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Introduction This paper provides an overview of recent joint work of the author and

V. Ya. Golodets, Institute of Low Temperature Physics and Engineering, Kharkov; full

details will appear elsewhere [GS 2].

The notion of a Borel field of Polish groups was introduced in [S], and arose naturally

in the context of analysing actions of discrete amenable groups on von Neumann algebras.

The concept, and the associated Cohomology Lemma, has proven vital for such investiga-

tions [$J,$ $O$ , JT, STI, ST2, KST]. Subsequently, Golodets and the author have specialised

and sharpened the technique to the context of locally compact Polish groups, establishing

the existence of a suitably varying field of Haar measures, and the Borel nature of forming

Pontryagin duals. The present work is a further refinement, establishing that the subclass

of Lie groups themselves form a Borel family, and that the natural interplay between Lie

groups and Lie Algebras (suitably parametrised) is Borel. One surprising fact emerges;

while the classification of Lie algebras is smooth, this is not the case for Lie Groups. Thus

the classification of Lie groups is intrinsically immensely more complicated than that of

Lie algebras, and the passage from Lie algebras to Lie groups has a somewhat surprising

complexity.

\S 1 Borel families of Lie groups We recall some basic facts from [S] concerning the

parametrisation of Polish groups.

We let PG denote the space of pairs $(\mu, d)$ where $\mu$ : $N\cross Narrow N$ is a group law, and

$d$ is a metric on $N$ invariant under left translations for this group structure. PG is a Borel

subset of $N^{NxN}\cross[0,1]^{NxN}$ , and hence a standard Borel space. For each $(\mu, d)\in PG$ ,

we let $G(\mu, d)$ denote the completion of the group $(N, \mu, d)$ ; evidently $G(\mu, d)$ is a Polish
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group, and every Polish group appears infinitely often up to isomorphism among { $G(\mu, d)$ :

$(\mu, d)\in PG\}$ .

By construction, the space $\mathcal{P}\mathcal{G}=\cup\{G(\mu, d) : (\mu, d)\in PG\}$ carries a standard Borel

structure for which

a) the projection $\pi$ of $\mathcal{P}\mathcal{G}$ on $PG$ is Borel.

b) the relative and intrinsic Borel structures on $\pi^{-1}(\mu, d)$ coincide for each $(\mu, d)\in$

$PG$ .

c) the group operations $x\in \mathcal{P}\mathcal{G}arrow x^{-1}$ and $(x, y)\in \mathcal{P}\mathcal{G}*\mathcal{P}\mathcal{G}arrow xy\in \mathcal{P}\mathcal{G}$ are Borel.

d) there are metrics $\delta_{(\mu,d)}$ on $G(\mu, d)$ , and a countable family $\{g_{k}\}$ of Borel maps from

$PGto\mathcal{P}\mathcal{G}$ such that

i) $\{g_{k}(\mu, d] : k\geq 1\}$ is dense in $G(\mu, d)$ for each $(\mu, d)\in PG$ .

ii) $\delta_{(\mu,d)}$ is compatible with the topology on $G(\mu, d)$ for each $(\mu, d)\in PG$ .

iii) the maps $x\in \mathcal{P}\mathcal{G}arrow\delta_{\pi(x)}(x,g_{k}(\pi(x)))$ are Borel for each $k\geq 1$ .

If $X$ is a standard Borel space, and $x\in Xarrow G_{x}$ is a field of Polish groups, we

say $xarrow G_{x}$ is Borel if there is a Borel injection $\varphi$ : $Xarrow PG$ and isomorphisms of

Polish groups $\theta_{x}$ : $G_{x}arrow G(\varphi(x))$ for each $x\in X$ . By transferring the structure on $\mathcal{P}\mathcal{G}$ to

$\bigcup_{x\in}xG_{x}$ , via $\{\theta_{x} : x\in X\}$ , every Borel field of Polish groups inherits a standard Borel

structure, a countable family of Borel sections and metrics enjoying $a$) $-d$) above. The

field $(\mu, d)\in \mathcal{P}\mathcal{G}arrow G(\mu, d)$ will be referred to as the universal field of Polish groups.

Theorem 1 $LG=$ { $(\mu,$ $d)\in PG:G(\mu,$ $d)$ is a connected Lie group} is Borel in $\mathcal{P}\mathcal{G}$ .

The proof is routine, based on the characterisation of Lie groups as those connected

Polish groups without small subgroups.
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By restriction, we now obtain a universal field of Lie groups $(\mu, d)\in LGarrow G(\mu, d)$ ;

an arbitrary field of Lie groups over a standard Borel space will be said to be Borel if it

factors through this universal field as in the case of Polish groups. Note that although

each $G(\mu, d)$ for $(\mu, d)\in LG$ carries (for example) a differentiable structure, one parameter

subgroups, canonical coordinates etc, we are not yet able to assert that these vary in any

controlled manner. This will be remedied subsequently (c.f. Corollary 8).

\S 2 Borel families of Lie algebras We now seek to emulate the parametrisation of Lie

groups given above for Lie algebras. The first problem is to build a suitable parameter

space; this is accomplished by considering all possible sets of structure constants for Lie

algebras. (Here we will treat Lie algebras over$\cdot$ $R$ ; the case of complex Lie algebras is dealt

with analogously).

For each $n\geq 1$ , set

$SC_{n}=\{\gamma=(\gamma_{ij}^{k})\in R^{n^{3}}$ : $\gamma_{i^{k}j}$ are structure constants

for a Lie algebra of dimension $n$ }.

Thus $\gamma_{ij}^{k}\in SC_{n}$ if and only if

$\gamma_{ij}^{k}=-\gamma_{j^{k_{1}}}$ , and

$\sum_{\ell}(\gamma_{ij}^{\ell}\gamma_{\ell k}^{m}+\gamma_{jk}^{\ell}\gamma_{\ell i}^{m}+\gamma_{ki}^{\ell}\gamma_{\ell j}^{m})=0$

for all $i,j,$ $k$ and $m$ . Evidently, $SC_{n}$ is an algebraic variety in $R^{n^{3}}$ , an observation which

will be of some significance subsequently. We set

$SC= \bigcup_{n\geq 0}SC_{n}\cross[0,1]$
;



15

for each $(\gamma,t)\in SG$ , we let $\mathcal{G}(\gamma, t)$ denote the space $R^{n}$ (where $\gamma\in SC_{n}$ ) with the Lie

algebra structure given by

$[e_{i}, e_{j}]= \sum_{k}\gamma:^{k_{j}}e_{k}$
,

where $\{e_{1}, \ldots , e_{n}\}$ is the standard basis of $R^{n}$ .

As in the case of Polish or Lie groups, a field of Lie algebras $x\in Xarrow \mathcal{G}_{x},$ $X$

standard Borel, is a Borel field if there is a Borel injection $\varphi$ : $Xarrow SC$ and isomorphisms

$\theta_{x}$ : $\mathcal{G}_{x}arrow \mathcal{G}(\varphi(x))$ for each $x\in X$ . The following characterises Borel fields of Lie algebras

of a fixed dimension.

Theorem 2. A field $x\in Xarrow \mathcal{G}_{x}$ of Lie algebras over a standard Borel space $X$ with

$dim(\mathcal{G}_{x})=n$ for all $x$ is Borel if and only if $\mathcal{G}=\bigcup_{x\in X}\mathcal{G}_{x}$ carries a standard Borel structure

for which

a) the projection $\pi$ : $\mathcal{G}arrow X$ is Borel.

b) the relative and intrinsic Borel structures on $\pi^{-1}(x)$ coincide for all $x\in X$ .

c) there are Borel maps $x\in Xarrow A_{j}(x)\in \mathcal{G}$ with

i) $\{A_{j}(x) : 1\leq j\leq n\}$ a basis of $\mathcal{G}_{x}$ for each $x$ ,

ii) $[A_{i}(x), A_{j}(x)]= \sum_{k=1}^{n}\gamma_{i^{k}j}(s)A_{k}(x)$ for some Borel functions $\gamma_{ij}^{k}$

We now turn to examine the natural equivalence relation of isomorphism induced on

$SC_{n}$ for each $n\geq 1$ . If we identify $R^{n^{3}}$ with $R^{n}\otimes R^{n}\otimes R^{n}$ via $( \gamma_{ij}^{k})arrow\sum\gamma_{i^{k}j}e_{i}\otimes e_{j}\otimes e_{k}$ ,

we may note that for $\gamma,$ $\gamma’\in SC_{n},$ $\mathcal{G}(\gamma,t)$ is isomorphic with $\mathcal{G}(\gamma’,t’)$ if and only if $\gamma=$

$(P\otimes P\otimes(P^{-1})^{t})\gamma’$ for some invertible $n\cross n$ matrix $P$ ; indeed $P$ is just the change of

basis matrix. We may thus view the space of isomorphism classes of Lie algebras as the

disjoint union of the orbit spaces of algebraic actions of the algebraic groups $GL(n, R)$ on
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the algebraic varieties $SC_{n}\subseteq R^{n}\otimes R^{n}\otimes R^{n}$ . From $[Z, p31]$ we thus obtain.

Theorem 3 The space of isomorphism classes of finite dimensional Lie algebras over $R$

is countably separated.

The theorem indicates that there is a constructive way to specify a basis for each finite

dimensional Lie algebra; while this can certainly be done for special classes of Lie algebras,

the general case is far from clear.

\S 3. From Lie group to Lie algebra. (I) For each connected Lie group $G$ , we let Lie

(G) denote its Lie algebra.

Theorem 4 The field $(\mu, d)\in LGarrow Lie(G(\mu, d))$ is a Borel filed.

The idea of the proof is to identify Lie $(G)$ as a space with the set of one-parameter

subgroups of $G,$ $Hom(R, G)$ , and to use variants on the Campbell-Baker-Hausdorff formula

(V, p114-121) to identify the Lie algebra structure in terms of the product operations in

the groups. This generalises to fields of groups courtesy of one of the major results of

[GS1]: if $xarrow G_{x}$ and $xarrow H_{x}$ are Borel fields of Polish groups with $H_{x}$ locally compact,

then $\bigcup_{x}\epsilon xHom(G_{x}, H_{x})$ admits a standard Borel structure compatible with the projection

on $X$ and for which there is a countable family of Borel sections whose values at each $x$

are dense in the topology of convergence in measure.

Corollary 5. If $x\in Xarrow G_{x}$ is a Borel field of Lie groups over a standard Borel space

$X$, then $xarrow Lie(G_{x})$ is a Borel field.

Corollary 6. If $G$ is a Lie group which acts ergodically on a standard measure space

$(X,\mu)$ , and $G_{x}=\{g\in G:gx=x\}$ , the isomorphism class of Lie$(G_{x})$ is constant $\mu- ae$ .
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To prove Corollary 6, we need only note that $xarrow G_{x}$ is Borel, so that so also is

$xarrow[Lie(G_{x})]$ , the isomorphism class of Lie$(G_{x})$ . Since the space of all such isomorphism

classes is countably separated (Theorem 3) and the map is constant on G-orbits, it is

constant a.e. by ergodicity.

\S 4 From Lie algebra to Lie group For each Lie algebra $\mathcal{G}$ , we let $Gr(\mathcal{G})$ denote the

simply connected Lie group with Lie algebra $\mathcal{G}$ (so that $Gr(\mathcal{G})$ is defined only up to iso-

morphism).

Theorem 7 Let map $(\gamma, t)\in LCarrow Gr(\mathcal{G}(\gamma,t))$ is Borel.

The proof is, in essence, to adapt the ingredients of the classical proof of the existence

of a Lie group with a specified Lie algebra to the context of Borel fields. (see [V, \S 3]).

In particular, one must establish Borel versions of the Whitehead lemmas, and of the

Levi-Malcev and Ado Theorems. There generalisations are conceptually simple even if

somewhat complex in formation.

The arguments involved in the proofs of Theorems 4 and 7 lead to the following

Corollary 8 Let $x\in Xarrow G_{x}$ be a Borel field of Lie groups over a standard Borel space

X. Then

a) $x\in Xarrow\pi_{1}(G_{x})$ is a Borel field of discrete groups

b) the exponential map $exp:\cup Lie(G_{x})arrow\cup G_{x}$ is Borel, and is a Borel isomorphism

on a Borel subset $B$ of $\cup Lie(G_{x})$ such that $B\cap Lie(G_{x})$ is an open neighbourhood of $O$ in

Lie$(G_{x})$ for each $x$ .

Of course Corollary $8b$ ) allows us to construct local coordinates for the field $xarrow G_{x}$

in a Borel manner.
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\S 5 From Lie Groups to Lie Algebras (II) The following example shows that the

space of Lie groups with a fixed Lie algebra is not countably separated for the equivalence

relation of isomorphism, and hence that the classification of Lie groups is qualitatively and

inherently immensely more complex than that of Lie algebras.

Let $\mathcal{H}$ denote the 3-dimensional Heisenberg Lie algebra with generators $X,$ $Y,$ $Z$ satis-

fying [X, $Y$] $=Z$, and let $H$ be the corresponding simply connected Lie group; thus

$H=\{(\begin{array}{lll}1 x z0 1 y0 0 l\end{array})$ : $x,$ $y,$ $z\in R\}$

We set $\mathcal{G}=R\oplus\tilde{\mathcal{H}}$, and let $G=R\cross H$ be the corresponding simply connected Lie group.

Any connected Lie group with Lie algebra $\mathcal{G}$ is of the form $G/D$ where $D$ is a discrete

central subgroup; we also have $G/D_{1}$ isomorphic with $G/D_{2}$ if and only $D_{1}=\alpha(D_{2})$ for

some automorphism a of $G$ .

Identify the centre $Z(G)$ of $G$ with $\{(w, z)\in R^{2}\}$ ; any automorphism of $G$ restricts

on the centre of $G$ to a map of the form $(w, z)arrow(aw, bz+cw)$ where $ac\neq 0$ , and all such

maps occur.

For each pair of linearly independent vectors $\alpha$ and $\beta$ in $Z(G)$ , let $D_{\alpha,\beta}=Z\alpha+Z\beta$, and

$G_{\alpha,\beta}=G/D_{\alpha,\beta}$ . Identifying $\alpha,$
$\beta$ with the matrix $(\alpha, \beta)$ in $GL(2, R)$ whose columns are $\alpha$

and $\beta$ , we see that $D_{\alpha,\beta}=D_{\alpha’,\beta’}$ if and only if $(\alpha, \beta)GL(2, Z)=(\alpha’, \beta’)GL(2, Z)$ , and hence

that $G_{\alpha},\rho$ is isomorphic with $G_{\alpha’,\beta’}$ if and only if $L(\alpha, \beta)GL(Z, \mathcal{Z})=L(\alpha’, \beta’)GL(2, Z)$ ,

where $L$ is the group of lower triangular matrices

$L=\{(\begin{array}{ll}a bb c\end{array})$ : $a,$ $b,$ $c\in R,$ $ac\neq 0\}$ .

The space of isomorphism classes of the groups $G_{\alpha,\beta},$ $(\alpha, \beta)\in GL(2, R)$ may thus be
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identified with the double coset space $L\backslash GL(2, R)/GL(2, Z)$ ; that this space is not smoth

follows routinely from Moore’s ergodicity theorem $(Z,p19)$ .
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