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An algorithm for computing the exact steady state
distribution of a cyclically connected queueing system
巡回型待ち行列系の定常分布を求めるためのアルゴリズム

について

岐阜大工 神保 雅一 (Masakazu Jimbo, Gifu Univ.)
スズキ (株) 森 達二 (Tatsuji Mori, Suzuki Co.)

In this paper, a kind of queueing network is treated, which is refered to a “cyclically
connected queueing system.” In this queueing network, servers are settled on nodes which
are connected cyclically by edges and a customer receives a service at the arrival node or
at one of the neighbour nodes. Here, for a cyclically connected queueing system, a fast
algorithm to obtain the exact steady state distribution as functions of the traffic intensity
is proposed.

Queueing networks have been studied by many authors (see, for exam-
ple, Hunt (1956), Gordon and Newell $(1967a, 1967b)$ , Jackson $(1957, 1963)$ ,
Buzen $(1971, 1973)$ , Allen (1990, Chapter 6)). Queueing networks can be
categorized as: open networks, closed networks, restricted networks, unre-
stricted networks and so on. In these queueing networks, servers are settled
on nodes and customers move along edges, that is, after completion of a ser-
vice at one node a customer either goes to another node, or turns away from
the system.

In this paper, we consider a different kind of queueing network. In our
queueing network, a server is settled on each node and these nodes are con-
nected by edges similarly to the above queueing network. But a customer
receives service only once at the arrival node or at one of the neighbour nodes
and $he/she$ turns away after receiving a service. Let $V$ be a set of nodes and
$E$ be a set of edges connecting these nodes. Then the queueing system is
represented by a graph $G=(V, E)$ . For nodes $u$ and $v$ , if there is an edge
which connects the nodes $u$ and $v$ , then $u$ and $v$ are said to be adjacent. For
a node $v$ , the number of nodes which are adjacent to $v$ is called the degree of
$v$ , denoted by $\deg(v)$ . If the number of service nodes are equal to the number
of edges and $\deg(v)=2$ for any $v\in V$ then the queueing system is said to
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be cyclically connected. That is, in a cyclically connected queueing system,
the nodes are connected like a loop. For example, there are 11 queueing sys-
tems with four nodes as is shown in Figure 1. Among these, $G_{9}$ is cyclically
connected.

口口
$G_{1}$ : $G_{2}$ :

口口 口 $\square$

Figure 1: Network queueing systems with four nodes

In our queueing systems, we assume the following conditions:

(A1) Customer arrivals occur at each service node.

(A2) Customers arrive at each service node with mean arrival rate $\lambda$ , and
$\urcorner$

the arrivals are independent each other. Customers receive service with
mean service rate $\mu$ at any server. That is, we assume Poisson arrivals
and exponential services.
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(A3) There is no waiting line (queue) for service, that is, the number of the
customers in each service node is $0$ or 1.

(A4) A customer receives a service either at the arriving service node or the
adjacent service node. When a customer arrives at a service node, he
receives a service as follows:

(a) If the arrival node is not occupied, then the customer receives a
service at the arrival node.

(b) If the arrival node is occupied and if there are $m(>0)$ adjacent
nodes which are not occupied then the customer receives a service
at one of the $m$ vacant nodes with probability $1/m$ .

(c) If the arrival node and all of the adjacent nodes are occupied, the
customer turns away without receiving a service.

(A5) In the system, at most one transaction (arrival or served) can occur in
a very short period, say $\triangle t$ .

In the following sections, we will consider a cyclically connected queueing
system and will give a fast algorithm to solve the “steady state equations.”
In Section 1, the steady state equation for a cyclically connected queueing
system is constituted. In Section 2, the number of variables and equations
are reduced by using symmetry of graphs. In Section 3, we consider a fast
algorithm to solve the reduced steady state equations. In Section 4, the
probability of loss is computed using the result of Section 3.

1. THE STATE SPACE AND STEADY STATE EQUATIONS

Let $V=\{1,2, \cdots, n\}$ be a set of service nodes. If there is a customer on a
service node, the state of the node is 1, otherwise $0$ . Let $R=\{0,1\}$ , and
$R^{n}=\{(x_{1}, x_{2}, \cdots, x_{n})|x_{i}\in R\}$ . We call $R^{n}$ the state space and each element
of $R^{n}$ a state of the system (or simply a state). For a state $(x_{1}, \cdots, x_{n})\in R^{n}$ ,
$x_{i}=0$ implies that the i-th node is vacant and $x_{i}=1$ implies that the node is
occupied. For example, the state (1,0,0,0) means that there is one customer
on service node 1 and there are no customers on service nodes 2, 3 and 4.

For any two states $x=$ $(x_{1}, \cdots , x_{n})$ and $y=(y_{1}, \cdots , y_{n})$ , the number
of $i’ s$ such that .

$x_{i}\neq y_{i}$ is called the Hamming distance between $x$ and $y$ ,
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denoted by $d(x, y)$ . The Hamming distance between $x$ and $0$ is called the
Hamming weight of $x$ , denoted by $w(x)$ .

Hereafter we forcus our attention to a cyclically connected queueing sys-
tem. In order to constitute steady state equations we need to consider state
transitions and transition probabilities. For cyclically connected queueing
systems, a state transition can occur between two states whose Hamming
distance is 1 or $0$ , since at most one transition can occur in a short period
$\triangle t$ .

Example 1. In the case of $n=4$ , consider the two states (1,0,0,0) and
(1,1,0,0). The transition $(1,1,0,0)arrow(1,0,0,0)$ occurs when (i) the customer
at node 2 completes his service, (ii) the service does not finish at node 1
and (iii) no customer arrives within a short period $\triangle t$ . Then the transition
probability is $\mu\triangle t(1-\mu\triangle t)(1-\lambda\triangle t)^{4}=\mu\triangle t$. On the other hand, the transi-
tion $(1,0,0,0)arrow(1,1,0,0)$ occurs when (i) one customer arrives at the occupied
service node 1 and choose the adjacent vacant node 2 with probability 1/2,
or (ii) one customer arrives at the vacant node 2. This is shown in Figure 2.
By assumption (a) and (b) of (A4), the transition probability is

$\frac{1}{2}\lambda\triangle t(1-/\backslash \triangle t)^{3}(1-\mu\triangle t)+\lambda\triangle t(1-\lambda\triangle t)^{3}(1-\mu\triangle t)=\frac{3}{2}\lambda\triangle t$ .

Figure 2: Arrival pattern of transition $(1,0,0,0)arrow(1,1,0,0)$
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In general, for a cyclically connected queueing system, we call the transi-
tion $xarrow y$ descending transition if $w(x)>w(y)$ , and ascending transition
if $w(x)<w(y)$ . The probability that a descending transition $xarrow y$ occurs
is

$\mu\triangle t(1-f^{\iota\triangle t})^{w(y)}(1-\lambda\triangle t)^{n}=\mu\triangle t$

for $x\neq 0$ . On the other hand, the probability of an ascending transition de-
pends on the states of the neighbours. When the state is on $x=(x_{1}, \cdots, x_{n})$

at time $t$ , if an ascending transition occurs at the node $i$ , then of course $x_{i}$

must be $0$ . Let $y=(y_{1}, \cdots, y_{n})$ be the state after the transition occurs,
then $y_{j}=x_{j}$ holds for any $j\neq i$ except $y_{i}=1$ . And the probability of
transition $xarrow y$ depends on the value of $x_{i-2},$ $x_{i-1},$ $x_{i},$ $x_{i+1},$ $x_{i+2}$ . In Table
I, we list the transition probabilities for $n\geq 5$ . Note that the reverse of
the pattern $x_{i+2},$ $x_{i+1},$ $x_{i},$ $x_{i-1},$ $x_{i-2}$ have the same transition propability with
$x_{i-2)}x_{i-1},$ $x_{i},$ $x_{i+1},$ $x_{i+2}$ .

Table I

Futhermore, we need to take into account of a transition $xarrow x$ . A cus-
tomer who arrives at a node such that the arrival node and both of the
adjacent nodes are occupied turns away without receiving a service. Let $l(x)$

be the number of 3-consecutive l’s in a state $x\in R^{n}$ . For example, there are
three 3-consecutive l’s in (1,1,0,1,1,1) since these six nodes are arranged in a
loop. And there are four 3-consecutive l’s in (1,1,1,1). Then the probability
of a transition $xarrow x$ is

$(1 -\lambda\triangle t)^{n-l(X)}(1-\mu\triangle t)^{w(X)}=1-(n-l(x))\lambda\triangle t-w(x)\mu\triangle t$ .
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Let $P_{X}(t)$ be the probability that the state $x$ occurs at time $t$ . Then
in the above way we can construct the transition equations from time $t$ to
time $t+\triangle t$ . For example, in the case of $n=4$ , we obtain the following $2^{4}$

transition equations.

Now, let $p_{X}= \lim_{tarrow\infty}P_{X}(t)$ . Then the steady state equations for this
case is as follows:

(1)

There are $2^{n}$ equations, in general, and as the number of node increases, the
number of equations grows exponentially. In the next section, we reduce the
number of variables and equations by using the symmetry of the cyclically
connected queue.
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2. A REDUCTION OF STEADY STATE EQUATIONS

For $(x_{1)}\cdots, x_{n})\in R^{n}$ , let

$\sigma$ : $(x_{1}, \cdots, x_{n})\mapsto(x_{2}, \cdots, x_{n}, x_{1})$ ,
$\tau$ : $(x_{1}, \cdots, x_{n})\mapsto(x_{n}, \cdots, x_{1})$ .

That is, $\sigma$ acts on $R^{n}$ as a function of rotation, while, $\tau$ acts as a function of
reverse. Let $G$ be a permutation group which is generated by $\sigma$ and $\tau$ . Then
$G$ is called the dihedral group which has $2n$ elements. Two states $x,$ $y\in R^{n}$

are said to be equivalent if $x^{g}=y$ for some $g\in G$ . Then $R^{n}$ is divided into
equivalence classes (orbits) by $G$ . When $R^{n}$ is divided into $m$ equivalence
classes, let $S=\{S_{0}, S_{1}, \cdots , S_{m-1}\}$ be the collection of equivalence classes.
Of course, $w(x)=w(y)$ holds for any $x,$ $y\in S_{i}$ . For an equivalence class $S_{i}$

and $x\in S_{i}$ , we define the weight of $S_{i}$ by $w(S_{i})=w(x)$ . We assume that $S_{i}$

is numbered in the ascending order of $w(S_{i})$ .
Example 2. In the case of $R^{4}=\{0,1\}^{4}$ , for example, $(1, 0,0,0)^{\sigma}=$

$(0,.1,0,0)$ and $(1, 0,0,0)^{\tau}=(0,0,0,1)$ hold. The equivalence classes are as
follows:

$\{\begin{array}{l}S_{0}=\{(0,0,0,0)\}S_{1}=\{(1,0,0,0),(0,1,00),(0,0,1,0),(0,0,0,1)\}S_{2}=\{(1,1,0,0),(0,l,1,0),(0,0,1,1),(1,0,0,1)\}S_{3}=\{(1,0,1,0),(0,1,01)\}S_{4}=\{(1,1,1,0),(0,1,1,1),(1,0,1,1),(1,1,0,1)\}S_{5}=\{(1,1,1,1)\}\end{array}$ (2)

The well-known Burnside’s Lemma and $P6lya’ s$ theorem are useful to enu-
merate the number of equivalence classes $m$ (see, for example, Liu (1968),
Bender and Williamson (1991)). In Table II, we show the number of equiv-
alence classes.

Table II

It is obvious that if $x,$ $y\in S_{i},$ $p_{X}=p_{y}$ holds. Hence, we can define
$p_{S_{i}}=p_{X}$ for a equivalence class $S_{i}$ and for $x\in S_{i}$ .
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Example 3. By Lemma 1, in the case of $n=4$ , we have

$\{\begin{array}{l}p_{S_{0}}p_{S_{1}}p_{S_{2}}p_{S_{3}}p_{S_{4}}p_{S_{5}}\end{array}$ $======$
$ppp_{1100}^{0000}p_{1110}^{1000}p_{1111}p_{1010}$

.

$====$
$pp_{0110}p_{0101}^{0100}p_{0111}$

’

$===$
$p_{1011}p^{0010}p^{0011}$

$===$
$p_{1001}p_{1101}^{0001}p$

,

(3)

Therefore, by (1) and (3), the steady state equation is reduced as follows:

$\{\begin{array}{l}-4\lambda ps_{0}+4\mu p_{S_{1}}=0(-16\lambda-4\mu)ps_{1}+8\mu ps_{2}+4\mu ps_{3}+4\lambda p_{S_{0}}=0(-16\lambda-8\mu)p_{S_{2}}+8\mu p_{S_{4}}+12\lambda p_{S_{1}}=0(-8\lambda-4\mu)ps_{3}+4\mu ps_{4}+4\lambda p_{S_{1}}=0(-12\lambda-12\mu)ps_{4}+4\mu ps_{5}+l6\lambda ps_{2}+8\lambda p_{S_{3}}=0-4\mu ps_{5}+12\lambda p_{S_{4}}=0\end{array}$ (4)

In general, for a cyclically connected queueing system with $n$ nodes, the
steady state equations are written in a matrix form as

$[-n\rho n_{0}\rho 00$ $-n_{\frac{3}{2}c_{0}^{n}n\rho}^{2}\rho-n0$ $-n^{2}\rho_{0}2_{0}^{0}n_{-2n}$

$2_{0}^{0}n$

$-3n\rho-n(n-1)3n\rho$

$-n0n00]$ $p_{S_{m^{1}-2}}^{p_{S^{0}}}p_{S_{m^{2}-1}}^{p_{S}}p_{S}\ovalbox{\tt\small REJECT}=0$ ,

(5)

where $c$ is a constant determined by Table I and $\rho=\lambda/\mu$ , which is called
a traff $c$ intensity. It is easy to see that (5) is linearly dependent since the
sum of each column elements is $0$ . On the other hand, since the total sum of
probabilities is 1, we have

$\sum_{i=0}^{m-1}$ I $S_{i}|p_{S_{i}}=p_{So}+np_{S_{1}}+\cdots+np_{S_{m}-2}+p_{S_{m}-1}=1$ , (6)

where $|S_{i}|$ is the number of elements (states) in $S_{i}$ . We want to obtain
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$p_{S_{0}},$ $\cdots,p_{S_{m-1}}$ by solving (5) and (6), which is the main subject in this paper.
We tried to solve the equations (5) and (6) by using the function (Linear-

Solve” which is implemented in the software “Mathmatica 2.1.” In Table III,
the computing time for $Sun4/2GS$ workstation is listed.

Table III

By this method we can not solve the linear equations (5) and (6) even
when $n=6$ , because a large amount of computing time and memory are
necessary. Thus in the following, we derive a faster algorithm to solve the
linear equation (5) and (6).

3. A FAST ALGORITHM

In (5), we can eliminate $p_{S_{0}}$ and $p_{S_{m-1}}$. by substituting $\rho p_{S_{0}}=p_{S_{1}’}$ and
$3\rho p_{S_{m-2}}=p_{S_{m-1}}$ . For the matrix in the left hand side of (5), let $A$ be
the $(m-2)\cross(m-2)$ matrix obtained by adding the first row of the matrix
to the second row, by adding the last row to the $(m-1)$-th row and by
deleting the first and the last rows and columns. Then $A$ is written as

$A=[-n \rho\frac{3}{2}c_{0}n^{2}\rho$ $-n^{2}\rho_{:}^{n}-2n2_{0}$

$2n0.$

$\cdot$ . .
$-n(n^{:}-1)00]$ , (7)

By examinig the matrix $A$ carefully, we can see that $A$ is divided into sub-
matrices as follows since a transition $xarrow y$ can occur only when $d(x, y)\leq 1$ .
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$A=$

$0$

$0$

$D_{n-4}$

$B_{n-3}\rho$

$0$

(8)

where $A_{k}$ is an $m_{k+1}\cross m_{k+1}$ diagonal matrix, $C_{n-k}$ is an $m_{k-1}\cross m_{k-1}$ di-
agonal matrix, $B_{k}$ is an $n?_{k+1}\cross m_{k}$ matrix, $D_{n-k}$ is an $m_{k-1}\cross m_{k}$ matrix
and $m_{k}$ is the number of equivalence classes $S_{i}$ with $w(S_{i})=k$ . Note that
$A_{k},$ $B_{k},$ $C_{k}$ and $D_{k}$ do not contain the variable $\rho$ . Here, we can show the
following theorem.

Theorem. For a cyclically connectecd queueing models with $n$ nodes, let $\uparrow n$

be the number of equivalence class $S_{i}’ s$ . Then the limit probability distribu-
tion is represented by

$p_{S_{i}}= \frac{\rho^{w(S_{i})}A_{S_{i}}(\rho)}{B(\rho)}$
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for $i=1,2,$ $\cdots,$ $m-2$ , where $A_{S:}(\rho)s$ are polynomials of $\rho$ with degree
$m-n-1$ and $B(p)$ is a polynomial of $\rho$ with degree $m-1$ . Furthermore,
we have

$p_{S_{0}}=p_{O}= \frac{A_{S_{1}}(\rho)}{B(\rho)}$ and $p_{S_{m-1}}= \frac{3\rho^{n}A_{S_{m-2}}(p)}{B(\rho)}$ .

Proof. By (5), we have

$\{\begin{array}{l}p_{S_{0}}=1/pp_{S_{1}}p_{S_{m-1}}=3\rho p_{S_{m-2}}\end{array}$ (9)

Thus by (9), we obtain

$\sum_{i=0}^{n}|S_{i}|p_{S_{i}}=(1/\rho+n)p_{S_{1}}+np_{S_{2}}+\cdots+(n+.3\rho)p_{S_{m-2}}=1$ ,

hence
$(n\rho+1)p_{S_{1}}+np_{S_{2}}+\cdots+(n\rho+3\rho^{2})p_{S_{m-2}}=\rho$ . (10)

By (5), (7) and (10), we have

$[n\rho+1,$

$n\rho,$

$\cdot\cdot(n\rho+3\rho^{2})A$

.

$\{\begin{array}{l}p_{S_{1}}|Ps_{m-2}\end{array}\}=\{\begin{array}{l}0|0\rho\end{array}\}$ , (11)

where $A$ is a matrix given in (8). As was stated in the previous section,
the rows of $A$ are not independent and rank$(A)=m-3$. Let $\overline{A}$ be the
$(m-2)\cross(m-2)$ matrix which is obtained by deleting the $(m-2)$-th row
of the $(m-1)\cross(m-2)$ matrix of the left hand side of (11). Then (11) can
be written as

$\overline{A}\cross\{\begin{array}{l}p_{S_{1}}\vdots p_{S_{\mathfrak{m}-1}}\end{array}\}=\{\begin{array}{l}0\vdots 0\rho\end{array}\}$ .

$s$

Since each elemet of $\overline{A}$ is a polynomial of $\rho$ , each element of $\overline{A}^{-1}$ is repre-
sented by a rational fomula of $\rho$ . Hence, we have

$p_{S_{i}}= \frac{\rho}{|\overline{A}|}\tilde{a}_{i,m-2}$ ,
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where $aij$ is the $(i, j)$-th cofactor of $\overline{A}$ . Further, we have $\deg(|\overline{A}|)=m-3+$

$2=m-1$ and $\deg(\tilde{a}_{i,m-2})=m-4+1=m-3$ , since the $(m-2, m-2)$-th
element of $\overline{A}$ is a polynomial of $\rho$ of degree 2 and the other elements of $\overline{A}$

are degree 1 or $0$ . Therefore, $p_{S_{i}}$ is written by

$p_{S_{i}}= \frac{\rho f_{S_{i}}(\rho)}{B(\rho)}$

り (12)

where $f_{S_{i}}(\rho)$ and $B(\rho)$ are polynomials with $\deg(f_{S_{2}}(\rho))\leq n?-3$ and $\deg(B(\rho))\leq$

$m-1$ . Let $Q_{k}$ be $the\cap\uparrow n_{k}$-dimensional vector of polynomials $f_{S_{1}}(\rho)$ with
$w(S_{i})=k$ . Then by examining (8) carefully, we have

$\{\begin{array}{l}\rho B_{1}Q_{1}^{n-2}+(-C_{n-3}\rho-A^{=_{1}})^{O}Q_{2}+D_{n-3}Q_{3}=o-\rho CQ_{1}+D_{n-2}Q_{2}\rho B_{n-2}Q_{n-2}+(-C_{1}\rho-A_{n-3})Q_{O^{n.-2}}+D_{1}Q_{n-l}=o\rho B^{n-3}Q^{n-3}+(-A_{n-2})Q_{n-1}=\end{array}$ (13)

Let $(H_{k})$ be the following claim:

$(H_{k})$ The degree of the lowest term of polynomials of $\rho$ in $Q_{j}$ is at least $k$

for any $j\geq k+1$ .

It is obvious that $(H_{0})$ holds. Assume that $(H_{k})$ holds for a given $k\leq n-2$ .
Then by the last equation, the degree of the lowest term of polynomials of
$\rho$ in $Q_{n-1}$ is at least $k+1$ , since that of $\rho B_{n-2}Q_{n-2}$ is at least $k+1$ and
$A_{n-2}$ is a diagonal matrix whose diagonal elements are nonzero. By the
second equation from the last of (13), the degree of the lowest term of $\rho$ in
$Q_{n-2}$ is at least $k+1$ . Continuing this process, we can show that $(H_{k+1})$

holds. Hence, $(H_{k})$ holds for any $k=0,1,$ $\ldots,$
$n-2$ , which implies that $f_{S_{i}}(\rho)$

is represented by $f_{S_{1}}(p)=\rho^{w(s_{:})-1}A_{S_{1}}(\rho)$ , where $\deg(A_{S_{i}}(\rho))\leq m-w(S_{i})-2$ .

Now let $Q_{k}’\simeq Q_{k}/\rho^{k-1}$ , then $Q_{k}’$ is a vector of polynomials with degree
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$m-k-2$ . Then (13) is rewritten as follows:

$\{\begin{array}{l}-C_{n-2}Q_{1}^{/}+D_{n-2}Q_{2}’=0(B_{l}Q_{1}’-A_{1}Q_{2}’)-\rho(C_{n-3}Q_{2}’-D_{n-3}Q_{3}’)=0(B_{k-1}Q_{k-1}’-A_{k-1}Q_{k})-\rho(C_{n-k-1}Q_{k}-D_{n-k-1}Q_{k+1}’)=0(B_{n-3}Q_{n-3}-A_{n-3}Q_{n-2})-\rho(C_{l}Q_{n-2}-D_{1}Q_{n-1}’)=0B_{n-2}Q_{n-2}+(-A_{n-2})Q_{n-1}=0\end{array}$ (14)

Similarly, consider the following claim:

$(H_{k}’)\deg(Q_{j}’)\leq m-k-2$ holds for any $j\leq k$ .

It is obvious that $(H_{1}’)$ holds. Assume that $(H_{k}’)$ holds. In equation (14),
$\deg(B_{k-1}Q_{k-1}’-A_{k-1}Q_{k}’)\leq m-k-3$ holds by $(H_{k}’)$ and we have $\deg(Q_{k+1}’)\leq$

$m-k-3$ by the definition of $Q_{k+1}’$ . Hence $\deg(Q_{k}’)\leq m-k-2$ holds,
since $C_{k}’ s$ are diagonal matrix with nonzero diagonal elements. Similarly,
continuing this process, we can show that $(H_{k+1}’)$ holds. Hence by induction,
it iS shown that $(H_{n-1}^{/})$ holds, which proves the theorem. 口

By this theorem, $A_{S_{i}}(\rho)$ can be written as follows:

$A_{S_{i}}(\rho)=a_{i0}+a_{i1}\rho+a_{i2}\rho^{2}+\cdot.$ . $+a_{im-n-2}\rho^{n-m-2}+a_{im-n-1}\rho^{m-n-1}$ .

Now, let $q_{ks}$ be the vector of the coefficients of $\rho^{s}$ in the polynomials in $Q_{k}’$

for $s=0,1,$ $\cdots,$ $m-n-1$ . Then by (14), we have

$q_{k+1,0}=A_{k}^{-1}B_{k}q_{k,0}$ (15)

for $k=0,1,2,$ $\cdots,$ $n-2$ , where $q_{10}=(a_{10})$ . Further,

$q_{k+1,s}=A_{k}^{-1}[B_{k}q_{ks}-C_{n-2-k}q_{k+1,s-1}+D_{n-2-k}q_{k+2,s-1}]$ (16)

holds for $k=1,2,$ $\cdots,$ $n-2$ and for $s=1,2,$ $\cdots,$ $m-n-2$ , where we assume
$C_{0}=0,$ $D_{0}=0$ for convenience. Thus by (15) and (16), each coefficient $a_{ij}$

can be obtained recursively as a linear combination of $a_{10},$ $a_{11},$ $\cdots,$ $a_{1m-n-2}$

as follows:
$a_{ij}= \sum_{s=0}^{m-n-2}b_{ijs}a_{1s}$ (17)
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for $i=2,$ $\cdots,$ $m-1;j=0,$ $\cdots,$ $m-n-1$ . (Note that we do not need to
solve linear equations for computing $q_{ks}$ by (15) and (16), since the matrices
$A_{k}’ s$ are diagonal.) Substituting (17) to (14), we obtain a linear equation
with respect to $a_{10},$ $a_{11,}a_{1m-n-1}$ . By solving this equation, we can deter-
mine the coefficients $a_{11},$ $\cdots,$ $a_{1m-n-1}$ as a scalar multiple of $a_{10}$ . Thus the
coefficients of $A_{S_{i}}(\rho)$ are determined as a scalar multiple of $a_{10}$ . Finally, by
substituting $A_{S_{i}}(\rho)$ to

$B( \rho)=A_{S_{1}}|(\rho)+3p^{n}A_{S_{m-2}}(\rho)+\sum_{i=1}^{m-2}|S_{i}|\rho^{w(S_{i})}A_{S_{i}}(\rho)$ , (18)

$B(\rho)$ is computed. Thus, $p_{S:}$ can be obtained by (12). Note that the value
of $a_{10}$ does not matter to determine $p_{S_{i}}$ .

Example 4. We determine the exact steady state distribution of cyclically
connected queueing system with four service nodes. In this case, the steady
state equation (4) is written by

$\{\begin{array}{llll}-16\rho 8 4 012\rho -l6\rho-8 0 84\rho 0 \text{弓}\rho-4 40 16\rho 8\rho -l2\end{array}\}[\rho^{2}A(\rho)\rho^{2}A_{s}^{s_{s_{4}^{1}}}(\rho)\rho A^{s_{3}^{2}}(\rho\rho_{3}A(\rho)_{)}$

.

$]=0$ ,

where $\deg(A_{S_{i}}(\rho))=6-4-1=1$ , that is $A_{S_{i}}(\rho)=a_{i0}+xa_{i1}$ . In this
example, we have

$A_{1}=(\begin{array}{ll}8 00 4\end{array})$ , $A_{2}=(12),$ $B_{1}=(\begin{array}{l}124^{Y}\end{array}),$ $B_{2}=(16,8)$ ,

$C_{1}=(\begin{array}{ll}16 00 8\end{array}),$ $C_{2}=(16),$ $D_{1}=(\begin{array}{l}84\end{array}).’ D_{2}=(8,4)$

and
$q_{1s}=(a_{1s}),$ $q_{2s}=(\begin{array}{l}a_{2s}a_{3s}\end{array})q_{3s}=(a_{4s})$

for $s=0,1$ . Then by the algorithm,

$(\begin{array}{l}a_{20}a_{30}\end{array})=q_{30}=A_{1}^{-1}B_{1}q_{10}=(3/21)a_{10}$,



15

$a_{40}=q_{30}=A_{2}^{-1}B_{2}q_{20}= \frac{8}{3}a_{10}$ ,

$(\begin{array}{l}a_{21}a_{31}\end{array})=q_{21}=A_{1}^{-1}$ ( $B_{1}q_{11}$ 一 $C_{1}q_{20}+D_{1}q_{30}$ ) $=(3/21)a_{11}+(\begin{array}{l}-1/32/3\end{array})a_{10}$

and

.

$a_{41}=q_{31}=A_{2}^{-1}B_{2}q_{21}= \frac{8}{3}a_{11}$

can be obtained. Substituting these to (14), we obtain $a_{11}=2a_{10}$ . Thus

$a_{21}= \frac{3}{2}a_{10},|a_{31}=\frac{8}{3}a_{10},$ $a_{41}= \frac{16}{3}a_{10}$

hold. Hence, we have $A_{S_{1}}(\rho)=(1+2\rho)a_{10},$ $A_{S_{2}}( \rho)=(\frac{3}{2}+\frac{8}{3}\rho)a_{10},$ $A_{S_{3}}(\rho)=$

$(1+ \frac{8}{3}\rho)a_{10}$ and $A_{S_{4}}( \rho)=(\frac{8}{3}+\frac{16}{3}\rho)a_{10}$ . Therefore,

$B(\rho)$ $=A_{S_{1}}+4\rho A_{S_{1}}+4\rho^{2}A_{S_{2}}+2\rho^{2}A_{S_{3}}+4\rho^{3}A_{s_{4}}+3\rho^{4}A_{s_{5}}$

$=$ $(1+2 \rho)(1+4\rho+6\rho^{2}+\frac{32}{3}\rho^{3}+8\rho^{4})a_{10}$

and the steady state distribution can be written as follows:
3

$Ps_{0}$ $=$

$3+12\rho+24\rho^{2}+32\rho^{3}+24\rho^{4}$

$p_{S_{1}}$ $=$ $\frac{3\rho}{3+12\rho+24\rho^{2}+32\rho^{3}+24\rho^{4}}$

$Ps_{2}$ $=$ $\ovalbox{\tt\small REJECT} 2(1+2\rho)(3+12^{2}\rho+24\rho^{2}\rho(9+16\rho)_{+32\rho^{3}+24\rho^{4})}$

$p_{S_{3}}$ $=$ $\ovalbox{\tt\small REJECT}_{2^{2}\rho+24\rho+32\rho^{3}+24\rho^{4})}2(1+2\rho)(3+1^{\rho(3+8\rho_{2})}$

$Ps_{4}$ $=$ $\frac{8\rho^{3}}{3+12\rho+24\rho^{2}+32\rho^{3}+24\rho^{4}}$

$p_{S_{5}}$ $=$ $\frac{24\rho^{4}}{3+12\rho+24\rho^{2}+32\rho^{3}+24\rho^{4}}$ 口
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Our algorithm to obtain the exact steady state distribution is summerized
as follows:

Stepl. Constitute the equivalence classes.
Step2. Constitute the matrices $A_{k},$ $B_{k},$ $C_{k}$ and $D_{k}$ from the steady state

equation.
Step3. Using the recurrence equations (15) and (16), represent $a_{ij}$ by $a_{10}$ ,

$a_{11},$ $\cdots,$ $a_{1m-n-1}$ .
@tep4. Substitute $a_{ij}$ to (14) and make a linear equation with respect to

$a_{10},$ $a_{11},$ $\cdots,$ $a_{1m-n-1}$ .
Step5. Represent $a_{11},$ $\cdots,$ $a_{1m-n-1}$ as a scalar multiple of $a_{10}$ by solving

the equation.
Step6. Compute $B(\rho)$ by (18) and obtain $p_{S_{1}}$ .

In Table IV, the computing times for our algorithm and those for Linear-
Solve in Mathematica 2.1 are listed. Our algorithm was also programmed by
Mathematica 2.1. It is observed that our algorithm is faster than LinearSolve.

Table IV
Comparison of computing time for the both algorithms

4. THE PROBABILITY OF LOSS

Here, we consider the probability of a loss of cyclically connected queueing
system. A customer turns away without receiving service if all of the three
service nodes (the arrival node and the two adjacent service nodes) are busy.
Let $l_{i}$ be the number of 3-consecutive l’s in a state vector $x\in S_{i}$ . Then the
probability of loss for the cyclically connected queueing system is given by

$p1_{oSS}= \frac{1}{n}\sum_{i=1}^{m}|S_{i}|l_{i}p_{S_{i}}$ .
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Example 5. We consider the probability of loss for $n=4$ . In this case,
note that there are 6 equivalence classes $S_{0},$ $\cdots$ , $S_{5}$ , which are listed in (2).
And we have $l_{0}=l_{1}=l_{2}=l_{3}=0,$ $l_{4}=1$ and $l_{5}=4$ . Therefore the
probability of loss on this system is

$p_{1oss}= \frac{1}{4}(4\cdot 1\cdot Ps_{4}+1\cdot 4\cdot p_{S_{5}})=p_{S_{4}}+p_{S_{5}}$ .

In Table V, the probablility of loss for cyclically connected queueing mod-
els (abriviated as c.c. queue) are listed together with those for $M/M/c$ loss
in the case when the traffic intensity is $\rho=\lambda/\mu=1$ . Note that $M/M/c$ loss
system can be considered as a network queueing system in which every two
nodes are connected by an edge.

Table V

As is expected, the probability of loss is decreasing. Furthermore, we may
observe that the probability of loss is converging around 0.3331.

5. A COMPARISON OF PROBABILITY OF LOSS FOR
QUEUING NETWORK SYSTEMS WITH 4 NODES

Finally, as an example, we consider 11 models $G_{1},$ $\cdots$ , $G_{11}$ in Figure 1 with
four service nodes. We computed the probability of loss by Mathmatica 2.1.
In the case when traffic intensity is $\rho=\lambda/\mu=1$ . The result is listed in Table
VI.
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Table VI

It can be observed that in proportion as the number of edges increase, the
probability of loss is decreasing in general. $G_{11}$ is nothing but a $M/M/c$ loss
system, and this probability of loss is the smallest among the all models in
Figure 1. If we restrict ourselves to the models with at most 4 edges, $G_{9}$ has
the smallest probability of loss, where $G_{9}$ is a cyclically connected queueing
system.

Now we would like to conclude this paper by the following conjecture.

Conjecture. A cyclically connected queueing system with $n$ nodes has the
smallest probability of loss among the network queueing systems with $n$ nodes
and with at most $n$ edges.
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