Golden－Thompson Type Inequalities and Their Equality Cases

Ibaraki Univ．Fumio Hiai（茨大理 日合文雄）

In this paper we state some log－majorization results for matrices and their applications to matrix norm inequalities．The equality cases in these inequalities are characterized． Full details of Section 2 are presented in［2］，［9］．

1．Preliminaries

Let $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\vec{b}=\left(b_{1}, \ldots, b_{n}\right)$ be vectors in \mathbf{R}^{n} ．The weak majorization（or the submajorization）$\vec{a} \prec_{w} \vec{b}$ means that

$$
\sum_{i=1}^{k} a_{i}^{*} \leq \sum_{i=1}^{k} b_{i}^{*}, \quad 1 \leq k \leq n
$$

where $\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)$ and $\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$ are the decreasing rearrangements of $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ ，respectively．The majorization $\vec{a} \prec \vec{b}$ means that $\vec{a} \prec_{w} \vec{b}$ and the equality holds for $k=n$ in the above，i．e．$\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i}$ ；in other words，\vec{a} is a convex combination of the vectors obtained by permuting the components of \vec{b}（see［1，Theorem 1．3］）．When $\vec{a}, \vec{b} \geq 0$（i．e．$a_{i} \geq 0, b_{i} \geq 0$ for $1 \leq i \leq n$ ），we define the weak log－majorization $\underset{(\log)}{\prec_{w}} \vec{b}$ if

$$
\prod_{i=1}^{k} a_{i}^{*} \leq \prod_{i=1}^{k} b_{i}^{*}, \quad 1 \leq k \leq n
$$

and the log－majorization $\vec{a} \underset{(\log)}{\prec} \vec{b}$ if $\vec{a} \underset{(\log)}{\prec_{w}} \vec{b}$ and $\prod_{i=1}^{n} a_{i}=\prod_{i=1}^{n} b_{i}$ ．When $\vec{a}, \vec{b}>0$ ，it is obvious that $\vec{a} \underset{(\log)}{\prec} \vec{b}\left[\right.$ resp．$\left.\underset{(\log)}{\prec_{w}} \vec{b}\right]$ is equivalent to $\log \vec{a} \prec \log \vec{b}\left[\right.$ resp． $\left.\log \vec{a} \prec_{w} \log \vec{b}\right]$ ．

In this paper we consider $n \times n$ complex matrices．For a Hermitian matrix H let $\vec{\lambda}(H)=\left(\lambda_{1}(H), \ldots, \lambda_{n}(H)\right)$ denote the vector of eigenvalues of H in decreasing order （with multiplicities）．When H and K are Hermitian matrices，the majorization $H \prec K$ ［resp．the weak majorization $H \prec_{w} K$ ］is defined as $\vec{\lambda}(H) \prec \vec{\lambda}(K)$［resp．$\vec{\lambda}(H) \prec_{w} \vec{\lambda}(K)$ ］． We write $A \geq 0$ if a matrix A is positive semidefinite，and $A>0$ if $A \geq 0$ is positive definite （or invertible）．For $A, B \geq 0$ the \log－majorization $A \underset{(\log)}{\prec} B$ is defined as $\vec{\lambda}(A) \underset{(\log)}{\prec} \vec{\lambda}(B)$ ． See［1］，［13］for majorization theory for vectors and matrices．In particular，we remark that if $A, B \geq 0$ and $A \underset{(\log)}{\prec} B$ ，then $A \prec_{w} B$ and hence $\|A\| \leq\|B\|$ for any unitarily invariant norm｜｜$\cdot \|$ ．

Let $\|\cdot\|$ be a unitarily invariant norm on $n \times n$ matrices. We say that $\|\cdot\|$ is strictly increasing if $0 \leq A \leq B$ and $\|A\|=\|B\|$ imply $A=B$. Let $\Phi: \mathbf{R}^{n} \rightarrow[0, \infty)$ be the symmetric gauge function (see [5], [14]) corresponding to $\|\cdot\|$, so that $\|A\|=\Phi(\vec{\lambda}(A))$ for $A \geq 0$. Then it is easy to see that $\|\cdot\|$ is strictly increasing if and only if $0 \leq \vec{a} \leq \vec{b}$ and $\Phi(\vec{a})=\Phi(\vec{b})$ imply $\vec{a}=\vec{b}$. For instance, the Schatten p-norms $\|X\|_{p}=\left(\sum_{i=1}^{n} \lambda_{i}(|X|)^{p}\right)^{1 / p}$ are strictly increasing when $1 \leq p<\infty$, while the Ky Fan norms $\|X\|_{(k)}=\sum_{i=1}^{k} \lambda_{i}(|X|)$ are not so when $1 \leq k<n$. Note that $\|A\|_{(k)}$ for $A \geq 0$ is nothing but the k th partial trace $\operatorname{Tr}_{k} A=\sum_{i=1}^{k} \lambda_{i}(A)$.

2. Golden-Thompson type inequalities

For every $A, B \geq 0$ the \log-majorization $\left(A^{1 / 2} B A^{1 / 2}\right)^{r} \underset{(\log)}{\prec} A^{r / 2} B^{r} A^{r / 2}$ for $r \geq 1$ was proved by Araki [3], which is equivalent to say that

$$
\begin{equation*}
\left(A^{p / 2} B^{p} A^{p / 2}\right)^{1 / p} \underset{(\log)}{\prec}\left(A^{q / 2} B^{q} A^{q / 2}\right)^{1 / q}, \quad 0<p \leq q \tag{2.1}
\end{equation*}
$$

This shows the following:
Proposition 2.1. If $A, B \geq 0$ and $\|\cdot\|$ is a unitarily invariant norm, then $\left\|\left(A^{p / 2} B^{p} A^{p / 2}\right)^{1 / p}\right\|$ is an increasing function of $p>0$.

This implies norm inequalities of Golden-Thompson type. In fact, if H and K are Hermitian matrices, then

$$
\left\|e^{H+K}\right\| \leq\left\|\left(e^{p H / 2} e^{p K} e^{p H / 2}\right)^{1 / p}\right\|, \quad p>0
$$

for any unitarily invariant norm, and the above right-hand side decreases to the left-hand as $p \downarrow 0$. The above inequality in case of $p=1$ was formerly given by Lenard [12] and Thompson [18]. Moreover the specialization to the trace norm is the famous GoldenThompson trace inequality ([8], [17]).

The next theorem characterizes the equality case in the Golden-Thompson type inequality given by Proposition 2.1.

Theorem 2.2. Let $A, B \geq 0$ and $\|\cdot\|$ be a strictly increasing unitarily invariant norm. Then the following conditions are equivalent:
(i) $\left\|\left(A^{p / 2} B^{p} A^{p / 2}\right)^{1 / p}\right\|$ is not strictly increasing in $p>0$;
(ii) $\left\|\left(A^{p / 2} B^{p} A^{p / 2}\right)^{1 / p}\right\|$ is constant for $p>0$;
(iii) $\left(A^{p / 2} B^{p} A^{p / 2}\right)^{1 / p}=\left(A^{q / 2} B^{q} B^{q / 2}\right)^{1 / q}$ for some $0<p<q$;
(iv) $\left(A^{p / 2} B^{p} A^{p / 2}\right)^{1 / p}$ is constant for $p>0$;
(v) $A B=B A$.

Remark. In case of $A, B>0$ Friedland and So [7, Theorem 3.1] characterized the situation when $\operatorname{Tr}_{k}\left(A^{p / 2} B^{p} A^{p / 2}\right)^{1 / p}$ is not stricly increasing in $p>0$. This characterization is a bit complicated because of the non-strict increasingness of Tr_{k}.

Theorem 2.2 reads as follows when $A, B>0$ and $\|\cdot\|$ is the trace norm. This corollary was already stated in [7]. The equivalence between (iii) and (iv) below determines the equality case in the original Golden-Thompson trace inequality. A proof of this equivalence is found also in [15].

Corollary 2.3. Let H and K be Hermitian. Then the following conditions are equivalent:
(i) $\operatorname{Tr}\left(e^{p H / 2} e^{p K} e^{p H / 2}\right)^{1 / p}$ is not strictly increasing;
(ii) $\operatorname{Tr}\left(e^{p H / 2} e^{p K} e^{p H / 2}\right)^{1 / p}$ is constant;
(iii) $\operatorname{Tr} e^{H} e^{K}=\operatorname{Tr} e^{H+K^{\prime}}$;
(iv) $H K=K H$.

For $0 \leq \alpha \leq 1$ and $A, B>0$ the α-power mean $A \#{ }_{\alpha} B$ is defined by

$$
A \#_{\alpha} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha} A^{1 / 2}
$$

which can be extended to $A, B \geq 0$ as

$$
A \#_{\alpha} B=\lim _{\varepsilon \downharpoonright 0}(A+\varepsilon I) \#_{\alpha}(B+\varepsilon I)
$$

This α-power mean is the operator mean (see [11]) corresponding to the operator monotone function t^{α}. In particular when $\alpha=1 / 2, A \#_{1 / 2} B=A \# B$ is called the geometric mean. Moreover $A \#_{0} B=A$ and $A \#_{1} B=B$. For every $A, B \geq 0$ and $0 \leq \alpha \leq 1$ we proved in [2] that $\left(A \#{ }_{\alpha} B\right)^{r} \underset{(\log)}{\succ} A^{r} \#_{\alpha} B^{r}$ holds for $r \geq 1$; or equivalently

$$
\left(A^{p} \#_{\alpha} B^{p}\right)^{1 / p} \underset{(\log)}{\succ}\left(A^{q} \#_{\alpha} B^{q}\right)^{1 / q}, \quad 0<p \leq q .
$$

So we have:

Proposition 2.4. If $A, B \geq 0,0 \leq \alpha \leq 1$, and $\|\cdot\|$ is a unitarily invariant norm, then $\left\|\left(A^{p} \#{ }_{\alpha} B^{p}\right)^{1 / p}\right\|$ is a decreasing function of $p>0$.

Particularly when $A=e^{H}$ and $B=e^{K}$ with Hermitian matrices H, K and $\|\cdot\|$ is the trace norm, we have for $p, q>0$

$$
\operatorname{Tr}\left(e^{p H} \#{ }_{\alpha} e^{p K}\right)^{1 / p} \leq \operatorname{Tr} e^{(1-\alpha) H+\alpha K} \leq \operatorname{Tr}\left(e^{(1-\alpha) q H / 2} e^{\alpha q K} e^{(1-\alpha) q H / 2}\right)^{1 / q}
$$

(see [2, Corollary 2.3] and also [10, Theorem 3.4]). The above second inequality for $q=1$ becomes the Golden-Thompson trace inequality, and it is fairly reasonable to consider the first inequality as complementary to the Golden-Thompson one. So the norm inequality given by Proposition 2.4 are considered as the complementary counterpart of the GoldenThompson type one.

Let us here characterize, in parallel to Theorem 2.2, the situation when equality occurs in this inequality in case of $A, B>0$.

Theorem 2.5. Let $A, B>0,0<\alpha<1$, and $\|\cdot\|$ be a strictly increasing unitarily invariant norm. Then the following conditions are equivalent:
(i) $\left\|\left(A^{p} \#{ }_{\alpha} B^{p}\right)^{1 / p}\right\|$ is not strictly decreasing in $p>0$;
(ii) $\left\|\left(A^{p} \#{ }_{\alpha} B^{p}\right)^{1 / p}\right\|=\|\exp \{(1-\alpha) \log A+\alpha \log B\}\|$ for all $p>0$;
(iii) $\left(A^{p} \#_{\alpha} B^{p}\right)^{1 / p}=\left(A^{q} \#_{\alpha} B^{q}\right)^{1 / q}$ for some $0<p<q$;
(iv) $\left(A^{p} \#_{\alpha} B^{p}\right)^{1 / p}=\exp \{(1-\alpha) \log A+\alpha \log B\}$ for all $p>0$;
(v) $A B=B A$.

Remark. In contrast with Theorem 2.2 we cannot extend Theorem 2.5 to $A, B \geq 0$; in fact, if P and Q are any orthoprojections and $0<\alpha<1$, then we have $\left(P^{p} \#{ }_{\alpha} Q^{p}\right)^{1 / p}=$ $P \wedge Q$ (independently of $p>0$) by [11, Theorem 3.7].

The following was shown in [2] (see also [10]) by differentiating $\operatorname{Tr}\left(e^{p H} \#{ }_{\alpha} e^{p K}\right)^{1 / p}$ by α at $\alpha=0$.

Proposition 2.6. For every $A, B \geq 0, \frac{1}{p} \operatorname{Tr} A \log \left(A^{p / 2} B^{p} A^{p / 2}\right)$ is an increasing function of $p>0$ and decreases to $\operatorname{Tr} A(\log A+\log B)$ as $p \downarrow 0$.

In the following we characterize the situation when equality occurs in the logarithmic trace inequality given by Proposition 2.6.

Theorem 2.7. Let $A \geq 0$ and $B>0$. Then the following conditions are equivalent:
(i) $\frac{1}{p} \operatorname{Tr} A \log \left(A^{p / 2} B^{p} A^{p / 2}\right)$ is not strictly increasing in $p>0$;
(ii) $\frac{1}{p} \operatorname{Tr} A \log \left(A^{p / 2} B^{p} A^{p / 2}\right)=\operatorname{Tr} A(\log A+\log B)$ for all $p>0$;
(iii) $A B=B A$.

Remark. When $A, B \geq 0$ (instead of $B>0$), $\operatorname{Tr} A \log \left(A^{p / 2} B^{p} A^{p / 2}\right)$ can be $-\infty$ for all $p>0$, while of course Theorem 2.7 holds if the support projection of A is dominated by that of B.

Furthermore, we have for an arbitrary matrix T

$$
\begin{equation*}
\left|e^{T}\right| \underset{(\mathrm{log})}{\prec} e^{\operatorname{Re} T} \leq e^{|\operatorname{Re} T|} \prec_{w} e^{|T|} \tag{2.2}
\end{equation*}
$$

where $|X|=\left(X^{*} X\right)^{1 / 2}$ and $\operatorname{Re} X=\left(X+X^{*}\right) / 2$ for a matrix X. The log-majorization in (2.2) was proved by Cohen [6] (see also [2]), generalizing the trace inequality of Bernstein [4]. The latter in (2.2) follows from the well-known weak majorization $|\operatorname{Re} T| \prec_{w}|T|$ (see [13, p. 240, p.244]) and the preservation of weak majorization under an increasing convex function (see [1, Corollary 2.2], [13, p. 116]). So we have:

Proposition 2.8. If T is an arbitrary matrix and $\|\cdot\|$ is a unitarily invariant norm, then

$$
\left\|e^{T}\right\| \leq\left\|e^{\operatorname{Re} T}\right\| \leq\left\|e^{|\operatorname{Re} T|}\right\| \leq\left\|e^{|T|}\right\|
$$

The next theorem clarifies when the equality cases occur in the norm inequalities of Proposition 2.8.

Theorem 2.9. Let T be a matrix and $\|\cdot\|$ be a strictly increasing unitarily invariant norm. Then:
(1) $\left\|e^{T}\right\|=\left\|e^{\operatorname{Re} T}\right\|$ if and only if T is normal.
(2) $\left\|e^{|\operatorname{Re} T|}\right\|=\left\|e^{|T|}\right\|$ if and only if T is Hermitian.
(3) $\left\|e^{T}\right\|=\left\|e^{|\operatorname{Re} T|}\right\|$ if and only if T is normal and $\operatorname{Re} T \geq 0$.
(4) $\left\|e^{\operatorname{Re} T}\right\|=\left\|e^{|T|}\right\|,\left\|e^{T}\right\|=\left\|e^{|T|}\right\|$, and $T \geq 0$ are all equivalent.

Remarks. (1) When $\|\cdot\|$ is the Frobenius (or Hilbert-Schmidt) norm, Theorem 2.9(1) reads as follows: $\operatorname{Tr} e^{T^{*}} e^{T}=\operatorname{Tr} e^{T^{*}+T}$ if and only if T is normal. This was already proved in [15].
(2) It is well known (see [1, Theorem 6.7], [13, p. 240]) that $\lambda_{k}(\operatorname{Re} T) \leq \lambda_{k}(|T|)$ for $1 \leq k \leq n$. The equality case $\lambda_{k}(\operatorname{Re} T)=\lambda_{k}(|T|)$ for fixed k was characterized by So
and Thompson [16]. Further it was shown in [16] that $\vec{\lambda}(\operatorname{Re} T)=\vec{\lambda}(|T|), \vec{\lambda}\left(\left|e^{T}\right|\right)=e^{\vec{\lambda}(|T|)}$, $\operatorname{Tr}\left|e^{T}\right|=\operatorname{Tr} e^{|T|}$, and $T \geq 0$ are all equivalent. Theorem 2.9 considerably refines this result.

3. Golden-Thompson type inequalities for three or four matrices

In this section we discuss norm inequalities of Golden-Thompson type for three or four matrices which are commuting except one. Also the equality cases are characterized.

Proposition 3.1. If $A_{1}, A_{2}, B \geq 0$ and $A_{1} A_{2}=A_{2} A_{1}$, then

$$
\begin{equation*}
\left|A_{1} B A_{2}\right|_{(\log)}\left(A_{1} A_{2}\right)^{1 / 2} B\left(A_{1} A_{2}\right)^{1 / 2} \sim B^{1 / 2} A_{1} A_{2} B^{1 / 2} \tag{3.1}
\end{equation*}
$$

where \sim dentes the unitary equivalence.
Proof. By a technique of compound matrices used in [2], it suffices to show that $\left|A_{1} B A_{2}\right| \leq$ I implies $\left(A_{1} A_{2}\right)^{1 / 2} B\left(A_{1} A_{2}\right)^{1 / 2} \leq I$. We may assume $A_{2}>0$. Then since $A_{2} B A_{1}^{2} B A_{2} \leq I$, we get $B A_{1}^{2} B \leq A_{2}^{-2}$ and so $\left(A_{1} B A_{1}\right)^{2} \leq\left(A_{1} A_{2}^{-1}\right)^{2}$, which implies $A_{1} B A_{1} \leq A_{1} A_{2}^{-1}$. Hence $\left(A_{1} A_{2}\right)^{1 / 2} B\left(A_{1} A_{2}\right)^{1 / 2} \leq I$ and the first part is proved. The second part is obvious.

By the log-majorization (2.1), the above (3.1) further implies that

$$
\left|A_{1} B A_{1}\right|_{(\mathrm{log})}^{\succ}\left(B^{p / 2}\left(A_{1} A_{2}\right)^{p} B^{p / 2}\right)^{1 / p}, \quad 0<p \leq 1 .
$$

Corollary 3.2. Let $A_{1}, A_{2} \geq 0$ with $A_{1} A_{2}=A_{2} A_{1}$, and $\|\cdot\|$ be a unitarily invariant norm. If $B \geq \mathbf{0}$ then

$$
\begin{equation*}
\left\|A_{1} B A_{2}\right\| \geq\left\|B^{1 / 2} A_{1} A_{2} B^{1 / 2}\right\| . \tag{3.2}
\end{equation*}
$$

Moreover for any B

$$
\begin{equation*}
\left\|A_{1} B^{*} B A_{2}\right\| \geq\left\|B A_{1} A_{2} B^{*}\right\| . \tag{3.3}
\end{equation*}
$$

Proof. (3.2) is a consequence of (3.1). When B is replaced by $B^{*} B$ in (3.1), we have

$$
\left|A_{1} B^{*} B A_{2}\right|_{(\mathrm{log})}^{\succ}\left(A_{1} A_{2}\right)^{1 / 2} B^{*} B\left(A_{1} A_{2}\right)^{1 / 2} \sim B A_{1} A_{2} B^{*}
$$

showing (3.3).

Proposition 3.3. If $A_{1}, A_{2}, A_{3}, B \geq 0$ and $A_{i} A_{j}=A_{j} A_{i}$, then

$$
\left|A_{1} B A_{2} B A_{3}\right|_{(\log)}^{\succ}\left(B^{1 / 2}\left(A_{1} A_{2} A_{3}\right)^{1 / 2} B^{1 / 2}\right)^{2} .
$$

Proof. We have

$$
\begin{aligned}
\left|A_{1} B A_{2} B A_{3}\right| & \underset{(\log)}{\succ}\left(A_{1} A_{3}\right)^{1 / 2} B A_{2} B\left(A_{1} A_{3}\right)^{1 / 2} \\
& =\left|A_{2}^{1 / 2} B\left(A_{1} A_{3}\right)^{1 / 2}\right|^{2} \\
& \underset{(\log)}{\succ}\left(B^{1 / 2}\left(A_{1} A_{2} A_{3}\right)^{1 / 2} B^{1 / 2}\right)^{2}
\end{aligned}
$$

using (3.1) twice.
The following corollary is a generalization of the Golden-Thompson inequality.
Corollary 3.4. If H_{1}, H_{2}, H_{3}, K are Hermitian and $H_{i} H_{j}=H_{j} H_{i}$, then

$$
\begin{equation*}
\left\|e^{H_{1}} e^{K} e^{H_{2}}\right\| \geq\left\|e^{H_{1}+H_{2}+K}\right\| \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|e^{H_{1}} e^{K} e^{H_{2}} e^{K} e^{H_{3}}\right\| \geq\left\|e^{H_{1}+H_{2}+H_{3}+2 K}\right\| \tag{3.5}
\end{equation*}
$$

for any unitarily invariant norm.
Proof. Propositions 3.1 and 3.3 together with (2.1) imply that

$$
\begin{array}{cl}
\left|e^{H_{1}} e^{K} e^{H_{2}}\right|_{(\log)}^{\succ}\left(e^{p K / 2} e^{p\left(H_{1}+H_{2}\right)} e^{p K / 2}\right)^{1 / p}, \quad 0<p \leq 1, \\
\left|e^{H_{1}} e^{K} e^{H_{2}} e^{K} e^{H_{3}}\right|_{(\log)}^{\succ}\left(e^{p K} e^{p\left(H_{1}+H_{2}+H_{3}\right)} e^{p K}\right)^{1 / p}, & 0<p \leq 1 / 2 .
\end{array}
$$

Taking the limits of the right-hand sides as $p \downarrow 0$, we have

$$
\begin{gathered}
\left|e^{H_{1}} e^{K} e^{H_{2}}\right|_{(\log)}^{\succ} e^{H_{1}+H_{2}+K}, \\
\left|e^{H_{1}} e^{K} e^{H_{2}} e^{K} e^{H_{3}}\right|_{(\log)}^{\succ} e^{H_{1}+H_{2}+H_{3}+2 K},
\end{gathered}
$$

showing (3.4) and (3.5).
Question. If H_{1}, \ldots, H_{n}, K are Hermitian and $H_{i} H_{j}=H_{j} H_{i}$, then

$$
\left|e^{H_{1}} e^{K} e^{H_{2}} \cdots e^{K} e^{H_{n}}\right| \underset{(\log)}{\succ} e^{H_{1}+\cdots+H_{n}+(n-1) K} ?
$$

In the sequel let us characterize the equality cases in the norm inequalities (3.2), (3.4), and (3.5). First note [9, Lemma 2.2] that if $A, B \geq 0$ and $\|\cdot\|$ is a stricly increasing unitarily invariant norm, then $A \underset{(\log)}{\succ} B$ and $\|A\|=\|B\|$ imply $A \sim B$.

For commuting $A_{1}, A_{2} \geq 0$, let Q be the join of the support projections of A_{1}, A_{2}. Then both sides of (3.2) are determined by $Q B Q$; in fact we have

$$
\begin{gathered}
\left\|A_{1} B A_{2}\right\|=\left\|A_{1} Q B Q A_{2}\right\|, \\
\left\|B^{1 / 2} A_{1} A_{2} B^{1 / 2}\right\|=\left\|\left(A_{1} A_{2}\right)^{1 / 2} B\left(A_{1} A_{2}\right)^{1 / 2}\right\|=\left\|\left(A_{1} A_{2}\right)^{1 / 2} Q B Q\left(A_{1} A_{2}\right)^{1 / 2}\right\| .
\end{gathered}
$$

So to characterize the equality case of (3.2), we may assume without loss of generality that $Q=I$, i.e. $A_{1}+A_{2}>0$.

Theorem 3.5. Let $A_{1}, A_{2}, B \geq 0$ with $A_{1} A_{2}=A_{2} A_{1}$ and $A_{1}+A_{2}>0$, and P be the support projection of A_{1}. Assume that $\|\cdot\|$ is a strictly increasing unitarily invariant norm. Then $\left\|A_{1} B A_{2}\right\|=\left\|B^{1 / 2} A_{1} A_{2} B^{1 / 2}\right\|$ if and only if B commutes with P and $P A_{1}^{-1} A_{2}$.

Proof. Suppose that B commute with P and $P A_{1}^{-1} A_{2}$. Let $P A_{1}^{-1} A_{2}=\sum_{k=1}^{m} \alpha_{k} P_{k}$ be the spectral decomposition of $P A_{1}^{-1} A_{2}$, where $P=\sum_{k=1}^{m} P_{k}$ and α_{k} are all distinct. Then A_{1}, A_{2}, B commute with all P and $P_{k}, 1 \leq k \leq m$. Since $(I-P) A_{1}=0$, we get

$$
(I-P)\left|A_{1} B A_{2}\right|^{2}=A_{2} B(I-P) A_{1}^{2} B A_{2}=0
$$

so that

$$
(I-P)\left|A_{1} B A_{2}\right|=0=(I-P) B^{1 / 2} A_{1} A_{2} B^{1 / 2}
$$

For $1 \leq k \leq m$, since $P_{k} A_{2}=\alpha_{k} P_{k} A_{1}$, we get

$$
\begin{aligned}
P_{k}\left|A_{1} B A_{2}\right| & =\alpha_{k} P_{k} A_{1} B A_{1} \\
& \sim \alpha_{k} P_{k} B^{1 / 2} A_{1}^{2} B^{1 / 2} \\
& =P_{k} B^{1 / 2} A_{1} A_{2} B^{1 / 2}
\end{aligned}
$$

Therefore $\left|A_{1} B A_{2}\right| \sim B^{1 / 2} A_{1} A_{2} B^{1 / 2}$, which implies $\left\|A_{1} B A_{2}\right\|=\left\|B^{1 / 2} A_{1} A_{2} B^{1 / 2}\right\|$.
Conversely suppose $\left\|A_{1} B A_{2}\right\|=\left\|B^{1 / 2} A_{1} A_{2} B^{1 / 2}\right\|$. It follows from (3.1) that $\left|A_{1} B A_{2}\right| \sim B^{1 / 2} A_{1} A_{2} B^{1 / 2}$ and hence

$$
\begin{equation*}
\operatorname{Tr} A_{1} B A_{2}^{2} B A_{1}=\operatorname{Tr}\left(B^{1 / 2} A_{1} A_{2} B^{1 / 2}\right)^{2}=\operatorname{Tr} A_{1} A_{2} B A_{1} A_{2} B \tag{3.6}
\end{equation*}
$$

Now we may assume that $A_{1}=\operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)$ and $A_{2}=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)$. Let $B=\left[b_{i j}\right]$. Then

$$
\begin{gather*}
\operatorname{Tr} A_{1} B A_{2}^{2} B A_{1}=\sum_{i, j=1}^{n} s_{i}^{2} t_{j}^{2}\left|b_{i j}\right|^{2} \tag{3.7}\\
\operatorname{Tr} A_{1} A_{2} B A_{1} A_{2} B=\sum_{i, j=1}^{n} s_{i} s_{j} t_{i} t_{j}\left|b_{i j}\right|^{2} . \tag{3.8}
\end{gather*}
$$

By (3.6)-(3.8) we get

$$
\sum_{i, j=1}^{n}\left(s_{i} t_{j}-s_{j} t_{i}\right)^{2}\left|b_{i j}\right|^{2}=0
$$

so that $b_{i j}=0$ unless $s_{i} t_{j}=s_{j} t_{i}$. If $s_{i}=0$ and $s_{j}>0$, then $t_{i}>0$ due to $A_{1}+A_{2}>0$, so $b_{i j}=0$. Hence $B P=P B$. If $s_{i}, s_{j}>0$ and $t_{i} / s_{i} \neq t_{j} / s_{j}$, then $b_{i j}=0$. This implies that B commutes with $P A_{1}^{-1} A_{2}$.

Theorem 3.6. Let H_{1}, H_{2}, H_{3}, K be Hermitian with $H_{i} H_{j}=H_{j} H_{i}$. Assume that $\|\cdot\|$ is a strictly increasing unitarily invariant norm. Then:
(1) $\left\|e^{H_{1}} e^{K} e^{H_{2}}\right\|=\left\|e^{H_{1}+H_{2}+K}\right\|$ if and only if K commutes with H_{1}, H_{2}.
(2) $\left\|e^{H_{1}} e^{K} e^{H_{2}} e^{K} e^{H_{3}}\right\|=\left\|e^{H_{1}+H_{2}+H_{3}+K}\right\|$ if and only if K commutes with H_{1}, H_{2}, H_{3}.

Proof. We show "only if" parts (the converse parts are obvious).
(1) Suppose $\left\|e^{H_{1}} e^{K} e^{H_{2}}\right\|=\left\|e^{H_{1}+H_{2}+K}\right\|$. Since

$$
\left|e^{H_{1}} e^{K} e^{H_{2}}\right| \underset{(\log)}{\succ} e^{K / 2} e^{H_{1}+H_{2}} e^{K / 2} \underset{(\mathrm{log})}{\succ} e^{H_{1}+H_{2}+K},
$$

we get

$$
\left|e^{H_{1}} e^{K} e^{H_{2}}\right| \sim e^{K / 2} e^{H_{1}+H_{2}} e^{K / 2} \sim e^{H_{1}+H_{2}+K} .
$$

By Theorem 3.5, the first equivalence implies that e^{K} commutes with $e^{H_{2}-H_{1}}$, i.e. $K\left(H_{2}-\right.$ $\left.H_{1}\right)=\left(H_{2}-H_{1}\right) K$. The second implies the equality case of the Golden-Thompson inequality, so $K\left(H_{1}+H_{2}\right)=\left(H_{1}+H_{2}\right) K$ by Corollary 2.3. Hence K commutes with H_{1}, H_{2}.
(2) Suppose $\left\|e^{H_{1}} e^{K} e^{H_{2}} e^{K} e^{H_{3}}\right\|=\left\|e^{H_{1}+H_{2}+H_{3}+2 K}\right\|$. Since

$$
\begin{gathered}
\left|e^{H_{1}} e^{K} e^{H_{2}} e^{K} e^{H_{3}}\right| \underset{(\log)}{\succ} e^{\left(H_{1}+H_{3}\right) / 2} e^{K} e^{H_{2}} e^{K} e^{\left(H_{1}+H_{3}\right) / 2} \\
=\left|e^{H_{2} / 2} e^{K} e^{\left(H_{1}+H_{3}\right) / 2}\right| \\
\underset{(\log)}{\succ} e^{H_{1}+H_{2}+H_{3}+2 K},
\end{gathered}
$$

these terms are all unitarily equivalent. By Theorem $3.5, e^{K} e^{H_{2}} e^{K}$ commutes with $e^{H_{3}-H_{1}}$. Furthermore by (1), K commutes with H_{2} and $H_{1}+H_{3}$. Hence K commutes with H_{1}, H_{2}, H_{3}.

References

[1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl. 118 (1989), 163-248.
[2] T. Ando and F. Hiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., to appear.
[3] H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (1990), 167170.
[4] D. S. Bernstein, Inequalities for the trace of matrix exponentials, SIAM J. Matrix Anal. Appl. 9 (1988), 156-158.
[5] R. Bhatia, Perturbation Bounds for Matrix Eigenvalues, Pitman Research Notes in Math., Vol. 162, Longman, Harlow Essex, 1987.
[6] J. E. Cohen, Spectral inequalities for matrix exponentials, Linear Algebra Appl. 111 (1988), 25-28.
[7] S. Friedland and W. So, On the product of matrix exponentials, preprint.
[8] S. Golden, Lower bounds for Helmholtz functions, Phys. Rev. 137 (1965), B1127B1128.
[9] F. Hiai, Equality cases in matrix norm inequalities of Golden-Thompson type, Linear and Multilinear Algebra, to appear.
[10] F. Hiai and D. Petz, The Golden-Thompson trace inequality is complemented, Linear Algebra Appl. 181 (1993), 153-185.
[11] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246 (1980), 205-224.
[12] A. Lenard, Generalization of the Golden-Thompson inequality $\operatorname{Tr}\left(e^{A} e^{B}\right) \geq \operatorname{Tr} e^{A+B}$, Indiana Univ. Math. J. 21 (1971), 457-467.
[13] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic, New York, 1979.
[14] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer, Berlin, 1960.
[15] W. So, Equality cases in matrix exponential inequalities, SIAM J. Matrix Anal. Appl. 13 (1992), 1154-1158.
[16] W. So and R. C. Thompson, Singular values of matrix exponentials, preprint.
[17] C. J. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys. 6 (1965), 1812-1813.
[18] C. J. Thompson, Inequalities and partial orders on matrix spaces, Indiana Univ. Math. J. 21 (1971), 369-480.

