{x_{1}|N_{(\alpha_{1},\beta_{1},\gamma_{1},x_{1})}=4l\}$ . It is also true for columns.

Proof of Theorem 3. (1) Since Hadamard matrices $M_{i},$ $0\leq i\leq 3$ , are regular symmet-
ric, the conditions (0),(1H),and (2H) hold. Therefore we get a necessary and sufficient
condition by verifying the condition (3H).

When we choose three rows $\alpha,$
$\beta$ and $\gamma$ of $M_{1}$ , we may assume one of them, say $\alpha$ ,

is equal to $0=(0,0)$ . We obtain only one inequivalent normalized Hadamard matrix on
whichever entry we normalize an Hadamard matrix. Assume that $\alpha.=(\alpha_{1}, \alpha_{2})\neq 0=$

$(0,0)$ . The row $\alpha_{1}$ and the column $\alpha_{2}$ can be transformed into the row and the column
with all 1 entries by multiplying some rows and columns by-l. Denote this Hadamard
matrix by $H’$ . Then we get the normalized Hadamard matrix $H$ by permuting rows and
columms of $H’$ ;

$H=QH’R$,

where $Q$ and $R$ are permutation matrices. Hence if the permutations $Q$ and $R$ act on the
rows and columns of $M_{1}$ simultaneously, we obtain the same matrix $M_{1}$ . Namely there
exists a permutation matrix $P$ such that

$M_{1}=PM_{1}P$.
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Put $M_{1}=(m(\alpha, \beta))$ where $m(\alpha, \beta)=h_{\alpha_{1}\alpha_{2}}h_{\beta_{1}\beta_{2}}h_{\alpha_{1}\beta_{2}}h_{\beta_{1}\alpha_{2}},$ $\alpha=(\alpha_{1}, \alpha_{2}),\beta=(\beta_{1}, \beta_{2})$.
The left-hand side of the star triangle relation (3H)

$S( \alpha, \beta,\gamma)=\sum_{x\in X}m(\alpha, x)m(\beta, x)m(\gamma,x)$

is invariant under the column permutation of $M_{1}$ . Since $\beta$ and $\gamma$ run over $X$ , we may put
$\alpha=0$ .

When $\alpha=\beta=\gamma$ or $\alpha=\beta$ or $\beta=\gamma$ or $\gamma=\alpha$ , the condition (3H) is satisfied from the
regularity of $M_{1}$ . We may assume that $\alpha\neq\beta\neq\gamma$ . $i^{Fromh_{00}}=h_{0x_{2}}=h_{x_{1}0}=0$ ,

$S(0, \beta,\gamma)=\sum_{x\in X}m(0, x)m(\beta,x)m(\gamma, x)=h_{\beta_{1}\beta_{2}}h_{\gamma_{1}\gamma_{2}}\sum_{x_{1}}h_{x_{1}\beta_{2}}h_{x_{1}\gamma_{2}}\sum_{x_{2}}h_{x_{1}x_{2}}h_{\beta_{1}x_{2}}h_{\gamma_{1}x_{2}}$

Put $N_{x_{1}}=N_{t^{0,\beta_{1},\gamma_{1},x_{1})}}=\Sigma_{x_{2}}h_{x_{1}x_{2}}h_{\beta_{1}x_{2}}h_{\gamma_{1}x_{2}}$ . Since $N_{0}=N_{\beta_{1}}=N_{\gamma_{1}}=0$,

$S(0, \beta,\gamma)=h_{\beta_{1}\beta_{2}}h_{\gamma_{1}\gamma_{2}}\sum_{x_{1}\neq 0,\beta_{1},\gamma_{1}}h_{x_{1}\beta_{2}}h_{x_{1}\gamma_{2}}N_{x_{1}}$
.

We define $\theta_{l}=\#\{x_{1}|N_{x_{1}}=4l, h_{x_{1}\beta_{2}}h_{x_{1}\gamma_{2}}=1\}$ and $\eta\iota=\#\{x_{1}|N_{x_{1}}=4l, h_{x_{1}}\rho_{2}h_{x_{1}\gamma_{2}}=-1\}$.
Then

$S(0, \beta,\gamma)=4h_{\beta_{1}\beta_{2}}h_{\gamma_{1}\gamma_{2}}\sum_{l=-n}^{n}(\theta_{l}-\eta_{l})l$.

Next we consider the right-hand side of the star triangle relation (3H).

$4n\cdot m(\alpha,\beta)m(\beta,\gamma)m(\gamma, \alpha)=4nh_{\beta_{1}\gamma_{2}}h_{\gamma_{1}\beta_{2}}$ .

Hence we have
$\sum_{l=-n}^{n}(\theta_{l}-\eta_{l})l=n\cdot m(\beta,\gamma)$ .

Since from Lemma 2,

$\sum_{l=-n}^{n}\xi_{l}l=\sum_{l=-n}^{n}(\theta_{l}+\eta_{l})l=n$ ,

the necessary and sufficient condition is given by

$\sum_{l=-n}^{n}\theta_{l}l=n(m(\beta,\gamma)+1)/2$ .

Notice that we may exchange the rows $\beta_{1}$ and $\gamma_{1}$ , and the columns $\beta_{2}$ and $\gamma_{2}$ to each
other. Hence the values $(h_{\beta_{1}\beta_{2}}, h_{\gamma_{1}\gamma 2}, h_{\beta_{1}\gamma 2}, h_{\gamma_{1}\beta_{2}})$ reduce to the 7 cases in Theorem 3.

(2) We can prove in the same way as the following.
(3) Similarly to the case (1), we verify the condition (3H) for $\alpha\neq\beta\neq\gamma$ . We may put

$\alpha=0$ . Let $W+=W_{-}=(w(x, y))_{x,y\in X}$ and $x=(x_{1}, x_{2}),$ $y=(y_{1}, y_{2})$ . Then

$w(x,y)=\{\begin{array}{l}1(x,y)\in R_{0}orR_{2}-h_{x1x2}h_{y_{1}y_{2}}hx_{1}y_{2}h_{y_{1}x_{2}}(x,y)\in R_{1},R_{3}orR_{4}\end{array}$
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where $R;,$ $0\leq i\leq 4$ , are defined in Theorem 1.
When $(\alpha, \beta),$ $(\beta,\gamma),$ $(\alpha, \gamma)\in R_{2}$ , it is easy to prove that the condition (3H) holds.
We distinguish 2 cases.

Case 1. Exactly one of $(\alpha, \beta),$ $(\beta,\gamma),$ $(\alpha, \gamma)$ is contained in $R_{2}$ .
First we suppose $(\alpha, \beta)\in R_{2}$ , namely $\alpha_{2}=\beta_{2}$ , and $(\beta, \gamma),$ $(\alpha,\gamma)\not\in R_{2}$ . We get the right-
hand side of the condition(3H) is $4nh_{\beta_{1}\gamma_{2}}$ . Now we verify the left-hand side $S(O, \beta,\gamma)$ of
the condition.

$S(0, \beta,\gamma)$ $=$
$\sum_{(\alpha,x),(\beta,x)\in R_{2},(\gamma,x)\not\in R_{2}}w(\alpha, x)w(\beta, x)w(\gamma, x)$

$+ \sum_{\langle\alpha,x),\langle\beta,x)\not\in R_{2},\langle\gamma,x)\in R_{2}}w(\alpha, x)w(\beta, x)w(\gamma, x)$

$+ \sum_{(\alpha,x),(\beta,x)\not\in R_{2},(\gamma,x)\not\in R_{2}}w(\alpha, x)w(\beta, x)w(\gamma, x)$

$=$
$- \sum_{x_{1}}h_{\gamma_{1}\gamma_{1}}h_{x_{1}\alpha_{2}}h_{\gamma_{1}\alpha_{2}}h_{x_{1}\gamma_{2}}+\sum_{x_{1}}h_{x_{1}\gamma_{2}}h_{\beta_{1}\beta_{2}}h_{x_{1}\gamma_{2}}h_{\beta_{1}\gamma_{2}}h_{x_{1}\beta_{2}}$

$-h_{\beta_{1}\alpha_{2}}h_{\gamma_{1}\gamma_{2}} \sum_{x_{2}}h_{\beta_{1}x_{2}}h_{\gamma_{1}x_{2}}\sum_{x_{1}}h_{x_{1}x_{2}}h_{x_{1}\alpha_{2}}h_{x_{1}\gamma_{2}}$

$=$
$h_{\beta_{1}\beta_{2}}h_{\beta_{1}\gamma_{2}} \sum_{x_{1}}h_{x_{1}\alpha_{2}}$

$=$ $4nh_{\beta_{1}\gamma_{2}}$

Hence the condition (3H) holds. We can prove that the condition (3H) holds for the cases
$(\beta, \gamma)\in R_{2},$ $(\alpha, \beta)_{s}(\alpha, \gamma)\not\in R_{2}$ and $(\alpha,\gamma)\in R_{2},$ $(\alpha, \beta),$ $(\beta, \gamma)\not\in R_{2}$ in the same way.
Case 2. $(\alpha,\beta),$ $(\beta, \gamma),$ $(\alpha,\gamma)\not\in R_{2}$ .
The right-hand side of (3H) is $-4nh_{\beta_{1}\gamma_{2}}h_{\gamma_{1}\beta_{2}}$ .

$S(0, \beta,\gamma)$ $=$
$\sum_{(\alpha,x)\in R_{2},(\beta,x),\langle\gamma,x)\not\in R_{2}}w(\alpha, x)w(\beta, x)w(\gamma, x)$

$+ \sum_{(\beta,x)\in R_{2},(\alpha,x),(\gamma,x)\not\in R_{2}}w(\alpha,x)w(\beta, x)w(\gamma, x)$

$+ \sum_{\langle\gamma,x)\in R_{2},(\alpha,x),(\beta,x)\not\in R_{2}}w(\alpha,x)w(\beta, x)w(\gamma, x)$

$+ \sum_{\langle\alpha,x),(\beta,x),(\gamma,x)\not\in R_{2}}w(\alpha, x)w(\beta, x)w(\gamma, x)$

$=$
$h_{\beta_{1}\beta_{2}}h_{\gamma_{1}\gamma 2} \sum_{x_{1}}h_{x_{1}}\ h_{x_{1}\gamma_{2}}+h_{\gamma_{1}\gamma_{2}}h_{\gamma_{1}\beta_{2}} \sum_{x_{1}}h_{x_{1}\gamma_{2}}+h_{\beta_{1}\beta_{2}}h_{\beta_{1}\gamma_{2}}\sum_{x_{1}}h_{x_{1}\beta_{2}}$

$-h_{\beta_{1}\beta_{2}}h_{\gamma\}\gamma_{2}} \sum_{x_{2}}h_{\beta_{1}x_{2}}h_{\gamma_{1}x_{2}}\sum_{x_{1}}h_{x_{1}x_{2}}h_{x_{1}\beta_{2}}h_{x_{1}\gamma_{2}}$

$=$
$-h_{\beta_{1}\beta_{2}}h_{\gamma_{1}\gamma_{2}} \sum_{x_{2}}h_{\beta_{1}x_{2}}h_{\gamma_{1}x_{2}}\sum_{x_{1}}h_{x_{1}x_{2}}h_{x_{1}\beta_{2}}h_{x_{1’l2}}$
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Putting $\tilde{N}_{x_{2}}=\tilde{N}_{(0,/\approx,\gamma_{2},x_{2})}=\Sigma_{x_{1}}h_{x_{1}x_{2}}h_{x_{1}\beta_{2}}h_{x_{1}\gamma_{2}}$ . Since $\tilde{N}_{0}=\tilde{N}_{\beta_{2}}=\tilde{N}_{\gamma_{2}}=0$,

$S(0, \beta,\gamma)=-h_{\beta_{1}\beta_{2}}h_{\gamma_{1}\gamma_{2}}\sum_{x_{2}\neq 0,\beta_{2},\gamma_{2}}h_{\beta_{1}x_{2}}h_{\gamma_{1}x_{2}}\tilde{N}_{x_{2}}$
.

Define $\tilde{\theta}_{l}=\#\{x_{1}|\tilde{N}_{x_{1}}=4l, h_{\beta_{1}x_{2}}h_{\gamma_{1}x_{2}}=1\}$ and, $\tilde{\eta}_{l}=\#\{x_{1}|\tilde{N}_{x_{1}}=4l, h_{\beta_{1}x_{2}}h_{\gamma_{1}x_{2}}=-1\}$ .
Then

$S(0, \beta,\gamma)=-h_{\beta_{1}C_{2}}h_{\gamma_{1}\gamma_{2}}\sum_{l=-n}^{n}(\tilde{\theta}_{l}-\tilde{\eta}\iota)l$.

From the Lemma 2, it follows that

$\sum_{l=-n}^{n}\tilde{\theta}_{l}l=n(m(\beta,\gamma)+1)/2$

is a necessary and sufficient condition. It means that the transpose matrix $H^{t}$ satisfies
the c\’onditions (a) and (b). $\square$

5 Generalized spin models of pseudo-Jones type

We give a necessary and sufficient condition that complex Hadamard matrices $L_{1},\overline{L_{1}}$

and $L_{2},\overline{L_{2}}$ in Theorem 2 give generalized spin models of pseudo-Jones type.

Theorem 4 Let $i$ be a primitive $4^{th}$ root of unity and $H$ be a normalized Hadamard
matrix of order $4n$ . Let $A_{i},$ $(0\leq i\leq 4)$ be adjacency matrices obtained from $H$.

(1) $W+=L_{1}=A_{0}+A_{1}+A_{2}i+A_{3}i-A_{4}i,$ $W_{-}=\overline{L_{1}}$ gives a generalized spin model
of pseudo-Jones type if and only if the conditions $(a)$ and $(b)$ in Theorem 3 are
satisfied for any $\beta_{1},$ $\beta_{2},\gamma_{1}$ and $\gamma_{2}\in\Omega^{*}$ .

(2) $W+=L_{2}=A_{0}+A_{1}i+A_{2}+A_{3}i-A_{A}i,$ $W_{-}=\overline{L_{2}}$ gives a genemlized spin model
of pseudo-Jones type if and only if the transpose mat’rix $H^{t}$ satisfies the conditions
$(a)$ and $(b)$ for any $\beta_{1},$ $\beta_{2},\gamma_{1}$ and $\gamma_{2}\in\Omega^{*}$ .

Proof. (1) Let $W+=(w(x, y))_{x,y\in X}$ and $x=(x_{1}, x_{2}),$ $y=(y_{1}, y_{2})$ . Then the entry
$w(x, y)$ is given by

$w(x, y)=\{\begin{array}{l}1(x,y)\in R_{0}orR_{1}-i\cdot h_{x_{1}x_{2}}h_{y_{1}y_{2}}h_{x_{1}y_{2}}h_{y_{1}x_{2}}(x,y)\in R_{2},R_{3}orR_{4}\end{array}$

We can prove the theorem similarly to the Theorem 3. $\square$
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Remark. The following (1)$-(3)$ are equivalent and (4)$-(5)$ are equivalent:

(1) $W+=W_{-}=M_{1}$ gives a generalized spin model of symmetric Hadamard type.

(2) $W+=W_{-}=M_{2}$ gives a generalized spin model of symmetric Hadamard type.

(3) $W+=L_{1},$ $W_{-}=\overline{L_{1}}$ gives a generalized spin model of pseudo-Jones type.

(4) $W+=W_{-}=M_{3}$ gives a generalized spin model of symmetric Hadamard type.

(5) $W+=L_{2},$ $W_{-}=\overline{L_{2}}$ gives a generalized spin model of pseudo-Jones type.

6 A special class of Hadamard matrices and gener-
alized spin models

Theorem 5 Assume that an Hadamard matrix of order $4n$ satisfies

$(c)C_{4n}= \frac{1}{4}(\begin{array}{l}4nn\end{array}),$ $C_{0}= (\begin{array}{l}4n4\end{array})-\frac{1}{4}(\begin{array}{l}4n3\end{array}),$ $C_{l}=0(l\neq 0,4n)$ .

Then the normalized matrix of $H$ satisfies the necessary and sufficient conditions $(a),(b)$

in Theorem 3. It implies that $M_{1},$ $M_{2}$ obtained from $H$ give spin models of symmetric
Hadamard type and $L_{1},$ $\overline{L_{1}}$ gives a generalized spin model of pseudo-Jones type.

Proof. It turns out that the condition (c) means there exists only one row $x$ such
thath $N_{\langle\alpha,\beta,\gamma,x)}=N_{x}=\pm 4n$ for fixed three rows $\alpha,$

$\beta$ and $\gamma$ . Assume that $H$ satisfies
the condition (c). Denote the normalized Hadamard matrix $\cdot byH’$ . Assume that the
row $x_{1}$ satisfies $N_{x_{1}}=N(O, \beta_{1}, \gamma_{1}, x_{1})=4n$ (the case $N_{x_{1}}=-4n$ does not occur). If
$h_{x_{1}\beta_{2}}h_{x_{1}\gamma_{2}}=1$ , which is equivalent to $m(\beta,\gamma)=1$ , then $\theta_{n}=1$ and $\dot{\theta}_{l}=0$ for $l\neq 0,$ $n$ .
If $h_{x_{1}\beta_{2}}h_{x_{1}\gamma_{2}}=-1$ , which is equivalent to $m(\beta, \gamma)=-1$ , then $\theta_{l}=0$ for $l\neq 0$ . It follows
that $H’$ satisfies the necessary and sufficient conditions (a) and (b). $\square$

It is obvious that if the transpose matrix H satisfies the above condition $(c),$ $thenthe$

normalized matrix of $H^{t}$ satisfies the necessary and sufficient condition (3) in Theorem
3.

Corollary 4 Assume that both $H$ and $H^{t}$ satisfy the condition $(c)$ in Theorem 5. $H$ is
not necessarily equivalent to $H^{t}$ .

Let $A_{i},$ $A_{i}’,$ $(0\leq i\leq 4)$ be adjacency matrices obtained from $H,$ $H^{t}$ respectively.
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Then $M_{1}=A_{0}+A_{1}+A_{2}+A_{3}-A_{4}$ and $M_{1}’=A_{1}’+A_{2}’+A_{3}’-A_{4}’$ also satisfy the condition
$(c)$ . Namely, infinite families constructed from $H$ and $H^{t}$ mentioned in Corollay 2 satisfy
the condition $(c)$ .

Hence there exist infinite families of genemlized spin models of pseudo-Jones type and
of symmetric Hadamard type with loop variable $(4n)^{2l}$ , l:positive integer.

There is only 1 inequivalent class of Hadamard matrices of orders 4 and 8. They satisfy
the condition (c). There are 5 inequivalent classes of order 16. Class I according to the
classification by M.Hall Jr. satisfies the condition (c) but other classes not.
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