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\S 0. Introduction
The system of natural deduction was introduced by Gentzen [1]. He
also introduced the system of sequent calculus in order to prove his
Hauptsa $tz$ which states every proof can be reduced to a proof without
roundabouts. (In some cases, the Hauptsa$tz$ is called the cut-elimination
theorem or the $no$rmalization theorem.) His system of natural deduction
was not suitable for the Hauptsatz in the case of classical logic, because
in the system the classical logic was formalized as the intuitionistic logic
with the law of the excluded middle. Prawitz $[2][3]$ settled this trouble
in his system of natural deduction by formalizing the classical logic as
the minimal logic with classical absurdity rule. However his solution
was a partial one, since his system of classical logic did not have the
logical symbols for the disjunction and for the existential quantifier as
the primitive logical symbols. Seldin $[4][5]$ and Stalmarck [6] proved
the normalization theorem for the first order classical natural deduction
with full logical symbols. But the reduction procedures defined by them
are complicated in comparison with Prawitz’s one.

In this paper, we define another reduction procedure for the first or-
der classical natural deduction with full logical symbols. It is as simple
as Prawitz’s one is. In other words, our reduction procedure is a natu-
ral extension of the Prawitz’s. Our proof of the normalization theorem
will be done simultaneously for the intuitionistic logic and for the clas-
sical logic, as the Gentzen’s proof of the Hauptsa$tz$ was. Notice that
our normalization theorem is one of the so called weak $n$ormalization
theorems.
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\S 1. System

The system used in this paper is the first order classical logic formalized
in the style of natural deduction. It have all logical symbols as primitive
ones. The inference rules consist of the introduction rule and elimination
rule for each logical symbol, and the classical absurdity rule [2]. These
are denoted by $(\mathcal{L}I)$ . and $(\mathcal{L}E)$ for each logic$a1$ symbol $\mathcal{L}$ , and $(\perp c)$

respectively. We present them by the inference figure schemata in the
same manner with Gentzen [1] :

(&I) $\mathfrak{U}\mathfrak{U}_{2^{2}}\mathfrak{U}^{1_{1}}\ \mathfrak{U}$ (&E) $\frac{\mathfrak{U}_{1}\ \mathfrak{U}_{2}}{\mathfrak{U}}$ ( $i=1$ or 2)

$(\vee I)$ $\frac{\mathfrak{U}}{\mathfrak{U}_{1}\vee \mathfrak{U}_{2}}$ ( $i=1$ or 2) $(\vee E)$

$\frac{\mathfrak{U}_{1}\vee \mathfrak{U}_{2}[\mathfrak{U}_{C^{1}}][\mathfrak{U}_{C^{2}}]}{C}$

$(\supset I)$

$\frac{[\mathfrak{U}]\mathfrak{B}}{\mathfrak{U}\supset \mathfrak{B}}$

$(\supset E)$ $\mathfrak{U}\supset \mathfrak{B}\mathfrak{B}$

$\mathfrak{U}$

$(\neg I)$

$\frac{[\mathfrak{U}]\perp}{\neg \mathfrak{U}}$

$(\neg E)$ $\neg \mathfrak{U}_{\perp}\mathfrak{U}$

$(\forall I)$ $f_{\forall \mathfrak{x}\mathfrak{F}\mathfrak{x}}^{fa}$ $(\forall E)$ $\frac{\forall \mathfrak{x}S\mathfrak{x}}{\mathfrak{F}^{\{}}$

$(\exists I)$ $\frac{St}{\exists t\mathfrak{F}p}$ $(\exists E)$

$\frac{\exists \mathfrak{x}Sr[ff_{C}a]}{C}$

$[\neg \mathfrak{U}]$

$(\perp c)$ $\frac{\perp}{\mathfrak{U}}$

$(\forall I)$ and $(\exists E)$ are subject to the restriction of eigenvariable [1]. In a
proof, the eigenvariables must be separated as usual [2].



3

\S 2. Definitions

DEFINITION. (MAXIMAL FORMULA). Let $\mathfrak{U}$ be a formula-occurrence in
a proof $\Pi$ . $\mathfrak{U}$ is a $m$ axim$al$ formula in $\Pi$ iff it satisfies the following
condition$s$ .

(1) $\mathfrak{U}$ is not an $ass$umption-form$ula$ . And the inference rule whose
$concl$usion is $\mathfrak{U}$ is an introduction rule, a $(\vee E)$ , a $(\exists E)$ , or a $(\perp c)$ .

(2) $\mathfrak{U}$ is the major premiss of an elimination $ru$ le.

DEFINITION. (NORMAL PROOF). A proof $\Pi$ is $n$ormal iff it $con$ tain$s$ no
$m$aximal form$ula$ .

DEFINITION. (SEGMENT). Let $\mathfrak{U}_{1},$

$\ldots$ , $\mathfrak{U}_{rn}$ be a $s$equence of formula-
occurrences in a proof $\Pi$ . $\mathfrak{U}_{1)}\ldots,$ $\mathfrak{U}_{n}$ is a segment in $\Pi$ iff it satisfies
the foll$0$win$g$ condition$s$ .

(1) $\mathfrak{U}_{1}$ is neither the con$cl$usion of a $(\vee E)$ nor that of a $(\exists E)$ . More-
$O1^{\gamma}er,$

$\mathfrak{U}_{1}$ is not th $e$ concl$u$sion of a $(\perp c)$ where at least one as-
sumption formula is discharge.

(2) For all $i<n$ , ; (a) $\mathfrak{U}$; is a minor premiss of a $(\vee E)$ or a $(\exists E)$ ,
and the conclusion of the inference is $\mathfrak{U}_{7+1}$ ; or (b) $\mathfrak{U}$; is the minor
prem$iss$ of a $(\neg E)$ whose major premiss is an $ass$umption-formula
discharged by a $(\perp c)$ , and th$econ$clusion of the $(\perp c)$ is $\mathfrak{U}_{i+1}$ .

(3) $\mathfrak{U}_{n}$ is neither a $\min$or premiss of a $(\vee E)$ nor that of a $(\exists E)$ .
Moreover, $\mathfrak{U}_{n}$ is not the minor premiss of a $(\neg E)$ whose major
$pr$emiss is an assumption-formula discharged by a $(\perp c)$ .

DEFINITION. (REGULAR PROOF). In a proof-figure, an assumption-
formula discharged by a $(\perp c)$ is regular iff it is the main premiss of a
$(\neg E).$ A proof-figure is regu1$ar$ iff any assumption-formula disch arge$d$

$by$ an$y(\perp c)$ in the proof is regu1$ar$ .
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\S 3. Reduction steps

To simplify the description, our reduction steps are defined only for
regular proofs. For non regular proofs, we use the following lemma.

LEMMA 1. Let $\Pi$ be a given non regul$ar$ proof. Then we can construct
a regular proof $\Pi$ ‘ which have the same set of assumptions and the same
end formula $wi$ th $\Pi$ .

PROOF: Let $\neg \mathfrak{U}$ be a non regular assumption-formula in $\Pi$ . Then,
transform $\Pi$ by replacing $\neg \mathfrak{U}$ with the following subproof:

$\frac{\neg \mathfrak{U}\mathfrak{U}21}{\frac{\perp}{\neg \mathfrak{U}}1}$
$(\neg E)$

Where, fr is discharged by the $(\neg I)$ represented in the above figure with
the indicator 1. And $\neg \mathfrak{U}2$ is discharged by the $(\perp c)$ which corresponds
with the $(\perp c)$ in $\Pi$ discharging the $\neg \mathfrak{U}$ in $\Pi$ . Then $\neg \mathfrak{U}2$ is regular.
Clearly this transformation does not change the set of assumptions and
the end formula. By applying this transformation for all non regular
assumption-formulae of all $(\perp c)s$ in $\Pi$ , we get the regular proof: $\Pi’$ . I

Now, we define our reduction steps. Let $\Pi$ be a regular but not normal
proof. And let $\mathfrak{M}$ be a maximal formula in $\Pi$ , and $I$ be the inference
whose conclusion is M. The reduction of $\Pi$ at $\mathfrak{M}$ is defined according
to $I$ .

First we treat the case that $I$ is a $(\perp c)$ . Let $J$ be the inference whose
major premiss is SEPt, and $\mathfrak{D}$ be the conclusion of $J$ . Let $K_{1},$

$\ldots,$
$K_{n}$ be

all the $(\neg E)s$ whose major premisses are discharged by $I$ , if they exist.
The reduction is carried out as follows:

(1) For all $i$ , replace the major premiss of $I<i$ by $\neg \mathfrak{D}$ .
(2) For all $i$ , replace the subproof of the minor premiss of $K_{i}$ by the

proof, say $\Phi_{i}$ , such that; (a) the last inference of $\Phi_{i}$ , say $J_{i}’$
$)$

is the same with $J$ ; (b) the proof of the major premiss of $J_{i}’$ is
identical with the proof of the minor premiss of $K$; ; and (c) the
proofs of the minor premisses of $J_{i}’$ are identical with the ones of
$J$ , if they exist.

(3) Concatenate the premiss of $I$ with the conclusion of $J$ by a $(\perp c)$

where the $\neg \mathfrak{D}’ s$ introduced in (1) are discharged.
Notice that there is no assumption formula discharged by $I$ , except for
the major premisses of $K_{1},$

$\ldots$ , $K_{n}$ ; because $\Pi$ is regular. The next
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diagram shows the reduction mentioned above.

$\frac{\neg \mathfrak{M}\Gamma_{i}\{\dot{\mathfrak{M}}}{\perp}K_{i}$

$\neg \mathfrak{D}1$

$\underline{\Gamma_{i}\{}$
$\sigma^{:}\mathfrak{n}\mathfrak{D}^{\Sigma_{1}}$ $\Sigma_{2}J_{i}’$

. $\Rightarrow$ $\overline{\perp}$

$\frac{\frac{\perp}{\mathfrak{M}}I\Sigma_{1}\Sigma_{2}}{\mathfrak{D}}J$
$\frac{\perp:}{\mathfrak{D}}1$

In the other cases, i.e. $I$ is an introduction rule, a $(\vee E))$ or a $(\exists E)$ ;
the reduction steps are the same with the ones for the intuitionistic logic,
defined by Prawitz [2] [3]. We show them briefly by the figures below.
(i) $I$ is a (&I) :

$\Gamma_{1}\frac{\{\mathfrak{U}_{1}:\tau_{2}\{\mathfrak{U}_{2}:}{\frac{\mathfrak{U}_{1}\ \mathfrak{U}_{2}}{\mathfrak{U}}}I$ $\Rightarrow$ $\Gamma_{i}\{\dot{\mathfrak{U}}_{i}$

:

where $\mathfrak{U}_{1}\ \mathfrak{U}_{2}$ is the maximal formula: $\mathfrak{M}$ .
(ii) $I$ is a $(\forall I)$ : similarly to the case (i).
(iii) $I$ is a $(\vee I)$ :

$\frac{\frac{\Gamma\{\mathfrak{U}_{i}:}{\mathfrak{U}_{1}\vee \mathfrak{U}_{2}}I^{\Sigma_{1}\{.\cdot\Sigma_{2\{}}[\mathfrak{U}_{\dot{C}^{1}}][\mathfrak{U}_{\dot{C}^{2}}]}{C}$

$\Rightarrow$

$\Gamma\{\dot{\mathfrak{U}}_{\dot{C}}:\}\Sigma_{i}$

where $\mathfrak{U}_{1}\vee \mathfrak{U}_{2}$ is the maximal formula: SEYt.
(iv) $I$ is a $(\exists I)$ : similarly to the case (iii).
(v) $I$ is a $(\supset I)$ :

$\frac{\frac{\Gamma\{[\mathfrak{U}]\dot{\mathfrak{B}}}{\mathfrak{U}\supset \mathfrak{B}}I\Sigma\{\dot{\mathfrak{U}}}{\mathfrak{B}}$

$\Rightarrow$

$\Sigma\{\dot{\mathfrak{B}}\dot{\mathfrak{U}}\}\Gamma$

where $\mathfrak{U}\supset \mathfrak{B}$ is the maximal formula: $\mathfrak{M}$ .
(vi) $I$ is a $(\neg I)$ : similarly to the case (v).
(vii) $I$ is a $(\vee E)$ :

$\frac{\Gamma\{:^{\Delta_{1}\{.\cdot\Delta_{2}}[\mathfrak{U}]\dot{\mathfrak{M}}^{1}}{\mathfrak{M}}\{\begin{array}{l}[\mathfrak{U}_{2}]\dot{\mathfrak{M}}I\end{array}$

$\Sigma_{1}$ $\Sigma_{2}$

$\overline{\mathfrak{D}}$
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$\Rightarrow$

$\Gamma\{\mathfrak{U}_{1}v^{:}\mathfrak{U}_{2}\frac{\Delta_{1}\{[\mathfrak{U}]\dot{\mathfrak{M}}^{1}\Sigma_{1}\Sigma_{2}}{\mathfrak{D}}$ $\frac{\Delta_{2}\{\begin{array}{l}[\mathfrak{U}_{2}]\dot{\mathfrak{M}}\sum_{l}\end{array}}{\mathfrak{D}}$

$\overline{\mathfrak{D}}$
(viii) $I$ is a $(\exists E)$ : similarly to the case (vii).
Our reduction steps are all defined by the items mentioned above. It is
clear that the following fact holds.

FACT 2. The proof which is obtained from a regular proof by applying
our reduction step is also regular.

\S 4. Proof of the normalization theorem

NOTATIONS. Let $\mathfrak{U}$ be a maxim$al$ formula in a proof. By $g(\mathfrak{U})$ we denote
the number of the logical symbols occurring in $\mathfrak{U}$ . By $r(\mathfrak{U})$ we denote
the maxim$al$ length of the segmen $ts$ whose last form$ula$ is $\mathfrak{U}$ . By $l(\mathfrak{U})$

we $d$enote the number of inferences belo$w\mathfrak{U}$ in the proof.

DEFINITION.(DEGREE OF A MAXIMAL FORMULA). Le $t\mathfrak{U}$ be a $m$aximal
formula in a proof. The degr$ee$ of $\mathfrak{U},$ $d$en$oted$ by $d(\mathfrak{U})$ , is the ordered
pair defined as follows:

$d(\mathfrak{U})=\{g(\mathfrak{U}), r(\mathfrak{U})\}$

$D$egrees of maximal formul$ae$ are compared by lexicographical $ord$er.

NOTATIONS. Let $\Pi$ be a proof. Notation$sM(\Pi)$ and $E(\Pi)$ are defined
as follows:

$M( \Pi)=\max$ { $d(\mathfrak{U})|\mathfrak{U}$ is a $m$aximal formula in $\Pi$ }
$E(\Pi)=$ { $\mathfrak{U}$ : a $m$aximal formula in $\Pi|d(\mathfrak{U})=M(\Pi)$ }

DEFINITION.(DEGREE OF A PROOF). Let $\Pi$ be a proof. The degree of
$\Pi,$ $d$enoted by $d(\Pi)$ , is the ordered triple defin$ed$ as follows:

$d(\Pi)=$ { $M(\Pi)$ , Card
$E( \Pi),\sum_{\mathfrak{U}\in E(\Pi)}l(\mathfrak{U})$ }

Degrees of proofs are compar$ed$ by lexicographical order.

We call a formula-occurrence $\mathfrak{U}$ a side-set formula of a formula-occur-
rence $\mathfrak{B}$ , if $\mathfrak{U}$ is one of the minor premisses of the inference whose major
premiss is B.
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LEMMA 3. Let $\Pi$ be a given $reg$ular proof. If $\Pi$ is not normal, we $c$an
find in it a formula-occurrence $\mathfrak{U}$ which satisfies the following conditions.

(1) $\mathfrak{U}\in E(\Pi)$

(2) If $\mathfrak{B}\in E(\Pi)$ ; an$difS$ is a segment in $\Pi$ , whose last formula is
$\mathfrak{U}$ ; then $\mathfrak{B}$ is not above the first formula of $S$ .

(3) If $\mathfrak{B}\in E(\Pi)$ ; an$difS$ is a segment in $\Pi$ , whose last formula is
$\mathfrak{B}$ ; then the first formula of $S$ is not above nor equal to any of
the $sid$e-set formulae of $\mathfrak{U}$ .

PROO $r$ : Construct a sequence $\mathfrak{U}_{1},$ $\mathfrak{U}_{2},$

$\ldots$ of maximal formulae in $\Pi$ by
the following manner. Take $\mathfrak{U}_{1}$ from the maximal formulae satisfying
the condition (1) and (2). If $\mathfrak{U}_{1}$ also satisfies the condition (3), terminate
the sequence at it. If not, take $\mathfrak{U}_{2}$ from the maximal formulae destroying
the condition (3) for $\mathfrak{U}_{1}$ and satisfying the condition (1) and (2). By
iterating this construction, we obtain the sequence $\mathfrak{U}_{1},$ $\mathfrak{U}_{2},$

$\ldots$ . It holds
that, for all $m$ and $n$ satisfying $m<n$ , there exists a formula-occurrence
$C$ in $\Pi$ such that; (a) $\mathfrak{U}_{m}$ is above or equal to $C;(b)C$ have its side-set
formula; and (c) there exists a segment in $\Pi$ , whose last formula is $\mathfrak{U}_{n}$ ,
and whose first formula is above or equal to the side-set formula of C.
Hence, if $m\neq n$ then $\mathfrak{U}_{m}\neq \mathfrak{U}_{n}$ . Therefore, the sequence $\mathfrak{U}_{1},$ $\mathfrak{U}_{2)}\ldots$ is
finite. Then, the last formula of the sequence satisfies all the conditions
for $\mathfrak{U}$ . I

It is clear that the following fact holds.

FACT 4. Let $\mathfrak{U}$ be a formula-occurrence in a proof $\Pi$ . If $\mathfrak{U}$ satisfies the
conditions of $Lemm$ a 3, then it also satisfies the following condition.

(3’) If $\mathfrak{B}\in E(\Pi)$ , then $\mathfrak{B}$ is not above nor equal to any of the side-set
formulaeof $\mathfrak{U}$ .

THEOREM.(NORMALIZATION THEOREM). Let $\Pi$ be a given proof. Then
we can $con$struct a normal proof $wh$ich have the sam$e$ set of assumption$s$

and the same end formula with $\Pi$ .
PROOF: By Lemma 1 and Fact 2, it can be assumed that $\Pi$ is regular.
We prove this theorem by induction on the degree of $\Pi$ . If $\Pi$ is not
normal, we can find in $\Pi$ a formula-occurrence, say $\mathfrak{M}$ , which is one
of the maximal formulae satisfying the conditions for $\mathfrak{U}$ of Lemma 3.
Reduce $\Pi$ at $\mathfrak{M}$ . Then, the degree of the proof obtained, say $\Pi’$ , is
lower than that of $\Pi$ . In the following we show this fact according to
the inference, say $I$ , whose conclusion is M.

Case 1. $I$ is a (&I) or a $(\forall I)$ : Because $\mathfrak{M}$ satisfies the condition (1)
for $\mathfrak{U}$ of Lemma 3, it holds that

\langle $M(\Pi))$ Card $E(\Pi)$ } $>$ { $M(\Pi’)$ , Card $E(\Pi’)$ }
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This leads $d(\Pi)>d(\Pi’)$ .
Cas$e2.$ $I$ is a $(\vee I)$ or a $(\exists I)$ : Because $\mathfrak{M}$ satisfies the conditions (1)

and (2) for $\mathfrak{U}$ of Lemma 3, it holds that

{ $M(\Pi)$ , Card $E(\Pi)\rangle$ $>\{M(\Pi’)$ , Card $E(\Pi’)\rangle$

This leads $d(\Pi)>d(\Pi’)$ .
Case 3. $I$ is a $(\supset I)$ or a $(\neg I)$ : Because SEJt satisfies the conditions (1)

and (3’) for $\mathfrak{U}$ of Lemma 3 and Fact 4, it holds that

\langle $M(\Pi)$ , Card $E(\Pi)$ } $>$ { $M(\Pi’))$ Card $E(\Pi’)$ }
This leads $d(\Pi)>d(\Pi’)$ .

Case 4. $I$ is a $(\vee E)$ , a $(\exists E)$ , or a $(\perp c)$ : Let $J$ be the inference in
$\Pi$ whose major premiss is SEJt. Let $\mathfrak{D}^{1}$ be the formula-occurrence in $\Pi$

which is the conclusion of $J$ . Let $\mathfrak{D}^{0}$ be the last formula of a segment
in $\Pi$ which includes $\mathfrak{D}^{1}$ as its member.

Case 4-1. $\mathfrak{D}^{0}$ is not a maximal formula in $\Pi$ ; Because $\mathfrak{M}$ satisfies the
conditions (1) and (3’) for $\mathfrak{U}$ of Lemma 3 and Fact 4, it holds that

\langle $M(\Pi)$ , Card $E(\Pi)\rangle$ $>\langle M(\Pi’)$ , Card $E(\Pi’)$ }
This leads $d(\Pi)>d(\Pi’)$ .

Case 4-2. $\mathfrak{D}^{0}$ is a maximal formula in $\Pi$ ; It holds that $d(\mathfrak{D}^{0})<M(\Pi))$

since;
(a) If $J$ is a $(\vee E)$ or a $(\exists E))$ then there exists a segment in $\Pi$ whose

first formula is above or equal to one of the side-set formulae of
$\mathfrak{M}$ and whose last formula is $\mathfrak{D}^{0}$ . This leads $d(\mathfrak{D}^{0})<M(\Pi)$ ,
because $\mathfrak{M}$ satisfies the condition (3) for $\mathfrak{U}$ of Lemma 3.

(b) Otherwise, it holds that $g(\mathfrak{D}^{1})<g(\mathfrak{M})$ . This leads $d(\mathfrak{D}^{0})<$

$d(\mathfrak{M})=M(\Pi)$ .

Let $\overline{\mathfrak{D}^{0}}$ be the maximal formula in $\Pi$ ‘ which corresponds with $\mathfrak{D}^{0}$ . Then
it holds that $d(\overline{\mathfrak{D}^{0}})\leq M(\Pi)$ , since $g(\overline{\mathfrak{D}^{0}})=g(\mathfrak{D}^{0})$ and $r(\overline{\mathfrak{D}^{0}})\leq r(\mathfrak{D}^{0})+$

1.
Case 4-2-1. $d(\overline{\mathfrak{D}^{0}})<M(\Pi)$ : Because $\mathfrak{M}$ satisfies the conditions (1)

and (3’) for $\mathfrak{U}$ of Lemma 3 and Fact 4, it holds that

{ $M(\Pi)$ , Card $E(\Pi)\rangle$ $>\{M(\Pi’)$ , Card $E(\Pi’)\rangle$

This leads $d(\Pi)\underline{>}d(\Pi’)$ .
Case 4-2-2. $d(\mathfrak{D}^{0})=M(\Pi)$ : Because $\mathfrak{M}$ satisfies the conditions (1)

and (3) for $\mathfrak{U}$ of Lemma 3, it holds that

(i) \langle $M(\Pi)$ , Card $E(\Pi)$ } $=$ \langle $M(\Pi’)$ , Card $E(\Pi’)\rangle$



9

Since SEJt is above $\mathfrak{D}^{0}$ , it holds that

(ii) $l(\mathfrak{M})>l(\overline{\mathfrak{D}^{0}})$

Let $\mathfrak{U}$ be a formula-occurrence in $\Pi$ satisfying that $\mathfrak{U}\in E(\Pi)$ and
that $\mathfrak{U}$ is not equal to $\mathfrak{M}$ . Let $\tilde{\mathfrak{U}}$ be a formula-occurrence in $\Pi’$ which
corresponds with $\mathfrak{U}$ . Because $\mathfrak{M}$ satisfies the condition (3)) for $\mathfrak{U}$ of Fact
4, $\mathfrak{U}$ is not above nor equal to any of the side-set formula of $\mathfrak{M}$ . This
leads

(iii) $l(\mathfrak{U})\geq l(\tilde{\mathfrak{U}})$

Due to (ii) and (iii),

(iv)
$\sum_{\mathfrak{U}\in E(\Pi)}l(\mathfrak{U})>\sum_{\mathfrak{U}\in E(\Pi’)}l(\mathfrak{U})$

From (i) and (iv), we obtain that $d(\Pi)>d(\Pi’)$ . I

REFERENCES

1. G. Gentzen, Untersuchungen uber das logische Schliessen, Mathematische Zeit-
schrift 39 (1935), 176-210, 405-431.

2. D. Prawitz, “Natural deduction– A proof theoretical study,” Almqvist&Wik-
sell, Stokholm, 1965.

3. D. Prawitz, Ideas and results in p roof theory, in “Proceedings of the sec-
ond Scandinavian logic symposium,” North-Holland, Amsterdam, 1971, pp.
235-307.

4. J. P. Seldin, On the proof theory of the intermediate logic MH, Journal of
Symbolic Logic 51 (1986), 626-647.

5. J. P. Seldin, Normalization and excluded middle. I, Studia Logica 48 (1989),
193-217.

6. G. Stalmarck, Normalization theorems for full first order classical natural de-
duction, Journal of Symbolic Logic 56 (1991), 129-149.

7. M. E. Szabo, “The collected papers of Gerhard Gentzen,“ North-Holland, Am-
sterdam, 1969.

Tsukuba-shi, Ibaraki, 305, Japan


