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Abstract

Among all the periodic sequences over GF(q) of period T = ¢™ — 1, m-sequences
are characterized to have the minimum linear complexity of n. In this paper periodic
sequences obtained by changing £, 1 < £ < T, symbols of an m-sequence over GF(q)
with period T are defined, and a simple derivation for the linear complexity L of
the above mentioned sequences is described. The results show that the periodic
sequences different only one symbol from the given m-sequence have the maximum
linear complexity of 7', and their linear complexities are in the range, n < L < T,
which depend on the amount of £ and the locations of the changed symbols of £ in
each period of the m-sequence. '

1 Introduction

Let {a,}, t > 0, be a periodic sequence over GF(q) of period T = ¢ — 1, where
g=pTand pis a piime. The linear complexity (or linear span) of {a,} is the length
of the shortest linear feedback shift register (LFSR) which can generate the infinite se-

quence {ag,a,az,--}. The Berlekamp-Massey algorithm [1] and the continued fraction
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algorithm [2],[3] are well-known for determining the linear complexity and the shortest
LFSR. The linear complexity of a given sequence is considered as one of the measures for
evalﬁating the complexity of the function or the mechanism generating it, and then means
the difficulty of predictability for the sequence. In an additive stream cipher large linear
~ complexity of the running key sequences is a necessary (but far from sufficient) condition
for its practical security [4]-[6].

Hereafter let {a,} be an m-sequence over GF(q) with period T represented as
a; = tr(a'), (1)

where o is a primitive element of GF(q"), and tr() the trace function mapped onto GF(q)

from GF(g") defined by
n-1 .
tr(8) = 3. BY for B € GF(q"). (2)
7=0
The m-sequence above has the minimum linear complexity of n, therefore even if it has
good properties of randomness, its linear complexity so small that we can not use it for
the key sequence in the stream cipher. It is well known [7]-[9] that the linear complexity
of the sequence can be extended by adding nonlinear operations or functions to its LFSR.
Recently, a periodic sequence {b,} which is obtained by changing £ symbols of (1) by
the samé amount b in each period defined by

a,,+b ft=r(modT)for0<i< -1,
b, = andr; #rjift# j (3)

ag otherwise,

where b € GF(¢)\{0} and 1 < £ < T, was studied on the linear complexity [10],[11].

{b:} has the same period T as the m-sequence, and there are (¢ — 1)("5) different {b,}’s
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corresporiding to ¢ — 1 choices of b and (’f) combinations of {rg,”,-+-,7,_;} when £ is

fixed. And b as above can be written as
b=a"T/7"Y) for0<u<gq-2, (4)

since f/(¢71) is a primitive element of GF(q). The linear complexity L of {;} defined
by (3) takes any value L < T, since {b;} can be generated by successive cyclic shift of its
one period {bg, b1, -+, bp_1}, so it was shown [10] that the linear complexity of (3) in the

case that £ = 1 becomes

Lz{T——n if 7o =uT/(g—1) (5)

T otherwise.

Note that almost all the {b,}’s as above, except ¢ — 1 ones from the (¢ — 1)T different
{b:}’s, have the maximum linear complexity of T much bigger than that of the m-sequence
(1).

We will clarify the linear complexity of {b;} including the case of £ = 1, which is the

more general problem on the linear complexity of the sequences.

2 The Linear Complexity of the Periodic Sequence

{b:}

It is known [2],[3] that L = deg Q(z) if we find a pair of polynomials (P(=),Q(=))

such that Q(z) is monic and of minimal degree satisfying

P(z)
Q(z)

:bo£0+blm_1+---+bnz~n+...’ (6)
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i.e., the coefficint of z~* is equal to b; for all i > 0. From (3) and (6) the linear complexity

L of {b;} can be determined by the following expressions:

-1
Yobe™ = Yazt+0).0O0 g~ (kT 472))

>0 ©>0 k>0 i=0
b -1 T
t),.,— : - .
= Y tr(a')z t+zT_lz:c )
©>0 i=0

as the ratio of two polynomials without a common factor. For this purpose we will use

the following lemma.

Lemma 1: Let
f(z) = (e —a%)(z —a*)---(z — ") (8)

be the minimal polynomial of « over GF(q) and f'(z) the formal derivative of f(z). Then

we have

3fl(z) _ otz '
(@) —g}t( )z | (9)

Proof: From (8) we can get

) g

f(@) - ochen-1® o’
= ¥ 1
o<han—1 1~ attz!

= Z (E atqkm_t)

0<k<n—1 t>0" .
= 3( 3 o), (10)

>0 0<k<n—1

which is equal to the right-hand side of (9).

Q.E.D.
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Substitution of (9) into (7) gives

] b -1 )
Ebtz-t — z.f (3) + T ZzT—n

£0 f(=) z i=0
F(z
= ;IT(:_)I’ (11)
where F(x) is a polynomial defined by
F(z) — (mT - l)mfl(m) + b§ a:T—ri. (12)
f(=) i=0

Here we will have to find the degree of the greatest common divisor of polynomials
(F(z),zT — 1) to obtain the linear complexity of {b,} from (11) and (12) as well as
that of (6)

Let V be a subset of v’s, 0 < v < T — 1, satisfying
V={v| F(')=0, 0<v<T-1}, (13)

and | V | denotes the cardinality of V. Since all the elements of GF(¢")\{0} are the roots
that satisfy 27 — 1 = 0, from (11),(12) and (13) the linear complexity L of {b,} can be
represented by

L=T-|V]|. (14)

From (12) we have

Fla*) = b a1 , (15)

=0

for v = ¢®, 0 < k < n—1, and otherwise

-1
F(e’)=b) a™, (16)
1=0
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since in the right-hand side of (12) let

(=" — 1)z f'(=)

G(z) =

fz) 7
then we gét
o (zT - 1z
Gle) = g b
_ -1 ifvzq",OSkgn—l (17)
N 0 otherwise.

We have to obtain | V' | given as (13), therefore need to solve (15) and (16) for that
F(a®) =0for 0 <v <T — 1. Let us define the following two subsets of V, i.e.,
Vi={v | F(e")=0 in (15), v=¢"*0<k<n-1}, (18)
and
Va={v | F(a’)=0 in (16), v# '}, (19)
where |V |=| Vi | + | V| since | V1NV, |= 0, and | V; | takes two values either 0 or n.
Hence from (14),(18) and (19) the linear complexity can be written by
L=T-|Vi|-|Va]|. (20)

In general obtaining | V; | and | V; | from (15) and (16) in an arbitrary £-tuple {rq, 71, -,
74—1} is not an easy problem, especially in the case of a big order ¢”, but for the following

specific £-tuples r;’s they will be obtained analytically.

3 The Linear Complexity of {b;} in Speciﬁc {-Tuples

Ti,S

In this section we will prove the linear complexity of {b,} defined by (3) in specific

{-tuples r;’s by applying the preceding considerations.
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Theorem 1: Let {,} over GF(q) with period T obtained from the m-sequence shown in

(1) be given as

a'ro+if+b OS'LS[—])
by = ift=ry+ ir (modT) (21)
a; otherwise,

where the three parameters r, ro and £ take values 1 <r <T-1,0<7 <T -1, and
1 <L <L T/w(w = ged(r,T)), respectively. L= 1, then suppose r = co and a® = 0.

The linear complexity L of {b,} is given as follows:

(1) when r£ # O(mod T),

(T—d+w if £+ 0(mod p)
T-d-—n+w if £+# 0(mod p)
and satisfying (18)
L= 22
) T-d if £= 0(mod p) (22)
T—-d-n if £= 0(mod p)
{ and satisfying (18),
(2) when 7£ = 0(mod T),
I n+w 1f £ # 0(mod p) (23)
n - if £ = 0(mod p),
where d = ged(r{, T).
Proof: By replacing r; by 7, + ir in (15), we have
-1 . ’
F(e’) = b)Y (@™ ™) —1
=0
1.
= ba— (& ¢ _
Tty (24)

and then from (16) we have

-1
F(o") = bza(""_")"‘ for v # ¢, 0<k<n-1

=0
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- lb&“"" if vr = 0(mod T) : (25)
o a—url -1 . )
= b ey I or# O(med ). (26)

First let us obtain | V; | from (18) and (24). Since r # 0 in (24), for that F(a’) = 0 we

can get

a -1

aT™T—1 -

a™* if r£# 0(mod T), (27)

where a™* € GF(g")\{0}, therefore substituting (27) into (24) gives
bo—(re+e)d* _ 1. ' (28)
Then substitution of (4) for (28) gives
ro+3=uT/(¢g—1) (modT), (29)

which follows that v = ¢* for 0 < k < n— 1 belong to V; in only one position r, satisfying

(29). Thus we get

1V |= n  if satisfying (29) (30)
"1 0 if not satisfying (29) or £ = 0(mod T).

Secondly let us consider | V; | from (19),(25) and (26). From (25) if vr = 0(mod T)

and £ = 0(mod p), then v’s satisfy F(a®) =0
v=(T/w)e for 0<c<w-1, A (31)
where w = ged(r, T'), belong to V3. Then since from (26) F(a’) = 0 implies

vrl =0 (mod T) if vr # 0 (mod T). (32)
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If r£ = 0(mod T), then (32) contains v’s of T — w — n in V,, and when £ # 0(mod T),

the below v’s satisfying (32)
v=(T/d)e for 1<c<d-1 (33)

are considered as the elements in V3, where d = gcd(r¢,T). However when r{ # 0(mod T),
the number of v’s in V; satisfying (33) reduces to d — w since v’s for (31) can be included
among them of (33). Thus we get the following results concerning | V; |:

(1) when 7£ # 0(mod T), -

| d if £= 0(mod p)
|Vzl_{d-—w i £ 0(mod p), | (34)

(2) when £ = 0(mod T'),

IVI_ T-n if £= 0(mod p)
2Tl T-w—n  if £+ 0(modp),

(35)
where w = gcd(r, T') and d = ged(r{,T).

We come to Theorem 1 by substitution of (30),(34) and (35) into (20). From (22) of
Theorem 1 the linear complexity L of {b,} with £ = 1(set » = oco) shown in (5), where
rf # 0(mod T), £ # O(mod T), and d = w = ged(oo,T) = 1, can be got the same results

as (5).
Q.E.D.

We confirmed that the main equations (15) and (16) for determining the linear com-
plexity of {b,} defined by (3) or (21) can be also derived from Blahut’s Theorem [12]. It

follows that let {B,}, 0 < v < T — 1, be the discrete Fourier transform sequence of {b,}
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in GF(q™), then from (7), (12) and (17) they are represented by
T-1
B,J = Z bta—"t
t=0

T-1 -1
= Y tr(ef)a™ +bY a7
t=0 1=0

{ bYisa™i—1 forv=¢"0<k<n-—1

by izl amvm otherwise,
which are the same formulas as (15) and (16). Hence let Wt(B) denote the number of
nonzero elements of {B,} in period T, then | V |= T — Wi{(B) since B, = F(a"), and

L = Wi(B) from (14).
4 Conclusion

It was shown the linear complexity of the periodic sequences obtained by changing £
digits at arbitrary locations in each period of the m-sequence over GF (g) of period ¢™ — 1.
When the location r;, 0 < i < £ — 1 where the m-sequence is changed £ digits in each
period is represented as r; = 7o +tr for 0 < rp < T —1,and 1 < r < T — 1, the linear

complexity of the sequences were described in detail.
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