
151

Combinatorics on Soliton Cellular
Automata

Department of Mathematical Sciences, University of Tokyo, Japan
Makoto TORII (鳥居真)*

1 Introduction

Completely integrable systems have many notable properties. Korteweg-
de Vries (K-dV) system, which is described by nonlinear partial differential
equation

$u_{t}=uu_{x}+u_{xxx}$

is one of well-known completely integrable systems. This system has the
following properties which is observed among many integrable systems:

1. the existence of N-soliton solutions,

2. the existence of an infinite number of time evolution invariant,

3. exact solvability by analytical methods.

The N-soliton solution describes N wave packets which interact like parti-
cles; the orbits of their peaks shift when they collide. These phenomena are
called phase shifts. In the N-soliton solution, the wave packets are separated
each other after long time evolution, and their individuality are restored.

* email:torii@sat.t.u-tokyo.ac.jp

数理解析研究所講究録
第 856巻 1994年 151-163

152

Preservation of individuality comes from The existence of an infinite number

of time invariants, and the invariant property comes from the existence of

symmetries of a system.

Cellular automata are dynamical systems which consist of time evolution

rules of values on lattice. The values are discrete, often only two. This

means that cellular automata are discrete system in space, time, and value.

Combinatorial properties, which have not been reported in other integrable
systems, arises from this discreteness.

A filter automaton is one of the cellular automata; both previous state

and a part of present state determines the value on a site at the present state.

Soliton phenomena are observed in many filter automata(see [5]). A filter
automaton considered in this paper is proposed by Takahashi and Satsuma,

which carries only soliton solutions (see [3]). The lattice is one dimensional
and only two values 1’ or 0

’ are assigned on every site of the lattice. The

number of assigned (1’ is finite. Time evolution rules of the automaton are
quite simple, which will be mentioned in the next section.

In this paper, we show that the time invariants of the automaton are

constructed practically by combinatorial way. In section 2, time evolution

rules of the automaton are given, The 2-soliton behavior of the automaton
is also given exhibited in this section. In section 3, some combinatorial
techniques concerned with the automaton are introduced. These techniques

include the Robinson-Schensted algorithm, which plays an interesting role in
the field of group representation theory. In section 4, the time invariants of
the automaton are constructed using combinatorics $e^{\backslash }\langle plai_{1}\downarrow ed$ in the section
3.

153

2 Time evolution rules

The soliton cellular automaton evolves obeying the following rules:

1. select the unfixed and most left “1”;

2. search the right side of the selected “1” and move it to the nearest $0’$,

after this operation, fix the moved “1”;

3. if there remains the unfixed ((
$1’$, repeat the above proccdu $t\cdot(\vee\backslash ;$ il

\cdot

all $((1’ s$

are fixed, release all “1’ s and repeat from the first.

The time evolution process of a state of the automaton

. . . $01101000\cdots$.

is demonstrated below. First, the most left “1” is selected, which is indicated
in the next line by a frame.

. . . $01101000\cdots$.

The selected 1’ is moved to the nearest 0
’ in the right side of the (1’

which is indicated above by another frame. We get an intermediate state

. . . 001 I 1000 \cdots ,

where the underline signifies that the number on it is fixed. Next, the most

right and unfixed “1” is selected, which indicated below by a frame.

. . . 00 1 I 1 $000\cdots$.

The selected “ 1” is moved to the nearest 0 ’ in the right side of the “ 1” which
is indicated above by another frame. Then we get another intermediate state

. . . $000\underline{1}1\underline{1}00\cdots$.

154

Finally, the remained “1” is moved to the nearest right 0
’ in the same way.

Now we get
. . . $000\underline{1}0\underline{1}\underline{1}0\cdots$,

where all the “1’ s are fixed. This is the next state obtained as the result

of time evolution. Thereafter we release all the “1’ s and repeat the same
procedure above to get the further state.

The 2-soliton behavior of the automaton is exhibited in the following
example. The high speed soliton “11” collides with the low speed soliton

1’ We observe a phase shift between the third row and fourth row.

. . . 11000100000000 \cdots

. . . $00110010000000\cdots$

. . . $00001101000000\cdots$

. . . $00000010110000\cdots$

. . . $00000001001100\cdots$

. . . $00000000100011\cdots$

3 Combinatorial techniques

In this section some combinatorial materials which are useful to treat the au-
tomaton are introduced. They are available to construct the time invariants
of the automaton.

3.1 Dyck language

The first material is some sequence of two letters called as the Dyck language
(see [1]).

155

The letters of sequences are written as (and “)” The following condi-
tions define the Dyck language;

\bullet each sequence has the same number of (and ‘)”,

\bullet the letter “(“ appears more or the same times than the letter “)” in
the left side of any letters in each sequence.

For example, the next 5 sequences are whole elements of Dyck language
of 6 letters.

$((())),$ $(())(),$ $(()())..’()(()),$ $()()()$

3.2 Stack representative permutations

Second material is a property which a part of permutations have, called stack

representativity.
The sequence $(x_{1}, x_{2}, \ldots , x_{n})$ denotes a permutation of $(1, 2, \ldots, n)$. A

subsequence of length k in this permutation is given by $(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}})$ with
$i_{1}<i_{2}<\cdots<i_{k}$. The stack representativity is defined by subsequences in
a permutation. If the case $x_{i}>x_{k}>x_{j}$ never occurs for any subsequence of

length 3, (x_{i}, x_{j}, x_{k}) , then the permutation is called stack representative.

3.3 Non-crossing arcs on the half plane

The naming of stack representativity comes from the fact that any stack rep-

resentative permutation can be generated by two operations to a stack:pushing
and popping. A stack can be displayed as piled up boxes. The operation
pushing x to this stack is illustrated as follows:

156

Popping x from the $stac1\backslash ’$ is the inverse operation, that is,

In a pushing operation, x is called an input to the stack and in a popping
,an output from the stack. The hight of a number in a stack is defined as

the number of boxes below the number. It is regarded that the number in

the lowest box has the hight 0 .
A stack representative permutation can be obtained as numbers which

are assigned to non-crossing arcs on the half-plane $\{(t, h)|t, h\in \mathbb{R}, h\geq 0\}$.
Considering t as the time value of operations to a stack and h as the hight of

the numbers in the stack, the orbits of numbers draw non-crossing arcs on the
half-plane. The both ends of each arc lie on the edge of the half-plane. We

assign natural n umbers 1, 2, \cdots,n to the left ends of these arcs from left to

right, where n is the number of the arcs. Thereafter the same number given
to the left end of an arc is assigned to the right end. A stack representative
permutation is obtained by picking up the numbers of right ends from left
to right.

For example, a stack representative permutation (2, 1, 3) is obtained by

the following stack operations shown in figure 1. As seen from this figure,

$\bigcap_{3\underline{3}}$

Figure 1:

the left end of each arc means that the number assigned on the arc is pushed

157

to the stack and the right one, the underlined end, means that the number

is popped. That is, an arc is an orbit of a number which assigned on the

arc. By the method mentioned above, one can obtain a stack representative
permutation from operations to a stack.

3.4 Standard Young tableaux

Third material is the Robinson-Schensted algorithm, which extracts a prop-
erty of permutations. Lct $(\lambda_{1}, \lambda_{2}’, \cdots , \lambda_{k})$ be a $\downarrow)_{\dot{C}}\iota\iota\cdot 1i1I$ ion 01^{\cdot} a nat u ral $l\downarrow unll\supset cr$

n that is a sequence of non-increasing natural number and their total sum is
equal to n .

$\lambda_{1}\geq\lambda_{2}\geq\cdots\geq\lambda_{k}>0$, $\sum_{i=1}^{k}\lambda_{i}=n$.

A Young diagram is square arrayed boxes which has λ_{i} boxes in the i-th row.
The number of boxes in the Young diagram is denoted by ?1.

A Young diagram which has numbers in its boxes is called Young tableau.
Let us put numbers 1, 2, . . . , n in each box in a Young diagram by obeying
the following regulations;

\bullet each number appears just once,

\bullet the numbers in each row are strictly increasing from left to right,

\bullet the numbers in each column are strictly increasing from top to bottom.

A Young tableau satisfying the regulations is called the standard Young
tableau.

3.5 The Robinson-Schensted algorithm

The Robinson-Schensted algorithm gives an correspondence between a per-

mutation and a pair of standard Young tableaux $(P, Q)(se\epsilon[2],[4])$. The left
one of this pair is named the P-symbol and the right one the Q-symbol.

158

This algorithm is complicated a little. However, the algorithm is made by

repeating simple procedure, row insertion. The row is a sequence of boxes,

and each box has numbers arranged in a strictly increasing order.
Suppose that we insert a number x to a row. The row insertion rules are

given as follows;

1. if the row is empty, make a new box and put the number x in it,

2. otherwise pick up the number in the boxes from left to right and com-
pare x with each of them successively, then

\bullet if x is greater than the number in the box, go on comparison x

with the number in the next right box,

\bullet if x is less than the n umber in the box, exchange the nn mber in
the box for x and eliminate the number in the box from the row,

3. if there is no greater number than x in the row, add a new box to the

right end of the row and put x in it.

obtained and no number is elimina,ted.

We can apply these row insertion rules, to a $st_{d}\prime nda\iota\cdot d\searrow’onng$ tableau as
follows;

1. split the standard Young tableau into the rows,

2. insert x to the first row,

3. if a number is eliminated from the first row, insert the eliminated num-
ber to the second row, until no number is eliminated and a new box is
created, insert the eliminated number to the next row.

159

procedure to a standard Young tableau successively. A permutation $(x_{1}, x_{2}, \ldots, x_{n})$

is given the correspondence a pair of standard Young tableaux by the follow-
ing procedure;

1. in an initial state, let P and Q be empty tableaux,

2. insert the elements of the permutation to the P-symbol from x_{1} to x_{n} ,

3. when the insertion of τ_{i} is done, a new box is created in P , at the same

position of the new box in P , create a new box in Q and put i in it.

A demonstration would explain the algorithm well. Let us consider the
permutation (5, 6, 3, 1, 2, 4) for example. In initial state, $(P, Q)=(\emptyset, \emptyset)$.

After the first insertion, insertion of 5, we obtain

$(P, Q)=(5$, 1 $)$.

Next, we insert the 6 to this tableaux. Since 6 is greater than 5, the greatest

number in the first row, 6 makes a new box at the right end of the first row.
Thus we obtain

We then insert 3 to this tableaux. 3 is smaller than 5. So 3 eliminates 5 from

the first row and the eliminated 5 makes a new box in the second row. The

tableaux

160

is obtained as the result. Next, the turn of 1. Since 1 is smaller than 3,

which is the first element of the first row, it eliminates 3 and the eliminated

3 goes to the second row. But 3 is smaller than 5, which is the elements of

the second row. Hence 3 eliminates 5 from the second row. The eliminated
5 makes a new box in the third row. Thus we obtain

By following the similar procedure, we can complete the Robinson-Schensted
algorithm to obtain

for the permutation (5, 6, 3, 1, 2, 4).

4 Construction of time invariants

Using combinatorial techniques explained above, we can construct a time in-
variants of the automaton. The construction process consists of three corre-
spondences: from a state of the automaton to an element of Dyck language,
from an element of Dyck language to a stack representative permutation,
and from a stack representative permutation to a pair of standard Young
tableaux. A time invariant is obtained as the sbape of the Young tableau.
Regarding empty columns have zero boxes, a shape of Young tableau gives
an infinite number of time invariants.Namely, the number of boxes in the i-th
column.

The way of construction is explained by demonstrating the following ex-
ample of the state of the automaton,

. . . $001101000100\cdots$.

161

4.1 Correspondence to an element of Dyck language

We obtain an element of Dyck language by rewriting $\backslash 0$
’ and (1’ in a state

of the automaton as follows;

1. rewrite all the “1’ s in the state to “ $(s$,

2. rewrite $0’ s$ from left to right by the following manner,

\bullet if the nuniber of “(sw hicb is in the $lcl\cdot t$ side of’ the present 0
’

is $g\iota\cdot c_{\dot{\epsilon}}|te\iota\cdot t1\iota_{\dot{C}}\iota l|t$)hat $o1^{\cdot}(()s, I^{\cdot}(\nu sW1^{\cdot}i1()1$ IIe $\backslash \backslash 0$

’ to $()$,

\bullet otherwise, eras e 0
’

By applying these rules to the example, we obtain tbe sequence $(()$ () $)$ $()$

as shown below;

. . . 0 0 1 1 0 1 0 0 0 1 0 0 . . .

. . . $\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$

$(()())$ $($ $)$

4.2 Correspondence to stack representative permu-
tations

Considering “(” and “)” as pushing to and popping from a stack, a stack rep-
resentative permutation is obtained. In the case of this example, $(()())$ $()$

is translated to the following operations to a stack(see section 3.3).

1. push “1” to the $stac1_{\backslash ’}$.

2. push (2’ to the stack.

3. pop 2’ from the stack.

4. push 3’ to the stack.

162

5. pop 3’ from thc stack.

6. pop “1” from the stack.

7. push 4’ to the stack.

8. pop 4’ from the stack.

These operations are displayed pictorially as follows:

Where the hatched numbers are the outputs from the stack. As a result of

the operations, we obta,in a stack representative permutation (2, 3, 1, 4).

4.3 Correspondence to Young tableaux

A stack representative permutation is given a correspondence to a pair of
Young tableaux by the Robinson-Schensted algoritbrn(see section 3.5). The
stack representative permutation which we obtained above corresponds to a

pair of Young tablea ux

The shape of these Young tableaux are invariants of time evolution. In-
deed the state of the automaton which comes after the state of this example
is

. . . $000010110010\cdots$,

which gives the Young tableaux

We see that this pair of Young tableaux have the $S\dot{c}11ne$ sliape as that of the
initial state.

163

5 Conclusions and prospect

We have shown that the invariants of the soliton cellular automaton are given
as shapes of the Young tableau through three combinatial correspondences:

Dyck language , stack representative permutation (stack operations) and the

Robinson-Schensted algorithm. These conbinatorics are related to some al-

gebras, representation theory, and symmetric group and Bruhat ordering on

it(for example, see [4]). It would be an interesting problem to investigate the

relation between our results and such mathematical concepts.

References

[1] Hopcroft, John E. - Ullman, Jeffrey D., Formal languages and their

relation to automata, Addison-Wesley, 1969

[2] Knuth, Donald Ervin, The art of computer programming vol.3 Addison-

Wesley, 1973

[3] Takahashi, Daisuke and Satsuma, Junkichi, A Soliton Cellular Automa-
ton, Journal of The Physical Society Japan, 5910 (1990), 3514-3519

[4] Sagan, Bruce E., The symmetric group, Wadsworth &Brooks/Cole,

1991

[5] Wolfram, Stephen (ed.), Theory and applications ot’ cellular automata,

World Scientific, 1986

