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Department of Mathematical Sciences, University of Tokyo

Introduction

About ten years ago, J. F. Colombeau introduced a class $\mathcal{G}(R^{n})$ of generalized
functions admitting a structure of associative algebra. This new class of general-
ized functions includes Schwartz’ distributions, satisfies Leibniz’ rule concerning
differentiation of the product of two elements, and it also has a sheaf structure.
Instead, for example,

(1) $x\cdot\delta(x)\neq 0$ , $x \cdot\frac{1}{x+iO}\neq 1$ in $\mathcal{G}(R^{n})$ .

Such inequalities are inevitable if we admit the associative law among functions
$\delta(x),$ $x$ and $1/(x+iO)$ . However this theory has another equality, $\approx$ (so-called,
association), which is an equivalence relationship in $\mathcal{G}(R^{n})$ . In fact,

(2) $x\cdot\delta(x)\approx O$ , $x \cdot\frac{1}{(x+iO)}\approx 1$ .

Though $\{f\in \mathcal{G}(R^{n});f\approx 0\}$ is not an ideal, this kind of equalities in a weak
sense is indispensable for the non-linear theory of generalized functions.

Further, Oberguggenberger successfully introduced a subalgebra $\mathcal{G}^{\infty}(R^{n})$

similar to $C^{\infty}(R^{n})$ in $\mathcal{D}’(R^{n})$ . Indeed, this notion on smoothness for Colombeau
genealized functions easily induces the definitions of singular supports and wave
front sets similar to those for distributions. Moreover, several mathematicians
including Professor Pilipovi\v{c}, who introduced me this magnificent theory, are
tackling pseudo-differential calculus for $\mathcal{G}(R^{n})$ .

The aim of this note is in giving a simpler definition of generalized functions
of Colombeau’s type, and in improving the definition of” association” as the new
association will just fit Oberguggenberger’s $\mathcal{G}^{\infty}(R^{n})$ .
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1. Colombeau’s definitions

Definition 1. Let $\mathcal{A}_{q}(q=0,1,2, \ldots)$ be a decreasing sequence of subsets
of $C_{0}^{\infty}(R^{n})$ defined as follows:

(3) $\mathcal{A}_{q}(R^{n})=\{\phi\in C_{0}^{\infty}(R^{n});\int_{R^{n}}x^{\alpha}\phi(x)dx=\delta_{0}, |\alpha|, 0\leq\forall|\alpha|\leq q\}$

for $q=0,1,2,$ $\ldots$ . Indeed,

$\phi\in C_{0}^{\infty}(R^{n})$ belongs to $\mathcal{A}_{q}$ if$f\phi(\xi)\wedge=1+O(|\xi|^{q+1})$ at $\xi=0$ ,

where $\phi(\xi)\wedge$ is the Fourier transform of $\phi$ . Hence, for any $\varphi\in \mathcal{A}_{0}$ , we have

$(1+ \sum_{|\alpha|=1}^{q}C_{\alpha}\partial_{x}^{\alpha})\varphi(x)\in \mathcal{A}_{q}$

for some suitable constants $C_{\alpha}$ .
Moreover we define a one-parameter deformation $\phi_{\epsilon}$ of $\phi\in \mathcal{A}_{q}$ by

(4) $\phi_{\epsilon}(x)=\frac{1}{\epsilon^{n}}\phi(\frac{x}{\epsilon})$ ,

which also belongs to $\mathcal{A}_{q}$ for any $\epsilon>0$ . Then we have the following definition
due to Colombeau:

Definition 2. Let $\Omega$ be an open set in $R^{n}$ . Then, a mapping

(5) $R$ : $\mathcal{A}_{0}\ni\phi-\rangle$ $R(\phi, x)\in C^{\infty}(\Omega)$

is said to be moderate if, for any $K\subset\subset\Omega$ , any $\alpha\geq 0$ , there exists a positive
constant $N_{K,\alpha}$ satisfying an estimate

(6) $\sup_{x\in K}|\partial_{x}^{\alpha}R(\phi_{\epsilon}, x)|\leq C_{K,\alpha,\phi}\epsilon^{-N_{K,\alpha}}$ for $\forall\phi\in \mathcal{A}_{N_{K,\alpha}},$ $0<\forall\epsilon<\epsilon_{K,\alpha,\phi}$

with some positive constants $C_{K,\alpha,\phi}$ and $\epsilon_{K,\alpha,\phi}$ .
Further, $R$ is said to be null if, for any $K\subset\subset\Omega$ , any $\alpha$ , there exist a

positive constant $N_{K,\alpha}$ and an increasing sequence $\{a_{q}(K, \alpha)\}_{q0}^{\infty_{=}}$ of positive
numbers with $\lim_{qarrow\infty}a_{q}=\infty$ such that

(7) $\sup_{x\in K}|\partial_{x}^{\alpha}R(\phi_{\epsilon}, x)|\leq C_{K,\alpha,\phi}\epsilon^{a_{q}(K,\alpha)-N_{K,\alpha}}$

for $\forall q\geq N_{K,\alpha},$ $\forall\phi\in \mathcal{A}_{q},$ $0<\forall\epsilon\leq\epsilon_{K,\alpha,\phi}$

with some positive constants $C_{K,\alpha,\phi},$ $\epsilon_{K,\alpha,\phi}$ .
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It is easy to see that the totality of null maps constitutes an ideal in the
algebra of the totality of moderate maps. Here the product $RR’$ of maps $R,$ $R’$

is defined by its value at $\phi$ :

$(RR’)(\phi, x)=R(\phi, x)R’(\phi, x)$ .

Hence we have

Definition 3.

$\mathcal{G}(\Omega)=$ {moderate maps}/{null maps}.

Then the distributions on $R^{n}$ are imbedded by

(8) Cd: $\mathcal{D}’(R^{n})\ni f\mapsto[(Cdf)(\phi, x)]\in \mathcal{G}(R^{n})$

with

(9) (Cd$f$ ) $( \phi, x)=\int_{R^{n}}f(x+y)\phi(y)dy$ .

It is easy to see that “ Cd” has a local property, and so that “ Cd” induces a sheaf
imbedding

Cd: $\mathcal{D}’arrow \mathcal{G}$

The following theorem is the most basic in the theory of Colombeau, which
is directly derived from the moment property of $\mathcal{A}_{q}$ :

Theorem 4.

(Cd$f$ ) $(\phi, x)-f(x)$ : $\mathcal{A}_{0}arrow C^{\infty}(\Omega’)$

is a null map for any $f\in c\infty(\Omega)$ and any $\Omega’\subset\subset\Omega$ .

As a direct consequence of this theorem, we have

Theorem 5. $C^{\infty}(\Omega)$ is imbedded by Cd in $\mathcal{G}(\Omega)$ as a subalgebra.
Here we introduce Oberguggenberger’s $\mathcal{G}^{\infty}$ :

Definition 6. $[R(\phi, x)]$ belongs to $\mathcal{G}^{\infty}(\Omega)$ iff $R(\phi_{\epsilon}, x)$ satisfies the following
estimates: For any $K\subset\subset\Omega$ , there exists a positive constant $N_{K}$ such that

(10) $\sup_{x\in K}|\partial_{x}^{\alpha}R(\phi_{\epsilon}, x)|\leq C_{K,\alpha,\phi}\epsilon^{-N_{K}},$
$\forall\alpha\geq 0,$ $\forall\phi\in \mathcal{A}_{N_{K}},$ $0<\forall\epsilon\leq\epsilon_{K,\alpha,\phi}$ .

Corollary 7. $\mathcal{G}^{\infty}(\Omega)$ is a subalgebra of $\mathcal{G}(\Omega)$ closed under differentiation
satisfying that

(11) $\mathcal{D}’(\Omega)\cap \mathcal{G}^{\infty}(\Omega)=C^{\infty}(\Omega)$ .
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As above, the theory seems to be successful, however, as stated at (1),
there is a heavy difficulty; that is, two functions in $\mathcal{G}(\Omega)$ are hardly equal to
each other. For example,

Example 8. For any $\varphi\in C^{\infty}(R^{n})$ we have

$\varphi(x)\delta(x)=0$ in $\mathcal{G}(\Omega)$ iff $\varphi(x)=O(|x|^{\infty})$ at $x=0$ .

To solve such a difficulty Colombeau introduced an equivalence relationship
$\approx$ :

Definition 9. For a function $f(x)=[R(\phi, x)]\in \mathcal{G}(\Omega)$ we define $f\approx O$ by

(12) $\lim_{\epsilonarrow 0}R(\phi_{\epsilon}, x)=0$ in $\mathcal{D}’(\Omega)$ ,

that is, for any fixed $\psi\in C_{0}^{\infty}(\Omega)$ we have

(13) $\lim_{\epsilonarrow 0}\int_{\Omega}R(\phi_{\epsilon}, x)\psi(x)dx=0$ .

Remark 10. The totality $\{f\in \mathcal{G}(\Omega);f\approx O\}$ of null functions in the sense
of association is not an ideal of $\mathcal{G}(\Omega)$ , but is closed under the operations by linear
differential operators with $c\infty$ -coefficients.

Example 11. For two continuous functions $f(x),$ $g(x)$ on $\Omega$ , we have

(14) (Cd$f$ ) $(Cdg)\approx Cd(fg)$ .

Further (14) also holds for two distributions $f,$ $g$ which admit a normal product
$fg$ as distributions.

Example 12.

(15) $\delta(x)\cdot(\frac{1}{x+i0}+\frac{1}{x-i0})\approx-\delta’(x)$ .

(15) is interesting for nonlinear theory of generalized functions.
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2. New definitions

We introduce a new definition of generalized functions of Colombeau’s type,
which is much simpler because no sequences like $\{a_{q}\}_{q0}^{\infty_{=}}$ are necessary. Though
the relationship between those definitions is not clear now, many notions con-
cerning regularity for generalized functions are easily defined under the new
definition.

Definition 13. Let $S$ be the space of all rapidly decreasing smooth func-
tions on $R^{n}$ . Then, a subset $S_{0}\subset S$ is defined as follows:

(16) $S_{0}=$ { $\phi\in S;\phi(\xi)\wedge=1+O(|\xi|^{\infty})$ as $\xiarrow 0$ }.

It is clear that for an element $\phi\in S_{0}$ every moment other than of degree $0$

vanishes. Further the one-parameter family $\{\phi_{\epsilon}; \epsilon>0\}$ is contaied in $S_{0}$ . Hence
we can introduce the following definition of generalized functions:

Definition 14. Let $\Omega$ be an open set in $R^{n}$ . Then, a mapping

(17) $R:S_{0}\ni\phi\mapsto R(\phi, x)\in C^{\infty}(\Omega)$

is said to be moderate if, for any $K\subset\subset\Omega$ any $\alpha\geq 0$ , there exists a positive
number $N_{K,\alpha}$ satisfying an estimate

(18) $\sup_{x\in K}|\partial_{x}^{\alpha}R(\phi_{\epsilon}, x)|\leq C_{K,\alpha,\phi}\epsilon^{-N_{K,\alpha}}$ for $\forall\phi\in S_{0},0<\forall\epsilon\leq\epsilon_{K,\alpha,\phi}$

with some positive constants $C_{K,\alpha,\phi},$
$\epsilon_{K,\alpha,\phi}$ .

Further, $R$ is said to be null if, for any $K\subset\subset\Omega$ , any $\alpha$ , any $\phi\in S_{0}$ ,
and any positive integer $l$ , there exist some positive constants $C_{K,\alpha,\phi,l},$ $\epsilon_{K,\alpha,\phi,l}$

satisfying

(19) $\sup_{x\in K}|\partial_{x}^{\alpha}R(\phi_{\epsilon}, x)|\leq C_{K,\alpha,\phi,l}\epsilon^{l}$ for $0<\forall\epsilon\leq\epsilon_{K,\alpha,\phi,l}$ .

Hence we have our new definition of generalized functions:

Definition 15. Under Definition 14, we introduce a new class $\mathcal{G}*of$ alge-
bras of generalized functions by

(20) $\mathcal{G}_{*}(\Omega)=$ {moderate maps}/{null maps}.

Though no element of $S_{0}$ has compact support, the map

(21) $\mathcal{E}’(R^{n})\ni f\mapsto[(Cdf)(\phi, x)]\in \mathcal{G}_{*}(R^{n})$

is well-defined and has locality. Hence we obtain a sheaf imbedding

Cd: $\mathcal{D}’arrow \mathcal{G}*\cdot$
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Theorems 4 and 5 hold also for our $\mathcal{G}*$

’ further the definition of smoothness is
given in the following way:

Definition 16. $[R(\phi, x)]$ belongs to $\mathcal{G}_{*}^{\infty}(\Omega)$ iff, for any $K\subset\subset\Omega$ , there
exists a positive constant $N_{K}$ such that

(22) $\sup_{x\in K}|\partial_{x}^{\alpha}R(\phi_{\epsilon}, x)|\leq C_{K,\alpha,\phi}\epsilon^{-N_{K}}$ for $\forall\alpha\geq 0,$ $\forall\phi\in S_{0},0<\forall\epsilon\leq\epsilon_{K,\alpha,\phi}$ .

Under this definition of smoothness we obtain Corollary 7. However the most
important result for us is that we can justify $\mathcal{G}_{*}^{\infty}$-class in the sense of association
if we modify the definition $of\approx as$ follows:

Definition 17. For a function $f(x)=[R(\phi, x)]\in \mathcal{G}_{*}(\Omega)$ we define $f\approx O$

by the following: For any $K\subset\subset\Omega$ and any $\phi\in S_{0}$ , there exist positive constants
$\theta_{K,\phi},$ $C_{K,\phi}$ such that, for $\forall\phi\in S_{0}$ and $\forall\psi\in C_{0}^{\infty}(K)$ , we have an estimate

(23) $| \int_{K}R(\phi_{\epsilon}, x)\psi(x)dx|\leq C_{K,\phi}\epsilon^{\theta_{K,\phi}}\sup\{|\partial_{x}^{\alpha}\psi(x)|;x\in K, |\alpha|\leq C_{K,\phi}\}$

for $0<\forall\epsilon\leq\theta_{K,\phi}$ .

Remark 18. Clearly to see, condition (23) is stronger than (13). Indeed,
in the new association, only convergences of positive power speed w.r. $t$ . $\epsilon$

are admitted. However we have the facts similar to Remark 10, Example 11,
Example 12 though one must replace continuity by H\"older continuity.

As the main consequence from our new definitions we have the following
theorem, which shows that generalized smoothness is in harmony with associa-
tion in our theory.

Theorem 19. Let $f(x)$ be a distribution on $\Omega$ and $g(x)\in \mathcal{G}_{*}^{\infty}(\Omega)$ . Suppose
that

$f\approx g$ in $\mathcal{G}_{*}(\Omega)$ .

Then, $f\in C^{\infty}(\Omega)$ .

Remark 20. According to Professor Pilipovi\v{c}, the fact in Theorem 19 is
false in the original theory of Colombeau and Oberguggenberger.


