Golden-Thompson Type Inequalities and Their Equality Cases

Ibaraki Univ. Fumio Hiai (茨大理 日合文雄)

In this paper we state some log-majorization results for matrices and their applications to matrix norm inequalities. The equality cases in these inequalities are characterized. Full details of Section 2 are presented in [2], [9].

1. Preliminaries

Let $\vec{a} = (a_1, \ldots, a_n)$ and $\vec{b} = (b_1, \ldots, b_n)$ be vectors in \mathbb{R}^n . The weak majorization (or the submajorization) $\vec{a} \prec_w \vec{b}$ means that

$$\sum_{i=1}^{k} a_i^* \le \sum_{i=1}^{k} b_i^*, \qquad 1 \le k \le n,$$

where (a_1^*, \ldots, a_n^*) and (b_1^*, \ldots, b_n^*) are the decreasing rearrangements of (a_1, \ldots, a_n) and (b_1, \ldots, b_n) , respectively. The majorization $\vec{a} \prec \vec{b}$ means that $\vec{a} \prec_w \vec{b}$ and the equality holds for k = n in the above, i.e. $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$; in other words, \vec{a} is a convex combination of the vectors obtained by permuting the components of \vec{b} (see [1, Theorem 1.3]). When $\vec{a}, \vec{b} \ge 0$ (i.e. $a_i \ge 0, b_i \ge 0$ for $1 \le i \le n$), we define the weak log-majorization $\vec{a} \prec_w \vec{b}$ if

$$\prod_{i=1}^k a_i^* \leq \prod_{i=1}^k b_i^*, \qquad 1 \leq k \leq n,$$

and the log-majorization $\vec{a} \underset{(\log)}{\prec} \vec{b}$ if $\vec{a} \underset{(\log)}{\prec} \vec{w}$ \vec{b} and $\prod_{i=1}^{n} a_i = \prod_{i=1}^{n} b_i$. When $\vec{a}, \vec{b} > 0$, it is obvious that $\vec{a} \underset{(\log)}{\prec} \vec{b}$ [resp. $\vec{a} \underset{(\log)}{\prec} \vec{w}$] is equivalent to $\log \vec{a} \prec \log \vec{b}$ [resp. $\log \vec{a} \prec_w \log \vec{b}$].

In this paper we consider $n \times n$ complex matrices. For a Hermitian matrix H let $\vec{\lambda}(H) = (\lambda_1(H), \ldots, \lambda_n(H))$ denote the vector of eigenvalues of H in decreasing order (with multiplicities). When H and K are Hermitian matrices, the majorization $H \prec K$ [resp. the weak majorization $H \prec_w K$] is defined as $\vec{\lambda}(H) \prec \vec{\lambda}(K)$ [resp. $\vec{\lambda}(H) \prec_w \vec{\lambda}(K)$]. We write $A \ge 0$ if a matrix A is positive semidefinite, and A > 0 if $A \ge 0$ is positive definite (or invertible). For $A, B \ge 0$ the log-majorization $A \prec B$ is defined as $\vec{\lambda}(A) \prec \vec{\lambda}(B)$. (log) See [1], [13] for majorization theory for vectors and matrices. In particular, we remark that if $A, B \ge 0$ and $A \prec B$, then $A \prec_w B$ and hence $||A|| \le ||B||$ for any unitarily invariant norm $||\cdot||$. Let $||\cdot||$ be a unitarily invariant norm on $n \times n$ matrices. We say that $||\cdot||$ is strictly increasing if $0 \leq A \leq B$ and ||A|| = ||B|| imply A = B. Let $\Phi : \mathbf{R}^n \to [0, \infty)$ be the symmetric gauge function (see [5], [14]) corresponding to $||\cdot||$, so that $||A|| = \Phi(\vec{\lambda}(A))$ for $A \geq 0$. Then it is easy to see that $||\cdot||$ is strictly increasing if and only if $0 \leq \vec{a} \leq \vec{b}$ and $\Phi(\vec{a}) = \Phi(\vec{b})$ imply $\vec{a} = \vec{b}$. For instance, the Schatten *p*-norms $||X||_p = (\sum_{i=1}^n \lambda_i(|X|)^p)^{1/p}$ are strictly increasing when $1 \leq p < \infty$, while the Ky Fan norms $||X||_{(k)} = \sum_{i=1}^k \lambda_i(|X|)$ are not so when $1 \leq k < n$. Note that $||A||_{(k)}$ for $A \geq 0$ is nothing but the *k*th partial trace $\operatorname{Tr}_k A = \sum_{i=1}^k \lambda_i(A)$.

2. Golden-Thompson type inequalities

For every $A, B \ge 0$ the log-majorization $(A^{1/2}BA^{1/2})^r \prec A^{r/2}B^r A^{r/2}$ for $r \ge 1$ was proved by Araki [3], which is equivalent to say that

$$(A^{p/2}B^p A^{p/2})^{1/p} \underset{(\log)}{\prec} (A^{q/2}B^q A^{q/2})^{1/q}, \qquad 0
(2.1)$$

This shows the following:

Proposition 2.1. If $A, B \ge 0$ and $|| \cdot ||$ is a unitarily invariant norm, then $||(A^{p/2}B^p A^{p/2})^{1/p}||$ is an increasing function of p > 0.

This implies norm inequalities of Golden-Thompson type. In fact, if H and K are Hermitian matrices, then

$$||e^{H+K}|| \le ||(e^{pH/2}e^{pK}e^{pH/2})^{1/p}||, \quad p > 0,$$

for any unitarily invariant norm, and the above right-hand side decreases to the left-hand as $p \downarrow 0$. The above inequality in case of p = 1 was formerly given by Lenard [12] and Thompson [18]. Moreover the specialization to the trace norm is the famous Golden-Thompson trace inequality ([8], [17]).

The next theorem characterizes the equality case in the Golden-Thompson type inequality given by Proposition 2.1. **Theorem 2.2.** Let $A, B \ge 0$ and $|| \cdot ||$ be a strictly increasing unitarily invariant norm. Then the following conditions are equivalent:

- (i) $||(A^{p/2}B^p A^{p/2})^{1/p}||$ is not strictly increasing in p > 0;
- (ii) $||(A^{p/2}B^pA^{p/2})^{1/p}||$ is constant for p > 0;
- (iii) $(A^{p/2}B^p A^{p/2})^{1/p} = (A^{q/2}B^q B^{q/2})^{1/q}$ for some 0 ;
- (iv) $(A^{p/2}B^{p}A^{p/2})^{1/p}$ is constant for p > 0;
- (v) AB = BA.

Remark. In case of A, B > 0 Friedland and So [7, Theorem 3.1] characterized the situation when $\operatorname{Tr}_k(A^{p/2}B^pA^{p/2})^{1/p}$ is not stricly increasing in p > 0. This characterization is a bit complicated because of the non-strict increasingness of Tr_k .

Theorem 2.2 reads as follows when A, B > 0 and $|| \cdot ||$ is the trace norm. This corollary was already stated in [7]. The equivalence between (iii) and (iv) below determines the equality case in the original Golden-Thompson trace inequality. A proof of this equivalence is found also in [15].

Corollary 2.3. Let H and K be Hermitian. Then the following conditions are equivalent:

- (i) $\operatorname{Tr}(e^{pH/2}e^{pK}e^{pH/2})^{1/p}$ is not strictly increasing;
- (ii) $\operatorname{Tr}(e^{pH/2}e^{pK}e^{pH/2})^{1/p}$ is constant;
- (iii) $\operatorname{Tr} e^{H} e^{K} = \operatorname{Tr} e^{H+K};$
- (iv) HK = KH.

For $0 \le \alpha \le 1$ and A, B > 0 the α -power mean $A \#_{\alpha} B$ is defined by

$$A \#_{\alpha} B = A^{1/2} (A^{-1/2} B A^{-1/2})^{\alpha} A^{1/2},$$

which can be extended to $A, B \ge 0$ as

$$A \#_{\alpha} B = \lim_{\epsilon \downarrow 0} (A + \epsilon I) \#_{\alpha} (B + \epsilon I).$$

This α -power mean is the operator mean (see [11]) corresponding to the operator monotone function t^{α} . In particular when $\alpha = 1/2$, $A \#_{1/2} B = A \# B$ is called the geometric mean. Moreover $A \#_0 B = A$ and $A \#_1 B = B$. For every $A, B \ge 0$ and $0 \le \alpha \le 1$ we proved in [2] that $(A \#_{\alpha} B)^r \succeq A^r \#_{\alpha} B^r$ holds for $r \ge 1$; or equivalently

$$(A^p \#_{\alpha} B^p)^{1/p} \underset{(\log)}{\succ} (A^q \#_{\alpha} B^q)^{1/q}, \qquad 0$$

So we have:

Proposition 2.4. If $A, B \ge 0$, $0 \le \alpha \le 1$, and $|| \cdot ||$ is a unitarily invariant norm, then $||(A^p \#_{\alpha} B^p)^{1/p}||$ is a decreasing function of p > 0.

Particularly when $A = e^{H}$ and $B = e^{K}$ with Hermitian matrices H, K and $|| \cdot ||$ is the trace norm, we have for p, q > 0

$$\operatorname{Tr}(e^{pH} \#_{\alpha} e^{pK})^{1/p} \leq \operatorname{Tr} e^{(1-\alpha)H + \alpha K} \leq \operatorname{Tr}(e^{(1-\alpha)qH/2} e^{\alpha qK} e^{(1-\alpha)qH/2})^{1/q}$$

(see [2, Corollary 2.3] and also [10, Theorem 3.4]). The above second inequality for q = 1 becomes the Golden-Thompson trace inequality, and it is fairly reasonable to consider the first inequality as complementary to the Golden-Thompson one. So the norm inequality given by Proposition 2.4 are considered as the complementary counterpart of the Golden-Thompson type one.

Let us here characterize, in parallel to Theorem 2.2, the situation when equality occurs in this inequality in case of A, B > 0.

Theorem 2.5. Let $A, B > 0, 0 < \alpha < 1$, and $|| \cdot ||$ be a strictly increasing unitarily invariant norm. Then the following conditions are equivalent:

- (i) $||(A^p \#_{\alpha} B^p)^{1/p}||$ is not strictly decreasing in p > 0;
- (ii) $||(A^p \#_{\alpha} B^p)^{1/p}|| = ||\exp\{(1-\alpha)\log A + \alpha\log B\}||$ for all p > 0;
- (iii) $(A^p \#_{\alpha} B^p)^{1/p} = (A^q \#_{\alpha} B^q)^{1/q}$ for some 0 ;
- (iv) $(A^p \#_{\alpha} B^p)^{1/p} = \exp\{(1-\alpha) \log A + \alpha \log B\}$ for all p > 0;
- (v) AB = BA.

Remark. In contrast with Theorem 2.2 we cannot extend Theorem 2.5 to $A, B \ge 0$; in fact, if P and Q are any orthoprojections and $0 < \alpha < 1$, then we have $(P^p \#_{\alpha} Q^p)^{1/p} = P \wedge Q$ (independently of p > 0) by [11, Theorem 3.7].

The following was shown in [2] (see also [10]) by differentiating $\text{Tr}(e^{pH} \#_{\alpha} e^{pK})^{1/p}$ by α at $\alpha = 0$.

Proposition 2.6. For every $A, B \ge 0$, $\frac{1}{p} \operatorname{Tr} A \log(A^{p/2} B^p A^{p/2})$ is an increasing function of p > 0 and decreases to $\operatorname{Tr} A(\log A + \log B)$ as $p \downarrow 0$.

In the following we characterize the situation when equality occurs in the logarithmic trace inequality given by Proposition 2.6.

Theorem 2.7. Let $A \ge 0$ and B > 0. Then the following conditions are equivalent:

- (i) $\frac{1}{p} \operatorname{Tr} A \log(A^{p/2} B^p A^{p/2})$ is not strictly increasing in p > 0;
- (ii) $\frac{1}{p} \operatorname{Tr} A \log(A^{p/2} B^p A^{p/2}) = \operatorname{Tr} A(\log A + \log B)$ for all p > 0;
- (iii) AB = BA.

Remark. When $A, B \ge 0$ (instead of B > 0), $\operatorname{Tr} A \log(A^{p/2} B^p A^{p/2})$ can be $-\infty$ for all p > 0, while of course Theorem 2.7 holds if the support projection of A is dominated by that of B.

Furthermore, we have for an arbitrary matrix T

$$|e^{T}| \underset{(\log)}{\prec} e^{\operatorname{Re}T} \leq e^{|\operatorname{Re}T|} \prec_{w} e^{|T|}, \qquad (2.2)$$

where $|X| = (X^*X)^{1/2}$ and $\operatorname{Re} X = (X + X^*)/2$ for a matrix X. The log-majorization in (2.2) was proved by Cohen [6] (see also [2]), generalizing the trace inequality of Bernstein [4]. The latter in (2.2) follows from the well-known weak majorization $|\operatorname{Re} T| \prec_w |T|$ (see [13, p. 240, p. 244]) and the preservation of weak majorization under an increasing convex function (see [1, Corollary 2.2], [13, p. 116]). So we have:

Proposition 2.8. If T is an arbitrary matrix and $|| \cdot ||$ is a unitarily invariant norm, then

$$||e^{T}|| \le ||e^{\operatorname{Re} T}|| \le ||e^{|\operatorname{Re} T|}|| \le ||e^{|T|}||.$$

The next theorem clarifies when the equality cases occur in the norm inequalities of Proposition 2.8.

Theorem 2.9. Let T be a matrix and $|| \cdot ||$ be a strictly increasing unitarily invariant norm. Then:

- (1) $||e^T|| = ||e^{\operatorname{Re} T}||$ if and only if T is normal.
- (2) $||e^{|\operatorname{Re} T|}|| = ||e^{|T|}||$ if and only if T is Hermitian.
- (3) $||e^T|| = ||e^{|\operatorname{Re} T|}||$ if and only if T is normal and $\operatorname{Re} T \ge 0$.
- (4) $||e^{\operatorname{Re} T}|| = ||e^{|T|}||$, $||e^{T}|| = ||e^{|T|}||$, and $T \ge 0$ are all equivalent.

Remarks. (1) When $|| \cdot ||$ is the Frobenius (or Hilbert-Schmidt) norm, Theorem 2.9(1) reads as follows: $\operatorname{Tr} e^{T^*} e^T = \operatorname{Tr} e^{T^* + T}$ if and only if T is normal. This was already proved in [15].

(2) It is well known (see [1, Theorem 6.7], [13, p. 240]) that $\lambda_k(\operatorname{Re} T) \leq \lambda_k(|T|)$ for $1 \leq k \leq n$. The equality case $\lambda_k(\operatorname{Re} T) = \lambda_k(|T|)$ for fixed k was characterized by So

and Thompson [16]. Further it was shown in [16] that $\vec{\lambda}(\operatorname{Re} T) = \vec{\lambda}(|T|), \ \vec{\lambda}(|e^T|) = e^{\vec{\lambda}(|T|)},$ $\operatorname{Tr}|e^T| = \operatorname{Tr} e^{|T|}, \text{ and } T \geq 0$ are all equivalent. Theorem 2.9 considerably refines this result.

3. Golden-Thompson type inequalities for three or four matrices

In this section we discuss norm inequalities of Golden-Thompson type for three or four matrices which are commuting except one. Also the equality cases are characterized.

Proposition 3.1. If $A_1, A_2, B \ge 0$ and $A_1A_2 = A_2A_1$, then

$$|A_1BA_2| \underset{\text{(log)}}{\succ} (A_1A_2)^{1/2} B(A_1A_2)^{1/2} \sim B^{1/2} A_1 A_2 B^{1/2}, \qquad (3.1)$$

where \sim dentes the unitary equivalence.

Proof. By a technique of compound matrices used in [2], it suffices to show that $|A_1BA_2| \leq I$ implies $(A_1A_2)^{1/2}B(A_1A_2)^{1/2} \leq I$. We may assume $A_2 > 0$. Then since $A_2BA_1^2BA_2 \leq I$, we get $BA_1^2B \leq A_2^{-2}$ and so $(A_1BA_1)^2 \leq (A_1A_2^{-1})^2$, which implies $A_1BA_1 \leq A_1A_2^{-1}$. Hence $(A_1A_2)^{1/2}B(A_1A_2)^{1/2} \leq I$ and the first part is proved. The second part is obvious. \Box

By the log-majorization (2.1), the above (3.1) further implies that

$$|A_1BA_1| \underset{(\log)}{\succ} (B^{p/2}(A_1A_2)^p B^{p/2})^{1/p}, \quad 0$$

Corollary 3.2. Let $A_1, A_2 \ge 0$ with $A_1A_2 = A_2A_1$, and $|| \cdot ||$ be a unitarily invariant norm. If $B \ge 0$ then

$$||A_1BA_2|| \ge ||B^{1/2}A_1A_2B^{1/2}||.$$
(3.2)

Moreover for any B

$$||A_1 B^* B A_2|| \ge ||B A_1 A_2 B^*||. \tag{3.3}$$

Proof. (3.2) is a consequence of (3.1). When B is replaced by B^*B in (3.1), we have

$$|A_1B^*BA_2| \underset{(\log)}{\succ} (A_1A_2)^{1/2}B^*B(A_1A_2)^{1/2} \sim BA_1A_2B^*,$$

showing (3.3).

Proposition 3.3. If $A_1, A_2, A_3, B \ge 0$ and $A_iA_j = A_jA_i$, then

$$|A_1BA_2BA_3| \succeq (B^{1/2}(A_1A_2A_3)^{1/2}B^{1/2})^2.$$

Proof. We have

$$\begin{aligned} |A_1 B A_2 B A_3| &\succeq_{(\log)} (A_1 A_3)^{1/2} B A_2 B (A_1 A_3)^{1/2} \\ &= |A_2^{1/2} B (A_1 A_3)^{1/2}|^2 \\ &\succeq_{(\log)} (B^{1/2} (A_1 A_2 A_3)^{1/2} B^{1/2})^2, \end{aligned}$$

using (3.1) twice.

The following corollary is a generalization of the Golden-Thompson inequality. Corollary 3.4. If H_1, H_2, H_3, K are Hermitian and $H_iH_j = H_jH_i$, then

$$||e^{H_1}e^K e^{H_2}|| \ge ||e^{H_1 + H_2 + K}|| \tag{3.4}$$

and

$$||e^{H_1}e^K e^{H_2}e^K e^{H_3}|| \ge ||e^{H_1 + H_2 + H_3 + 2K}||$$
(3.5)

for any unitarily invariant norm.

Proof. Propositions 3.1 and 3.3 together with (2.1) imply that

$$\begin{aligned} |e^{H_1} e^K e^{H_2}| &\succeq_{(\log)} (e^{pK/2} e^{p(H_1 + H_2)} e^{pK/2})^{1/p}, \qquad 0$$

Taking the limits of the right-hand sides as $p \downarrow 0$, we have

$$\begin{aligned} &|e^{H_1}e^K e^{H_2}| \succeq e^{H_1 + H_2 + K}, \\ &e^{H_1}e^K e^{H_2}e^K e^{H_3}| \succeq e^{H_1 + H_2 + H_3 + 2K}, \end{aligned}$$

showing (3.4) and (3.5).

Question. If H_1, \ldots, H_n, K are Hermitian and $H_i H_j = H_j H_i$, then

$$|e^{H_1}e^K e^{H_2} \cdots e^K e^{H_n}| \succeq e^{H_1 + \cdots + H_n + (n-1)K}?$$

For commuting $A_1, A_2 \ge 0$, let Q be the join of the support projections of A_1, A_2 . Then both sides of (3.2) are determined by QBQ; in fact we have

$$||A_1BA_2|| = ||A_1QBQA_2||,$$

$$||B^{1/2}A_1A_2B^{1/2}|| = ||(A_1A_2)^{1/2}B(A_1A_2)^{1/2}|| = ||(A_1A_2)^{1/2}QBQ(A_1A_2)^{1/2}||.$$

So to characterize the equality case of (3.2), we may assume without loss of generality that Q = I, i.e. $A_1 + A_2 > 0$.

Theorem 3.5. Let $A_1, A_2, B \ge 0$ with $A_1A_2 = A_2A_1$ and $A_1 + A_2 > 0$, and P be the support projection of A_1 . Assume that $|| \cdot ||$ is a strictly increasing unitarily invariant norm. Then $||A_1BA_2|| = ||B^{1/2}A_1A_2B^{1/2}||$ if and only if B commutes with P and $PA_1^{-1}A_2$.

Proof. Suppose that B commute with P and $PA_1^{-1}A_2$. Let $PA_1^{-1}A_2 = \sum_{k=1}^m \alpha_k P_k$ be the spectral decomposition of $PA_1^{-1}A_2$, where $P = \sum_{k=1}^m P_k$ and α_k are all distinct. Then A_1, A_2, B commute with all P and $P_k, 1 \le k \le m$. Since $(I - P)A_1 = 0$, we get

$$(I-P)|A_1BA_2|^2 = A_2B(I-P)A_1^2BA_2 = 0,$$

so that

$$(I-P)|A_1BA_2| = 0 = (I-P)B^{1/2}A_1A_2B^{1/2}$$

For $1 \leq k \leq m$, since $P_k A_2 = \alpha_k P_k A_1$, we get

$$P_{k}|A_{1}BA_{2}| = \alpha_{k}P_{k}A_{1}BA_{1}$$

$$\sim \alpha_{k}P_{k}B^{1/2}A_{1}^{2}B^{1/2}$$

$$= P_{k}B^{1/2}A_{1}A_{2}B^{1/2}.$$

Therefore $|A_1BA_2| \sim B^{1/2}A_1A_2B^{1/2}$, which implies $||A_1BA_2|| = ||B^{1/2}A_1A_2B^{1/2}||$.

Conversely suppose $||A_1BA_2|| = ||B^{1/2}A_1A_2B^{1/2}||$. It follows from (3.1) that $|A_1BA_2| \sim B^{1/2}A_1A_2B^{1/2}$ and hence

$$\operatorname{Tr} A_1 B A_2^2 B A_1 = \operatorname{Tr} (B^{1/2} A_1 A_2 B^{1/2})^2 = \operatorname{Tr} A_1 A_2 B A_1 A_2 B.$$
(3.6)

Now we may assume that $A_1 = \text{diag}(s_1, \ldots, s_n)$ and $A_2 = \text{diag}(t_1, \ldots, t_n)$. Let $B = [b_{ij}]$. Then

$$\operatorname{Tr} A_1 B A_2^2 B A_1 = \sum_{i,j=1}^n s_i^2 t_j^2 |b_{ij}|^2, \qquad (3.7)$$

$$\operatorname{Tr} A_1 A_2 B A_1 A_2 B = \sum_{i,j=1}^n s_i s_j t_i t_j |b_{ij}|^2.$$
(3.8)

By (3.6)-(3.8) we get

$$\sum_{i,j=1}^{n} (s_i t_j - s_j t_i)^2 |b_{ij}|^2 = 0,$$

so that $b_{ij} = 0$ unless $s_i t_j = s_j t_i$. If $s_i = 0$ and $s_j > 0$, then $t_i > 0$ due to $A_1 + A_2 > 0$, so $b_{ij} = 0$. Hence BP = PB. If $s_i, s_j > 0$ and $t_i/s_i \neq t_j/s_j$, then $b_{ij} = 0$. This implies that B commutes with $PA_1^{-1}A_2$. \Box

Theorem 3.6. Let H_1, H_2, H_3, K be Hermitian with $H_iH_j = H_jH_i$. Assume that $|| \cdot ||$ is a strictly increasing unitarily invariant norm. Then:

- (1) $||e^{H_1}e^Ke^{H_2}|| = ||e^{H_1+H_2+K}||$ if and only if K commutes with H_1, H_2 .
- (2) $||e^{H_1}e^K e^{H_2}e^K e^{H_3}|| = ||e^{H_1 + H_2 + H_3 + K}||$ if and only if K commutes with H_1, H_2, H_3 .

Proof. We show "only if" parts (the converse parts are obvious).

(1) Suppose $||e^{H_1}e^K e^{H_2}|| = ||e^{H_1 + H_2 + K}||$. Since

$$|e^{H_1}e^Ke^{H_2}| \underset{(\text{log})}{\succ} e^{K/2}e^{H_1+H_2}e^{K/2} \underset{(\text{log})}{\succ} e^{H_1+H_2+K}$$

we get

$$|e^{H_1}e^K e^{H_2}| \sim e^{K/2}e^{H_1+H_2}e^{K/2} \sim e^{H_1+H_2+K}.$$

By Theorem 3.5, the first equivalence implies that e^K commutes with $e^{H_2-H_1}$, i.e. $K(H_2 - H_1) = (H_2 - H_1)K$. The second implies the equality case of the Golden-Thompson inequality, so $K(H_1 + H_2) = (H_1 + H_2)K$ by Corollary 2.3. Hence K commutes with H_1, H_2 . (2) Suppose $||e^{H_1}e^K e^{H_2}e^K e^{H_3}|| = ||e^{H_1+H_2+H_3+2K}||$. Since

$$\begin{aligned} |e^{H_1} e^K e^{H_2} e^K e^{H_3}| &\succeq e^{(H_1 + H_3)/2} e^K e^{H_2} e^K e^{(H_1 + H_3)/2} \\ &= |e^{H_2/2} e^K e^{(H_1 + H_3)/2}| \\ &\succeq e^{H_1 + H_2 + H_3 + 2K}, \end{aligned}$$

these terms are all unitarily equivalent. By Theorem 3.5, $e^{K}e^{H_{2}}e^{K}$ commutes with $e^{H_{3}-H_{1}}$. Furthermore by (1), K commutes with H_{2} and $H_{1} + H_{3}$. Hence K commutes with H_{1}, H_{2}, H_{3} . \Box

References

- T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl. 118 (1989), 163-248.
- [2] T. Ando and F. Hiai, Log-majorization and complementary Golden-Thompson type inequalities, *Linear Algebra Appl.*, to appear.
- [3] H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (1990), 167– 170.
- [4] D. S. Bernstein, Inequalities for the trace of matrix exponentials, SIAM J. Matrix Anal. Appl. 9 (1988), 156-158.
- [5] R. Bhatia, Perturbation Bounds for Matrix Eigenvalues, Pitman Research Notes in Math., Vol. 162, Longman, Harlow Essex, 1987.
- [6] J. E. Cohen, Spectral inequalities for matrix exponentials, *Linear Algebra Appl.* 111 (1988), 25-28.
- [7] S. Friedland and W. So, On the product of matrix exponentials, preprint.
- [8] S. Golden, Lower bounds for Helmholtz functions, Phys. Rev. 137 (1965), B1127– B1128.
- [9] F. Hiai, Equality cases in matrix norm inequalities of Golden-Thompson type, *Linear* and Multilinear Algebra, to appear.
- [10] F. Hiai and D. Petz, The Golden-Thompson trace inequality is complemented, *Linear Algebra Appl.* 181 (1993), 153–185.
- [11] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246 (1980), 205-224.
- [12] A. Lenard, Generalization of the Golden-Thompson inequality $\text{Tr}(e^A e^B) \geq \text{Tr} e^{A+B}$, Indiana Univ. Math. J. 21 (1971), 457-467.
- [13] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic, New York, 1979.
- [14] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer, Berlin, 1960.
- [15] W. So, Equality cases in matrix exponential inequalities, SIAM J. Matrix Anal. Appl. 13 (1992), 1154–1158.

- [16] W. So and R. C. Thompson, Singular values of matrix exponentials, preprint.
- [17] C. J. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys. 6 (1965), 1812–1813.
- [18] C. J. Thompson, Inequalities and partial orders on matrix spaces, Indiana Univ. Math. J. 21 (1971), 369-480.