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A generalized convexity and a homotopy approach to a
quasiconvex minimization

Phan Thien Thach and Masakazu Kojima (IJ\.E Bfn)

Tokyo Institute of Technology

Abstract. We present a variational condition for a global optimality to a class of
quasiconvex minimization problems where vanishing gradients are not enough to the
optimality. Using this condition we show that a quasiconvex minimization problem,
whose local minima may not global ones, can be reduced to a generalized equation,

and can, in principle, be solved by homotopy approaches.
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1 Introduction

Mathematical programming problems pioneered by the contributions of Dantzig in
the 1940’s became one of central areas in Economic Theory with broad applications.
In convex programs we can use the first-order optimality conditions (Karush-Kuhn-
Tucker conditions) by which we can obtain a big connection to other important
problems such as complementarity, variational inequality, or fixed point problems
(see, e.g., Refs.[1,4,9,12,16]). Many powerful computational methods can be trans-
ferred between these problems. For example, the recent interior point approach for
mathematical programs can be applied to an wide class of complementarity problems
{Ref.[10]). With appropriate relaxations of convexity assumptions one can extend the
first-order optimality conditions to more general problems (see, e.g., Refs.[12,16]). A

basic obstacle in quasiconvex minimiza,tionlproblems is the fact that the usual gra-
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dients are not able to characterize the increasing directions at critical points. In the

other words, a vanishing gradient is not sufficient for the optimality.

In this paper, using a generalized quasisubdifferential we present a first-order opti-
mality condition for a quasiconvex minimization problem. By the optimality condi-
tion we can reduce the optimization problem to a generalized variational inequality.
Therefore we can, in principle, solve a quasiconvex minimization problem which is
multi-extremal, by path-following methods, provided that quasisubdifferentials are
computable. For an illustration we present a homotopy inclusion which defines a

monotone curve from an interior feasible solution to the set of optimal solutions.

In Section 2 we present a generalized convexity and a connection to the previous
results. In Section 3 we present an optimality condition and a reduction to a gen-
eralized variational inequality. In Section 4 we apply a homotopy approach to the

variational inequality, and in Section 5 we draw concluding remarks.

2 A generalized convexity and the explicit qua-
siconvexity

Let f : R* — RU {xoco} be a function. We call the set {z : f(z) < sup,cz. f(2)}
the domain of f and denote it by dom f:

démf = {z:f(z)< zséu}g f(z)}

The domain of a quasiconvex function is a convex set. If f is a nonconstant convex

function, then sup .z~ f(z) = 400 [15], hence dom f has the usual meaning:

domf = {z: f(z) < +o0}.
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Definition 2.1. A function f is explicitly quasiconvex iff f is quasiconvex
and for every z € domf, y € domf, f(z) < f(y), A €[0,1) one has f(z + My —
z)) < f(y)-

The concept of explicit quasiconvexity (sometimes called strict quasiconvexity, or
functional quasiconvexity ) was used in many literatures [11,12,16]. It is straight-
forward to see that any local minimum of an explicitly quasiconvex function is global
minimum [12,16]. Let f be a quasiconvex function. We consider the following prop-

erties of f:

(A1) Any local minimizer of f on an arbitrary convex set D C domf is a global

minimizer of f on D;

(A2) Any local minimizer of f on an arbitrary segment [z,y] C domf is a global

minimizer of f on [z, y];
{A3) Any local minimizer of f on domf is a global minimizer.

Theorem 2.1. Let f be a quasiconvex function.

(1) Explicit quasiconvexity < (A1) ¢ (A2) = (A3);
(i1) If f is usc then

Explicit quasiconvexity ¢ (Al) & (A2) ¢ (A3).

In order to prove the theorem we need the following lemma.
Lemma 2.1. If f is usc, quasiconvex and
£(0) = min{f(z) : 2 € B"},

then the property (A3) is equivalent to one of the following assertions:
(A3") f is explicitly quasiconvex;
(A3”) For every z such that sup, .z f(y) > f(z) > f(0), one has

f@)> f(O02) YAE(0,1).
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Proof. (A3') = (A3): see [12];
(A3) = (A3”): Let z be a vector such that sup,cp. f(y) > f(z) > f(0). Since f

satisfies (A3) and f(z) > f(0), 7 is not a local minimizer, hence
z € d{y: f(y) < f(=)} (1)
Since f is usc, the set {y : f(y) < f(z)} is open. From (1) this implies that [15]
[0,2) Cint cl{y: f(y) < f(=)} = {y: f(y) < f(2)}.

Therefore, f(z) > f(Az) VA €[0,1).
(A3") = (A3’): Let z and y be vectors in domf such that:

f(z) < f(y) < sup{f(z):z € R"}.
Suppose that there is A € (0, 1) such that f((1 — A)z + Ay) = f(y).Then
F(1=0)z +0y) = f(y) Vo€ 1]

Since {z : f(z) < f(y)} is open, convex and the intersection of {z : f(z) < f(y)}
and the segment [(1 — A)z + Ay, y] is empty, there is a linear function (v,.) strictly
separating {z : f(2) < f(y)} and [(1 — A)z + Ay, y):

(v,2) <1 Vz: f(z)< f(y) (2)
(0,(1= )5 +0y) > 1 Vo€ [\, 1] 3)

Since f((1 - 0)z + 0y) = f(y) > f(z) > f(0), from (A3”) one has

F(H(1 = 6)z + 8y)) < F(1— O)a +6y) Vi€ (0,1) V6 €A, 1]
= (v,t((1—0)z +0y)) <1 Yt € (0,1) Y8 € [\ 1].

This together with (3) implies that

{(v,(1—-0)z +0y)=1 Ve [A1]



Therefore the hyperplane {z : (v, z} = 1} contains the line {(1 — t)z + ty : ¢t € R},
hence (v,z) = 1. We arrive at a contradiction with (2) and the fact that f(z) <

f¥).0

The proof of Theorem 2.1.

The proof of assertion (i) can be found in [12]. In order to prove assertion (ii) it
remains to prove that if f is usc then the property (A3) implies the explicit quasi-
convexity. Let f be an usc quasiconvex function satisfying (A3). We shall prove that

[ is explicitly quasiconvex. Let z,y € domf such that f(z) < f(y). Setting
g(z) = maz{f(z), f(z + 2)},
we have an usc qqasiconvex function g satisfying (A3) and
g9(0) = min{g(z): 2 € B} = f(z) < f(y) = g(y — 7).

By Lemma 2.1 this implies that

9y - ) > g(My — 3)) YA€(0,1)
> f(y) > f(z + My - 2)) YA€ (0,1).

This completes the proof.0

A quasiconvex function satisfying property (A3) will be called essentially quasicon-
vex. The essential quasiconvexity is slightly weaker than the explicit quasiconvexity,

and in the class of usc quasiconvex functions they are equivalent.

3 A generalized Karush-Kuhn-Tucker condition

Let f be a subdifferentiable closed convex function and D be a closed convex set. It

is well known that the following criterion

0€df(z) + N(z, D) (4)
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is necessary and sufficient for the optimality of . In a quasiconvex minimization,
where f is quasiconvex and Jf(-) stands for Clarke’s generalized subdifferentials,
this criterion is not sufficient for the optimality. However we shall see that if we
replace the set of subdifferentials by the set of the so-called quasisubdifferentials,
then the condition (4) is sufficient for the optimality even in a general quasiconvex

minimization.

Definition 3.1. let f: R — RU {#+o00} be a function. A vector v is called a

quasisubdifferential of f at z if

{v,z) =1 and f(z)< fly) Vy:{v,y)2>1.

Denote by 8% f(z) the set of quasisubdifferentials of f at z. If 9% f(z) # @
then f is quasisubdifferentiable at z, and if 37 f(z) # 0 Vz € X then f is

quasisubdifferentiable on X.

It is obvious that

v € 8% f(x)
& (va)=1 and f(z)=inf{f(y): {v,4) > 1}

There are close relationships between the usual subdifferentials and the quasisubdif-
ferentials. If f is a finite convex function, then for any z : f(z) > f(0) the set 8% f(x)

is nonempty, compact, convex and [20]

v

(v, 2)

O f(a) = { oy v €010} ®)

Example 3.1. Let h; : R — RU {£oo} (: = 1,...,n) be usc increasing functions.
Consider the function f: R® — RU {%oo} defined as follows

f(z) = maz{h(0),hi(z;): et =1,..,n} Vz=(24,..2,) €ER".



It is easy to see that f is usc, essentially quasiconvex. For any .z : oo > f(z) > f(0)

denote by I(zx) the set of indices ¢ such that F(z) = hy(z,). Then,

8Hf(x)={z -Eo—i—eif Zn: 0,:1,9‘20361({3)},

ielz) ¥ iel(x)

where e; is the i-th unit vector in R",

We consider now the following program
min{f(z) : z € D}, (6)

where f is quasiconvex, and D is a closed convex set. We suppose a technical as-

sumption that
£(0) < min{f(z) : z € D} < sup{f(z) : s € B*} (7)

and denote
kerf = {z: f(z) < f(0)}.
If f is usc then f is quasisubdifferentiable on R™\ ker f, hence on D, and furthermore

8% f(z) is convex, compact for every z € R™ \ ker f [20].

Theorem 3.1. If f is usc, essentially quasiconvex then a vector r € D is

optimal to problem (9) if and only if

0€d¥f(z)+ N(s,D). (8)

If f is a general quasiconvex function, criterion (8) is still sufficient for the global
optimality (although it is not of a second-order type). With a coercivity condition and
the lower semi-continuity of f, program (6) has an optimal solution, hence criterion
(8) is satisfied at at least an optimal solution z € D [20]. But the above theorem
show further that if f is essentially quasiconvex then condition (8) is satisfied at all

optimal solutions.



The proof of Theorem 3.1.
Since criterion (8) is sufficient for the optimality in a general case (see Theorem
4.1, [20]), it remains to prove that it is necessary. Suppose that £ € D is an optimal

solution. Then, {y: f(y) < f(z)}ND = 0. There is a linear function {v, .) separating
{y: f(y) < f(z)} and D:
(v,y) <1 Vy: f(y) < f(z) (9)

{(v,y) > 1 Yy € D. (10)

Since £ € D, one has (v, z) > 1. On the other hand, z € cl{y : f(y) < f(z)}, because

f is essentially quasiconvex. So, (v,z) = 1. This together with (9) follows that
f@)=mf{f(y): (v,2) 2 1}

Therefore, v € 3% f(z). Furthermore, v € ~N(z, D), because of (10) and (v, z) = 1.

This completes the proof.0

Suppose now that D is given by the following inequalities
D={z:f(z)<0 1=1,..,m}

where f; : R* — R are convex functions. Assume that Slater’s condition is satisfied,
i.e,,

dz: fi(z)<0 Vi=1,..,m.

It is well known that for every z € D there are nonnegative numbers Ay, ..., A, such
that [15]
N(z,D)=cone{d X3fi(z)}, Aifi(z)=0 i=1,.,m.
=1

From Theorem 3.1 we can obtain a generalized Karush-Kuhn-Tucker condition
0 € 8" f(z) + 3 Mfi() (11)
i=1
/\,'f.-(z) =0 1=1,...,m ('12)

A20s=1..,m, f(z)<0i=1,.. m (13)



Example 3.2. Suppose that f is given as in Example 3.1 and §; (Vs) is differentiable.
Then the condition (11)-(13) becomes the following equations and inequations:

n

0= Z: —:ez E AV i) (14)

Af,(:v)-O f;($)<0 Ai20 1=1,. (15)
29_1 9, >0, 0,(f(z)=hi(z:))=0 :=1,. (16)

=1

where V fi(z) denotes the gradient of f; at . Note that the system (14)-(16) is
different from K-K-T condition even when functions h; are differentiable. Indeed,

K-K-T condition gives us the system, where (14) is replaced by
”n m
0= E@th,-(:zi) + Z A,Vf,(:z:)
=1 =1

At a “stationary” point £ such that VA,(z,) =0 (Ve =1,...,n), K-K-T condition is
satisfied, but £ may not be a minimum, because h; may be nonconvex. Therefore the

system (14)-(16) excludes any stationary point, which is not a minimum.

In order to convert the condition (11)-(13) to a generalized equation we can use a
simple reduction in [9]. By setting A} = maz(0, \;), A\ = maz(0,-X,) i =1,...,m

the system (11)-(13) is transformed into the following generalized equation
0€ H(z, Aty ooy Am)y (17)
where H is a point-to-set mapping from R"t™ to R"*™ defined as follows

H(z, Ay o ) = {0, ] = Fi(), o, Ay = J(@)) : v € O f(2) + i N of(=)}.

Using the generalized K-K-T condition (8) we present now a generalized variational

inequality.

Theorem 3.2. If f € ¥ is usc, essentially quasiconvex, then a vector z € D

is optimal to problem (6) if and only if z is a solution of a generalized

85
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variational inequality

] - <0V D. 18
uEg}}?(x)<u)x y) < ye€ (18)

Proof. One has

z solves (6)
0€ 88 f(z)+ N(z,D) (by Theorem3.1)
3" f(z)N —N(z,D) #£ 0
min sup(u,x ~y) <0 (since 8% f(z) is compact)

uedH f(z) ye D

sup min {(u,z—y) <0 (since ¥ f(z) is conves
sup min (n,5=3) SO (since 0" f(a) )

i - v fa]
ueglﬂl?(:)(u,x y)<0 VyeD

t ¢ ¢ ¢ ¢

If D is the cone {z : £ > zo}, where x4 is a vector in R", and the quasisubdifferential
mapping z + &% f(z) is singleton on D, then it is easy to check that the variational

inequality (18) becomes
(0% f(2), 2~ z0) =0, 0¥ f(z) 20,

hence the set of optimal solutions is exactly the set of solutions of the following

complementarity problem
(BB f(z),z —xo) =0, ¥ f(2)>0, £> .

Note that the quasisubdifferential mapping = + 8 f(z) is not necessarily monotone

in this complementarity problem.

4 Homotopy inclusion

In the previous sections we show that if f i1s usc, then a quasiconvex minimization

(6) can be reduced to the variational inequality (18). In this section we present a



homotopy inclusion to show that this variational inequality can be solved by path-

following methods.

Assume additionally throughout this section that D is bounded. Denote by r(y) the

projection of vector y € R” on D:
n(y) = argmin{|| z — y ||: = € D}.
The variational inequality (18) is equivalent to the following inclusion [4]
u € 3 f(x(u)) + n(u). (19)

In the sequel we shall prove that 8% f(z) (Vz € D) is contained in a compact set
K (not depending on z) and the quasisubdifferential mapping z ++ 8% f(z) is hemi-

continuous.
From (7) it follows that there is a such that
inf{f(z):z € D} > a > f(0).

Set K := {y: f(y) < a}°. Since 0 € int{y: f(y) < a}, K is compact.
Theorem 4.1. If f is usc, then 8% f(z) C K for all z € D.
Proof. Let £ € D. Since f is usc, one has [21]

[v: fH(v) < ~f()} = {9 F(¥) < @),
So,

F(z) = {vilwa)=1, fH@)==f=)}
C {v: /() S ~F@} € {y: fw) < F@)}.

Since @ < f(z), one has {y : f(y) < a} C {y: f(y) < f(2)}, hence {y : f(y) <
f(2)}° C K. Therefore, 87 f(z) C K.O
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Theorem 4.2. If f is continuous on D, then 8% f(.) is hemi-continuous on

D.

Proof. Let z € D and suppose that {z,} — z, {v,} — v and v, € 8% f(z,). One

has

v, € 8% f(z,)

& (v, zp) =1, fH(va) € = f(an).
Since f is usc, f¥ is Isc [19]. This together with the continuity of f implies
(v, @) = 1, f(v) < liminf f¥(va) < lim —f(2,) = —f(2).
This means v € 8% f(z). Therefore 87 f(.) is hemi-continuous.0

Now we discuss on a homotopy of the inclusion (19) when f is essentially quasiconvex.
If the function f is convex, or in the other words program (12) is a convex program,

then we can use the usual subdifferentials in the inclusion (19):

u— (u) € df(n(xw)).

Denote by U(t) (t € [0,1]) the set of solutions of the linear homotopy inclusion
u— w(u) € taf(m(u)) + (1 — t)(r(u) — o),

where zo € D. Then the path {x(U(t)),t € [0,1]} from z, to the set of optimal
solutions is monotone, ie., 7(U(t)) is singleton for any t € [0,1), because x(U(¢))
contains a unique minimizer of the strictly convex function ¢ f(a:)+(1;-t) | z—z0 | /2
on D. However if f is essentially quasiconvex, but no longer convex, then the function
tf(z)+ (1 —=1t) || z — 2o ||* /2 may not be quasiconvex. Therefore we have to use
another homotopy to obtain a monotone path in the case where f is essentially
quasiconvex. The homotopy will be constructed based on a retraction. A general

retraction was propos<ed by Yamamoto[25] to solve an equation ¢(z) = 0. For a



family {D, : t € [0,1]} of compact convex subsets of R"® a continuous mapping
r; : R* — R" is a retraction onto D, if r,(R") C D, and r(z) = z ¥z € D, [25]. The
projection mapping 7,(.) onto D, is, of course, a retraction. We shall use this type
of retractions and a family {D, : t € [0, 1]} which is a continuation from the set of a

singleton vector zo € :ntD to D. Suppose that
D ={z: d(z) <0},
where d(.) is a finite convex function and the constraint qualification
dz: d(z) <0
1s satisfied. Let zq be an arbitrary vector in dom f N éntD. For every t € [0, 1], set
b, ={z:(1=t)|| -z || +td(z) < 0}.
It i1s obvious that

Do={.’z‘o}
D1=D
DoCD,CD,CD VOLtLY L.

Since (1—t) || z—=o ||> +td(z) is strictly convex forall t € [0, 1), the set D; (¢t € [0,1))

is strictly convex, ie.,
1 € Dy, 2, € Dy, 2y # 23, A€ (0,1) = Azy + (1 — A)z3 € intD,.

Now we prove the uniqueness of a minimizer of an essentially quasiconvex function

on a strictly convex set.

Theorem 4.3. Let f € ¥ be an usc function. Then f is essentially quasi-

convex if and only if for every strictly convex set C such that

F(0) <int{f(z) : # € C} < sup{f(s) : 2 € R"}. (20)

89
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f has at most a minimizer on C.

Proof. Suppose that f is essentially quasiconvex. If there are a strictly convex set
C satisfying (20) and two minimizer 21, Z3, 21 # %2 of f on C then (z1 + 22)/2 is a

minimizer on C as well. From (20) it follows that
sup () > f((#1 +22)/2) > £(0)
Therefore by lemma 2.1 one has
Fl(z1 + £2)/2) > f(A(z1 + 22)/2) VA €[0,1).

We arrive at a contradiction with the fact that (21 + 22)/2 € entC and (21 +22)/2 is
a minimizer on C. Now suppose conversely that f is not essentially quasiconvex. By
definition there is a local minimizer, z, of f on dom f which is not a global minimizer.
So there is a ball C centered at z such that C N {y: f(y) < f(z)} = . This implies
that z is a minimizer of f on the strictly convex set C. Since f(Az) < f(z) VA € [0,1],

this implies that f has more than one minimizer on the strictly convex set C.00

Let 7, be the projection mapping on D,;. We consider the following homotopy éf the
inclusion (19):

u € Ei(u) := 8% f(mi(u)) + mi(u). (21)
Since zp € tntD, the mapping 7;(u) is hemi-continuous w.r.t. (¢, u) € [0,1] x R".
Therefore, if f is continuous on D then by Theorem 4.2 89 f(.) is hemi-continuous

w.r.t. z on D and hence E,(u) is hemi-continuous w.r.t. (¢, u). Set
X(t):=r(U),
where U is the set of solutions of (21). If f is essentially quasiconvex then X(t) 1s
exactly the set of minimizer of f on D,. Therefore, by Theorem 4.3 X (¢) is singleton
for every t € [0,1) because D, satisfies (20):
zo € Dy = DiNdomf # 0
D,C D = D,nkerf = 0.



Thus, {X(t),t € [0,1]} forms a monotone path from X(0) = zy to the set of optimal

solutions to program (6).

5 Conclusions

Based on a generalized convexity (the essential quasiconvexity) we presented a con-
nection between a mathematical program and a generalized variational inequality.
It is understandable that this generalized convexity is a composition of the quasi-
convexity and the property “a local minimum is global” (briefly “L=G”). Without
property “L=G” we can only convert the mathematical program into a variational
inequality, but not vice versa. We also present a homotopy inclusion which defines a

monotone curve from a feasible interior solution to the set of optimal solutions.

Similarly as in convex minimization the computation problem of quasisubdifferentials
is very important. In certain cases we can relatively easily compute a quasisubdiffer-
ential, but in the most general case we have to solve a quasiconvex minimization if

we want to compute a quasisubdifferential of a quasiconvex function.

There are relationships between optimality conditions and duality. In principle if we
have a K-K-T-type optimal condition, then we can obtain a convex-type duality. An
optimal K-K-T vector in a primal problem is an optimal solution in the dual problem

and an optimal solution in the primal is an optimal K-K-T vector in the dual.
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