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Variation principles presented here reveals some remarkable
features of the transport processes concerning the time reversal
operation leading to irreversibility. For the electrical transport
process in solid taken as a typical example, a quantum mechanical
variation pfinciple is formulated as a stationarity problem in
the same way as for the quantum mechanical scattering pocess, in
which two kinds of waves ,incoming and outgoing, are involved
in the variational functional, necessarily coupling with each
other.

In contrast, the Umeda-Kohler-Sondheimer wvariation principle
for the Boltzmann-Bloch equation, on the basis of which various
transport processes have been investigated for a 1long time, is
formulated as an extremum problem, with regard to a single sort
of distribution function. This extremum property is due to the
positive definiteness of entropy production or more basically to

the H theorem and related to thermodynamics and irreversibility
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The stationarity property of the quantum-mechanical principle
fof transport processes characteristic of the dynamical stage' of
the theory in contrast with the case of the Boltzmann-Bloch
equation, is discussed from an informational point of view. By
contracting the information of irrelevant part even with time
reversal, the quantum mechanical variation principle with respect
to the odd part which 1is relevant reduces to the extremum

property of the same sort as the Boltzmann-Bloch case.

§l1.Introduction

The conventional theory of transport process is based upon the
Boltzmann-Bloch equation, which is usually confined to the linear
response as to the external field, has been formulated as a
variation principle, viz. the Umeda-Kohler-Sondheimer- principle(
referred to as UKS hereafter)t>22:14252  The UKS is presented as
an extremum problem with respect to a functional of the distribu-
tion function of carrier particles, which 1is proportional to the
temporal development of the entropy of the carrier system
consisting of two parts. One is due to the <collision process
intrinsic to the system and called the entropy production. The
other is due to the external disturbance or extrinsic. The UKM
principle is basically related to the H-theorem or the second law
of thermodynamics and furthermore corresponds to a typical case
of Onsager's thermodynamical theory of reciprocity
relation.&>7) 87 9) . |

The quantum mechanical(classical) theory of the same sort of
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transport problem is formulated on the basis of the von-Neumann
(Liouville) equation. In the present paper the formulation is
exclusively given quatum-mechanically, as it is readily
translated into the classical case. The variation principle!®» is
given in the same way as in the théory of scattering process.!!
In the latter, the interaction between the incident particle and
the scattering centre is regarded as the perturbation, which is
first adiabatically switched on at the infinite past and secondly
switched off at the infinite future. Corresponding to these two
boundary conditions, the incoming and outgoing wave functions are
calculated in the so-called interaction representation, by means
of a pair of wunitary time evolution transformations, which are
time reversal to each other. This pair appear, being coupled 1in
the variation principle.

The von-Neumann equation linearized with the external field
can be solved by assuming the density matrix of the system in
the form as a generalization of the distribution function assumed
in the theory of the Boltzmann-Bloch equation. As to the temporal
boundary onditions, the situation is similar as in the scattering
theory: in the one case is applied the incoming field and in the
other the outgoing field. That is, the external field is switched
on at the infinite past in the former and switched off towards
the infinfite future in the latter. The solutions of these two
boundary value problems are coupled in the wvariation principle
presented for the transport proceces as a stationarity problem

1er12313)14015) 0 gimilarly to the case of scattering process.
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Such a stationarity character is proper to the basic equation
concerned in the dynamical stage.

It is further noticed:e’ 16> that the even component with time
reversal never couple with the external disturbance but only the
odd component does in the variation functional. Therefore the
even part can be eliminated as irrelevant to 1lead to an
extremum problem similér to the case of UKS, concerning the
relevant odd component. So to speak, the contraction of
information of the even component brings about theirreversible
character into the variation principle.

The UKS principle for the Boltzmann-Bloch equation is
presented in §2, by taking the case of static scattering centre
against conduction electrons in solid for the sake of brevity of
description. The terms of entropy production and drift effect are
derived explicitly and the variation principle is found to be
equivalent to the one which is proposed by Onsager¢> 7>28>9) from a
general thermodynamical point of view.

The quantum transport process in the system of conduction
electrons in solid is investigated in §4 as a representative
case, in parallel with the discussion on the Boltzmann-Bloch
equation in §3. The variation principle is applied to solve the
von Neumann equation for the density matrix, in which the
boundary conditions of incoming and outgoing fields enter. In the
variational functional for the electrical conductivity, the
component even with time reversal, which does not couple with the

external field, can be eliminated to 1lead to the variation
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principle only with respect to the odd component. The resultant
principle appears as an extremum problem as same as UKS for the
Boltzmann-Bloch equation. In §5, some additive remarks are given
concerning the problem of time-reversal as well as as a short

summary.

§2. The Boltzmann-Bloch equation and UKS variation principle
The kinetic theory of gas originally due to Boltzmann is based

upon the well-known equation,

af af

—_— = - F- -

f f
at 3p g ) %: * %E.]c, (1)
where m, p and r denote the mass, momentum and space coodinate of
the molecule, f is the distribution function of p, r and the
time t, and F is the external force acting on the molecule. The
last term on the right hand side represents the so-called
collision term, which is not explicitly shown here. For brevity,
we confine ourselves to the electron transport, which has also
been investigated in the same scheme since Bloch. In the case
of scattering due to static imperfections therein, the collision

term is expressed as
3f
2 - jdap W(p.p')s(cmc')(F'-F), (2)
at J¢

where W(p,p') including the delta-function of the difference

between the electron energies ¢ and ¢', represents the
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transition probability according to the so-called golden rule. We
confine ourselves to this case, for the sake of brevity.
The details of the system and scaterin mechanism do not matter
the essence of the theory and the generalization to other types
of system can be readily made. For example, the application to
the electrn-phonon system can be readily made, even with phonon
drag effect being taken into account.:) s>

Now, the distribution function f is assumed as

af
f=fy- — o, (3)
3¢€

where fy represents the equilibrium. By substituting (3) into (1)
and retaining only the terms linear with the external
disturbance, we obtain

af
3t D

af af

at at

+
C

' (4)

where the first term in the right-hand side, viz. the collision

term, is expressed as

af
[at ]C—- — Lo (5)

in terms of the collision operatorer L defined by
Lo = [d pW(p.p ) (eme ) (0m0"). (6)

The second term in the right-hand side of eq.(4), called the
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drift term, comes from the first two terms 1in the right-hand

side of eq.(1) and is expressed as

af 3t
[ — | =-=x (7)
3t D 3¢

by defining the external disturbance by X. We confine ourselves
hereafter to the homogeneous temperature, in order to describe as

briefly as possible, in which X is obtained as
X =j.E, (8)

in terms of the electric current density 3 and the external
electric field e. By substituting (5) and (7) into (4) under the

condition that the system is stationary with time, we obtain
Lo = X. (9)
In general, the»collision operator L satisfies the relations
(¢ .Ly)=(v,Lo), (10)
(¢,Le)20, (11)

for any pair of distribution functions ¢ and gy of the sort

defined by (3), where the inner product has been defined as

3fs
(0,0)= -J 22 gudep. (12)

Equations (10) and (11), which show that the operator L 1is

self-adjoint and positive-definite, provide the basis of the
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variation principles characteristic of the transport process.
From this point of view, the system of electronic system in
solids was investigated by Umeda and Sondheimer.:':' The case of
molecular system of gas was similaly done by Kohler::® .

It is readily proved that the 1linearized Boltzmann-Bloch
equation (9) is equivalelnt to some variation principles with
respect to an arbitrary infinitesimal variation of the function
¢. The following is in particular pertinent to the investigation

in the next section.

[ I ] The functional (¢,L¢) is made maximum,
under the condition that (¢,L¢)=(o,X).

[ ) The functional 2(¢,X)-(¢,L¢) is made maximum.

The solution of (9) gives the maximum value, which ‘is equal to
the average (¢,X) of X with respect to the true distribution
function ¢ or the observed value of X:viz. the work done by the

applied field or the Joule heat,

j-E=2Sou E. E, /2. (13)
v
In a special case that E, =1 and the other orthogonal components
of the field vanish, the maximum value equals the electrical

conductivity

O=C0uu - (14)

The variational functionals are intimately related to the

temporal change of the entropy S or of the H-function H, which is
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equal to minus entropy divided by the Boltzmann constant ks . They

are given by

H = Jd3p[flnf—(1—f)ln(1—f)]= - é? , (15)

B

in terms of the distribution f. The rate of temporal change of

(15) is due to that of the distribution function and expressed as

dH {d af 1
-_ = 3 — n
P 1-t

dt at

f1_._ S8 16
’“’ks' (16)

First substituting (5) and next (7) for 3f/9t 1in eq.(16)
multiplied by -ks and retaining only the lowest order with the

external disturbance, we obtain

. L
38} _ (o ¢>)’ (17)
3t c T '

. X
__a__s_ = - ((p )’ (18)
5t D T

which represent the changes of entropy with time due to the
collision and to the drift caused by the external field,
respectively. The former, which is intrinsic to the system, is
called the entropy production. In terms of eqgs. (17) and (18),
the physical meaning of the variation principles [ 1] and
[ 1] are quite obvious. The positive-definite or non-negative
property (11) of the collision operator L provides the proof of

the H-theorem, as the intrinsic change of the H-function with
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the sign opposite to S is thus concluded to be monotonic and

decreasing according to eq.(17).

§3.Quantum-statistical variation principles
The motion of the system exposed to the time-dependent
external electric field E(¢+) can be described in terms of the

von-Neumann equation for the density matrix p:

i1 %% = [H-P-E(t),0], (19)

where P represents the polarization operator of the system.

In the linear approximation with the external disturbance,

p(t)=pc+p:1 (L), (20)

where pc represents the equilibrium given by the grand canonical
distribution depending on the Hmiltonian ¥ and the total number

N of carriers as
pc =Kexp(-gH-¢N), (21)

K, p=1/ke T and &¢=-y/ke T being a normalization constant, the
inverse temperature and minus the chemical potential divided by
temperture, respectively. The remainder p, (t) is proportional to
the applied field. By substituting (20) into (19) and taking

account of (21), we obtain

if ffi =[H,p: 1-[P-E(t),p: ] (22a)



22

=[H, p: ]+i‘ﬁrp.: exp(aAH);-eexp(-xH)dx (22b)

to the extent of linearity with the extrnal field. In (22b) theb
operator j represents the electric current density, which relates
to the polarization P as j=i[H,P}]/h.

From the second term of (22b), it is relevant to define an

operator ¢ from p; by
B
p1=p¢JeXp(AH)¢eXp(—AH)dA. (23)
Q

Equation (20), as substituted for p, from (23), is reduced to eq.
(4), if it is transformed into the one-body description in which
the interaction between the conduction electrons with the static
imperfection is neglected in the Hamiltonian H. Inserting (23)

into (22b), we obtain

3¢

i
- = 5 [e,H] + j-E. (24)

Here in analogy with the temporal boundary conditions assumed
in the theory of scattering, the incoming and outgoing waves, the

external electric fields are assumed as follows:

[A] E(t)=eexp(st), (t<0) (25a)

[B] E(t)=cexp(-st), (t>0) (25b)

where E is the field strength at the time =0 and s is a
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positive infinitesimal.
The solutions of (24) according to the boundary conditions [A]
and [B] are expressed as ¢.exp(st) and ¢- exp(-st), respectively.

Te time-independent factors ¢., ¢&. satisfy the equations

L:o. = 3-E, (26a)

L..o-= j-E. (26b)
Here, L., as applied to an operator ¢, is given by

L.-o = se+i[H,0]o/H, (27)

and L., is, as a matter of course, obtained by changing the sign
of s in Ls .
Let us define the inner product between a pair of operators ¢

and ¢ as
8
(¢,¢)=(w,¢)=JTr{¢pcexp(xH)wexp(-xH)dx, (28)

which is reduced to (12) for the <case of the Boltzmann-Bloch
equation, by rewriting in the scheme of one-body description and
by neglecting the interaction Hamiltonian of the conduction
electron with the static imperfections. As to the inner product

(28), the operator L. satisfies the relation
(o,Lsw)=-(¥,L-59). (29)

The wvariation principle 1is presented in this scheme as
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follows. Find out the operators ¢. . and ¢- which make the
functional
W(e. ,o-)=(0: -¢- ,E-j)+(o- ,L:0. ). (30)

stationary. The operators satisfying this condition is equal to
the solutions of eqs. (26a) and (26b) and the stationary value

equals the Joule heat generated,
W =Js+E = -J_s+E, (31)

where J; and J.. denote the current density at t=0 in the cases
[A] and [B], respectively.

Let E be unit vectors parallél with the v-axis and with the u-
axis for the boundary conditions [A] and [B], respectively. Then
the stationary wvalue is equal to the yv-component of the

conductivity tensor

quzjat(ju(t)-jv)exP(—St)- (32)
e

In particular, the functional
o(®s ,0- )=(0 -®- ,Ju )*+(o- ,Ls 0. ) (33)

should be made stationary and then it reduces to the electical

conductivity

0=J3t Jéx Tr{pc j. (t-ihr)j. }. (34)
@ a
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§3.Time reversal of operators and eigenstates

It is essential to notice the symmetry properties of operators
and the wave functions as to time reversal. As time reversal
being applied to, they are indicated by upper lines. The effect
of time reversal 1is easily examined 1in the scheme of the
orthogonal coordinates diagonalized, in which the conjugate
momenta are minus i times derivatives by those <coodinates: e.g.
a coordinate x— x, and its momentum p. - -i3/3x. Thus, the time
reversal is manifested by taking the complex conjugate in such a
way as X=X, p=-p. It is readily seen that the Hamiltonian #(H) 1is
transformed into H(-H) in the presence of magnetic field:

viz. H(H)=H(-H). Accordingly, the Hamiltonian # in the absence

=i

of magnetic field is invariant by time reversal: viz. =H, to
which we confine ourselves hereafter.

In the representation by which the Hamiltonian H is
diagonalized, it is evident that its eigenfunction [n> for the
eigenstate desinated as n is necessarily accompanied with its

time reversal |n> with the same energy eigenvalue E,, as seen

from the Schroédinger equations
H|n>=E, - |n>, g|n>=E, -|n>. (35)

The latter equation in (35) 1is readily proved by taking the
complex conjugate of the former equation and noticing that H=p,
E, is real and Iﬁ} is complex conjugate of |n>.

In eq. (26a), the matrix element of the 1left-hand side 1is

written down as



26

<m|L.¢. |n>=(s+ig,. )<m|d. |n>
=-(-s+ip.n )<N|¢. |M>=-1i<n|L .. |m>, (36)
where .. =(E, -E, )/AA. For the rightfhand side of (26a), we have
<m|j'E|n>=—§ﬁlj-glﬁ>, (37)

as the time reversal j of j equals -j. By equating (36) with (37)
and comparing the result with eq. (26b), it is found that . <can
be identified with ¢. . Then, by rewriting ¢. simply as ¢, ¢- can
be identified with its time reversal o¢.

Now, it is advatageous to rewrite the various expressions
presented so far, to make apparent the interrelationships of the
operators therein with respect to time reversal operation. The

inner product (28) is redefined between ¢ and v as
8 p—
Co.v) =—J dxTr(®pc exp(AH)vexp(-aH)}. (38)
%]

The variational expressions (30) and (33) are rewritten 1in the

scheme of this inner product, as

w(e)=Co,i-E) +{j-E,o) -(o,L:0) , (39)
o(@)=(o,J.) +{J.,2) -(o,L-0) , (40)
respectively.

¢4 .Contraction of information in the variation principles
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If the operator ¢ is decomposed into ¢' and o", which are odd

and even, respectively, as to time reversal, so that
o= '+0", o=-0'+d", &'=-0, o"=0", (41)
the variational expressions (39) are rewitten down as
W(e)=2 ( §-E,0') +s ((o',0") ~(o".0") )
-2i ¢ o",[H,0']) /M. (42)

It is remarkable in (42) that only the odd component o'
couples with the external disturbace j-E and the even component
" does not at all. There exists a coupling between these
coponents intrinsic to the system, independent of the external
disturbace, through which ¢" can be expressed in terms of ¢' and
eliminated in the wvariational functional (42). That 1is, the
stationarity condition for (42) as to an infinitesimal wvariation

of " leads to the relation
o"=ife',H]/(Ms). (43)
By substituting (43) into (42), we obtain the variation principle
as to the odd component ¢', stating that
W(e')=2¢o',J-E) -(o',Lo') (44)

should be maximum with ¢', where the operation L is defined, as

applied to an operaor ¢, by
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Lo=([H,[H,0]+h:s2 o)/ (his). (45)

The maximum value equals the Joule heat generated in the system.

In the same way, the variation functional (40) is reduced to

o(e')=2¢o"',ju) -(o',Lo') , (486)

which is required to be maximum and the maximum value 1is equal
to the conductivity.

The variation principles with (44) and (46) are formally
equivalent to the UKS principle for the Boltzmann-Bloch equation,
in particular, of the type [ I ] . It is needless to say that any
other types of the UKS variation principle are also applicable to

the present case.

§5. Concluding remarks

The variation principle for the von Neumann equation for
quantum transport process has been originally formulated in the
form of stationarity problem, in the same way as in the case of
quantum-mechanical theory of scattering, where the 1incoming and
outgoing waves appear coupling with each other. Such a coupling
between the two cases of boundary conditions which are time
reversal of each other is a distinctive feature of the variation
principles in the dynamical stage.

In contrast with this, the UKS wvariation principle for the

Boltzmann-Bloch equation, which holds in the kinetic stage and
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provides the basis of fhe investigation of irreversible transport
processes, is given in the form of extremum problem.

It is further noticed that the odd component as to time
reversal is relevant in quantum transport process and the even
component can be eliminated as irrelevant to 1lead to the
variation principle in which the variational functional should be
made extremum with reépect to the odd component. In consequence,
the principle is reduced to the same type as the UKS for the
Boltzmann-Bloch equation, so to speak through a contraction of
information in the original variation principle in the dynamical
stage. The complete information in the original wvariation
principle is diminished to a certain amount in the final form. In
consequence, the irreversibility comes about.

Finally the following is remarked. To the purpose of studying
the susceptibility of the system in a previous paper,!?’ the
perturbed density matrix p; was expressed in terms of an operator

¥, which stands in the relation

o=3v/at=i[H,v]/h (48)
with ¢ defined by (23). As to the decomposition of ¢, as
follows,

=g A", W TE-yp, Pl=gt, (49)
we have

o'=50"/3t, o"=30'/3t. (50)
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It is obvious from these relations that the odd and even
components of ¢ are interchanged with each other in those of v.
Therefore, if use is made of the operator ¢ in place of & in the
present variation principle, the even component ¢" is turned to
be relevant and the odd one ¢' is éliminated as 1irrelevant, on
the contrary to the case of ¢. In consequence, the Variation

principle appears as an extremum problem as to v".
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