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Abstract
Among all the periodic sequences over $GF(q)$ of period $T=q^{n}-1$ , m-sequences

are characterized to have the minimum linear complexity of $n$ . In this paper periodic
sequences obtained by changing $l,$ $1\leq l\leq T$ , symbols of an m-sequence over $GF(q)$

with period $T$ are defined, and a sinple derivation for the linear complexity $L$ of
the above mentioned sequences is described. The results show that the periodic
sequences different only one symbol from the given m-sequence have the maximum
linear complexity of $T$ , and their linear complexities are in the range, $n\leq L\leq T$,
which depend on the amount of $l$ and the locations of the changed symbols of $l$ in
each period of the m-sequence.

1 Introduction

Let $\{a_{\ell}\},$ $t\geq$ O, ,be a periodic sequence over $GF(q)$ of period $T=q^{n}-1$ , where

$q=p^{m}$ and $p$ is a $P\xi^{ime}$ . The linear complexity (or linear span) of $\{a_{t}\}$ is the length

of the shortest linear feedback shift register (LFSR) which can generate the infinite se-

quence $\{a_{0}, a_{1}, a_{2}, \cdots\}$ . The Berlekamp-Massey algorithm [1] and the continued haction
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algorithn $[2],[3]$ are well-known for determining the linear complexity and the shortest

LFSR. The linear complexity of a given sequence is considered as one of the measures for

evaluating the complexity of the function or the mechanism generating it, and then means

the difficulty of predictability for the sequence. In an additive stream cipher large linear

complexity of the runninng key sequences is a necessary (but far $hom$ sufficient) condition

for its practical security $[4]-[6]$ .

Hereafter let $\{a_{\ell}\}$ be an m-sequence over $GF(q)$ with period $T$ represented as

$a_{t}=tr(\alpha^{t})$ , (1)

where $\alpha$ is a primitive element of $GF(q^{n})$ , and $tr()$ the trace function mapped onto $GF(q)$

$homGF(q^{n})$ defined by

$tr(\beta)=\sum_{j=0}^{n-1}\beta^{q^{j}}$ for $\beta\in GF(q^{n})$ . (2)

The m-sequence above has the minimum linear complexity of $n$ , therefore even if it has

good properties of randonmess, its lmear complexity so $smaU$ that we can not use it for

the key sequence in the stream cipher. It is well known $[7]-[9]$ that the linear complexity

of the sequence can be extended by adding nonlinear operations or functions to its LFSR.

Recently, a periodic sequence $\{b_{\ell}\}$ which is obtained by changing $t$ symbols of (1) by

the same amount $b$ in each period defined by

$b_{\ell}=\{\begin{array}{l}a,.+bift\equiv r.\cdot(modT)forO\leq i\leq\ell-1andr_{i}\neq r_{j}ifi\neq ja_{\ell}otherwise\end{array}$ (3)

where $b\in GF(q)\backslash \{0\}$ and $1\leq t\leq T$ , was studied on the linear complexity [10],[11].

$\{b_{\ell}\}$ has the same period $T$ as the m-sequence, and there are $(q-1)(\begin{array}{l}T1\end{array})$ different $\{b_{\ell}\}s$
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corresponding to $q-1$ choices of $b$ and $(\begin{array}{l}Tl\end{array})$ combinations of $\{r_{0},r_{1}, \cdots, r_{1-1}\}$ when $t$ is

fixed. And $b$ as above can be written as

$b=\alpha^{uT/(q-1)}$ for $0\leq u\leq q-2$ , (4)

since $\alpha^{T/(q-1)}$ is a primitive element of $GF(q)$ . The linear complexity $L$ of $\{b_{\ell}\}$ defined

by (3) takes any value $L\leq T$ , since $\{b_{\ell}\}$ can be generated by successive cyclic shift of its

one period $\{b_{0}, b_{1}, \cdots, b_{T-1}\}$ , so it was shown [10] that the linear complexity of (3) in the

case that $l=1$ becomes

$L=\{\begin{array}{l}T-nifr_{0}=uT/(q-1)Totherwise\end{array}$ (5)

Note that almost ffi the $\{b_{\ell}\}s$ as above, except $q-1$ ones from the $(q-1)T$ different

$\{b_{\ell}\}s$ , have the maximum linear complexity of $T$ much bigger than that of the m-sequence

(1).

We will clarify the linear complexity of $\{b_{\ell}\}$ including the case of $t=1$ , which is the

more general problem on the linear complexity of the sequences.

2 The Linear Complexity of the Periodic Sequence
$\{b_{t}\}$

It is known $[2],[3]$ that $L=\deg Q(x)$ if we find a pair of polynomials $(P(x), Q(x))$

such that $Q(x)$ is monic and of nuinimal degree satisfying

$\frac{P(x)}{Q(x)}=b_{0}x^{0}+b_{1}x^{-1}+\cdots+b_{\iota}x^{-n}+\cdots$ , (6)
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i.e., the coefficint of $x^{-i}$ is equaI to $b_{:}$ for all $i\geq 0$ . From (3) and (6) the lmear complexity

$L$ of $\{b_{t}\}$ can be determined by the following expressions:

$\sum_{t\geq 0}b_{\ell}x^{-\ell}$

$= \sum_{\ell\geq 0}a_{\ell}x^{-\ell}+b\sum_{k\geq 0}(\sum_{i=0}^{l-1}x^{-(kT+r_{*})})$

$= \sum_{\ell\geq 0}tr(\alpha^{\ell})x^{-\ell}+\frac{b}{x^{T}-1}\sum_{:=0}^{l-1}x^{T-r:}$ (7)

as the ratio of two polynomials without a common factor. For this purpose we will use

the foUowing lemma.

Lemma 1: Let

$f(x)=(x-\alpha^{q^{\circ}})(x-\alpha^{q^{1}})\cdots(x-\alpha^{q})-1$ (8)

be the minuimal polynomial of $\alpha$ over $GF(q)$ and $f^{l}(x)$ the formal derivative of $f(x)$ . Then

we have

$\frac{xf’(x)}{f(x)}=\sum_{\ell\geq 0}tr(\alpha^{\ell})x^{-\ell}$ . (9)

Proof: From (8) we can get

$\frac{xf’(x)}{f(x)}$
$= \sum_{0\leq k\leq n-1}\frac{x}{x-\alpha^{q^{k}}}$

$=$ $\sum_{0\leq k\leq\iota-1}\frac{1}{1-\alpha^{q^{k}}x^{-1}}$

$= \sum_{0\leq k\leq*-1}(\sum_{\ell\geq 0}\alpha^{\ell q^{b}}x^{-\ell})$

$=$
$\sum_{\ell\geq 0}(\sum_{0\leq k\leq n-1}\alpha^{\ell q^{h}})x^{-\ell}$

, (10)

which is equal to the right-hand side of (9).

Q.E.D.
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Substitution of (9) into (7) gives

$\sum_{\ell\geq 0}b_{\ell}x^{-\ell}$

$=$ $\frac{xf’(x)}{f(x)}+\frac{b}{x^{T}-1}\sum_{i=0}^{\ell-1}x^{T-r:}$

$=$ $\frac{F(x)}{x^{T}-1’}$ (11)

where $F(x)$ is a polynomial defined by

$F(x)= \frac{(x^{T}-1)xf’(x)}{f(x)}+b\sum_{=:0}^{l-1}x^{T-r_{i}}$ . (12)

Here we $wiU$ have to find the degree of the greatest common divisor of polynomials

$(F(x), x^{I’}-1)$ to obtain the lmear complexity of $\{b_{\ell}\}hom(11)$ and (12) as well as

that of (6).

Let $V$ be a subset of $v’ s,$ $0\leq v\leq T-1,$ satisfyin$g$

$V=\{v|F(\alpha^{v})=0,0\leq v\leq T-1\}$, (13)

and 1 $V|$ denotes the cardinality of $V$ . Since $aU$ the elements of $GF(q^{n})\backslash \{0\}$ are the roots

that satisfy $x^{T}-1=0,$ &om (11),(12) and (13) the linear complexity $L$ of $\{b_{\ell}\}$ can be

represented by

$L=T-|V|$ . (14)

From (12) we have

$F( \alpha^{v})=b\sum_{i=0}^{l-1}\alpha^{-vr:}-1$ (15)

for $v=q^{k},$ $0\leq k\leq n-1$ , and otherwise

$F( \alpha^{v})=b\sum_{:=0}^{1-1}\alpha^{-v\prime:}$, (16)



25

since in the right-hand $s$ide of (12) let

$G(x)= \frac{(x^{T}-1)xf^{l}(x)}{f(x)}$ ,

then we get

$G(\alpha^{v})$ $=$ $\frac{(x^{T}-1)x}{x-\alpha^{q^{k}}}|_{x=\alpha}$.
$=$ $\{\begin{array}{l}-1ifv=q^{k},0\leq k\leq n-10otherwise\end{array}$ (17)

We have to obtain $|V|$ given as (13), therefore need to solve (15) and (16) for that

$F(\alpha^{v})=0$ for $0\leq v\leq T-1$ . Let us define the following two subsets of $V$ , i.e.,

$V_{1}=$ {$v|F(\alpha^{v})=0$ in (15), $v=q^{k},$ $0\leq k\leq n-1$ }, (18)

and

$V_{2}=$ {$v|F(\alpha^{v})=0$ in (16), $v\neq q^{k}$ }, (19)

where $|V|=|V_{1}|+|V_{2}|$ since $|V_{1}\cap V_{2}|=0$ , and $|V_{1}|$ takes two values either $0$ or $n$ .

Hence $hom(14),(18)$ and (19) the linear complexity can be written by

$L=T-|V_{1}|-|V_{2}$ . (20)

In general obtaining $|V_{1}|$ and $|V_{2}|hom(15)$ and (16) in an arbitrary $t$-tuple $\{r_{0},$ $r_{1},$ $\cdots$ ,

$r_{l-1}\}$ is not an easy problem, especially in the case of a big order $q^{n}$ , but for the following

specific $t$-tuples $r_{i}s$ they will be obtained analytically.

3 The Linear Complexity of $\{b_{t}\}$ in Specific l-Tuples
$r_{i}s$

In this section we will prove the linear complexity of $\{b_{\ell}\}$ defined by (3) in specific

$p$-tuples $r;s$ by applying the preceding considerations.
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Theorem 1: Let $\{b_{\ell}\}$ over $GF(q)$ with period $T$ obtained from the m-sequence shown in

(1) be given as

$b_{\ell}=\{\begin{array}{l}a,.+ir+b0\leq i\leq\ell-1ift\equiv r_{0}+ir(modT)a_{\ell}otherwise\end{array}$ (21)

where the three parameters $r,$ $r_{0}$ and $\ell$ take values $1\leq r\leq T-1,0\leq r_{0}\leq T-1$ , and

$1\leq t\leq T/w(w=gcd(r,T))$ , respectively. If $t=1$ , then suppose $r=\infty$ and $\alpha^{\infty}=0$ .

The linear complexity $L$ of $\{b_{\ell}\}$ is given as follows:

(1) when $rt\neq 0(mod T)$ ,

$L=\{\begin{array}{l}T-d+wift\neq 0(modp)T-d-n+wifl\neq 0(modp)andsatisfying(18)T-dif\ell\equiv 0(modp)T-d-nif\ell\equiv 0(modp)andsatisfying(18)\end{array}$ (22)

(2) when $rt\equiv 0(mod T)$ ,

$L=\{nn+w$ $ifift\equiv 0(mod p)t\neq 0(mod p)$ (23)

where $d=gcd(rt,T)$ .

Proof: By replacing $r_{i}$ by $r_{0}+ir$ in (15), we have

$F(\alpha^{v})$ $=$ $b \sum_{i=0}^{l-1}(\alpha^{-r_{0}-:}’)^{q^{h}}-1$

$=$ $b \alpha^{-r.q^{k}}(\frac{\alpha^{-tl}-1}{\alpha^{-r}-1})^{q^{b}}-1$ , (24)

and then $hom(16)$ we have

$F(\alpha^{v})$ $=$ $b \sum_{=:0}^{1-1}\alpha^{(-r\circ-ir)v}$ for $v\neq q^{k},$ $0\leq k\leq n-1$
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$=\ell b\dot{\alpha}^{-vr}$’ if $vr\equiv 0(mod T)$ (25)

$=b \alpha^{-vr}\frac{\alpha^{-vr1}-1}{\alpha^{-vr}-1}$ if $vr\neq 0(mod T)$ . (26)

First let us obtain $|V_{1}|hom(18)$ and (24). Since $r\neq 0$ in (24), for that $F(\alpha^{v})=0$ we

can get

$\frac{\alpha^{-r\ell}-1}{\alpha^{\neg}-1}=\alpha^{-}$ if $rt\neq 0(mod T)$ , (27)

where $\alpha^{-}\in GF(q^{n})\backslash \{0\}$ , therefore substituting (27) into (24) gives

$b\alpha^{-(r.+\cdot)q^{h}}=1$ . (28)

Then substitution of (4) for (28) gives

$r_{0}+s\equiv uT/(q-1)(mod T)$ , (29)

which follows that $v=q^{k}$ for $0\leq k\leq n-1$ belong to $V_{1}$ in only one position $r_{0}$ satisfying

(29). Thus we get

$|V_{1}|=\{n0$ $ifnotsatisfying(29)ifsatisfy\dot{m}g(29)$

or $r\ell\equiv 0(mod T)$ . (30)

Secondly let us consider 1 $V_{2}|$ from (19),(25) and (26). From (25) if $vr\equiv 0(mod T)$

and $t\equiv 0(mod p)$ , then $v’ s$ satisfy $F(\alpha^{v})=0$

$v=(T/w)c$ for $0\leq c\leq w-1$ , (31)

where $w=gcd(r,T)$ , belong to $V_{2}$ . Then since ffom (26) $F(\alpha^{v})=0$ implies

$vrt\equiv 0(mod T)$ if $vr\neq 0(mod T)$ . (32)
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If $rt\equiv 0(mod T)$ , then (32) contains $v’ s$ of $T-w-n$ in $V_{2}$ , and when $rt\neq 0(mod T)$ ,

the below $v’ s$ satisfying (32)

$v=(T/d)c$ for $1\leq c\leq d-1$ (33)

are considered as the elements in $V_{2}$ , where $d=gcd(rt,T)$ . However when $r\ell\neq 0(mod T)$ ,

the number of $v’ s$ in $V_{2}$ satisfying (33) reduces to $d-w$ since $v’ s$ for (31) can be included

among them of (33). Thus we get the following re$s$ults concerning 1 $V_{2}|$ :

(1) when $r\ell\neq 0(mod T)$ ,

$|V_{2}|=\{\begin{array}{l}dift\equiv 0(modp)d-wjf\ell\neq 0(modp)\end{array}$ (34)

(2) when $r\ell\equiv 0(mod T)$ ,

$|V_{2}|=\{\begin{array}{l}T-nif\ell\equiv 0(modp)T-w-nif\ell\neq 0(modp)\end{array}$ (35)

where $w=gcd(r, T)$ and $d=gcd(rt,T)$ .

We come to Theorem 1 by $s$ubstitution of (30),(34) and (35) into (20). From (22) of

Theorem 1 the linear complexity $L$ of $\{b_{\ell}\}$ with $\ell=1(setr=\infty)$ shown in (5), where

$rt\neq 0(mod T),$ $P\neq 0(mod T)$ , and $d=w=gcd(\infty,T)=1$ , can be got the same results

as (5).

Q.E.D.

We confirmed that the main equations (15) and (16) for $detern\dot{u}I\dot{u}ng$ the lnear com-

plexity of $\{b_{t}\}$ defined by (3) or (21) can be also derived &om Blahut’s Theorem [12]. It

follows that let $\{B_{v}\},$ $0\leq v\leq T-1$ , be the discrete Fourier transform sequence of $\{b_{t}\}$
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in $GF(q^{n})$ , then &om (7), (12) and (17) they are represented by

.

$B_{v}$ $=$ $\sum_{\ell=0}^{T-1}b_{\ell}\alpha^{-v\ell}$

$=$ $\sum_{\ell=0}^{T-1}tr(\alpha^{\ell})\alpha^{-vt}+b\sum_{i=0}^{l-1}\alpha^{-vr:}$

$=$ $\{\begin{array}{l}b\sum_{i=0}^{t-1}\alpha^{-vr_{i}}-1b\sum_{i=0}^{1-1}\alpha^{-vr}\cdot\end{array}$ $forv=q0\leq k\leq n-1otherwise^{k}$

,

which are the same formulas as (15) and (16). Hence let $Wt(B)$ denote the number of

nonzero elements of $\{B_{v}\}$ in period $T$ , then $|V|=T-Wt(B)$ since $B_{v}=F(\alpha^{v})$ , and

L=Wt(B)&om (14).

4 Conclusion

It was shown the linear complexity of the periodic sequences obtained by changing $t$

digits at arbitrary locations in each period of the m-sequence over $GF(q)$ of period $q^{n}-1$ .

When the location $r_{i},$ $0\leq i\leq t-1$ where the m-sequence is changed $\ell$ digits in each

period is represented as $r:=r_{0}+ir$ for $0\leq r_{0}\leq T-1$ , and $1\leq r\leq T-1$ , the linear

complexity of the sequences were described in detail.
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