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A generalized convexity and a homotopy approach to a
quasiconvex minimization

Phan Thien Thach and Masakazu Kojima (小島 政和)

Tokyo Institute of Technology

Abstract. We present a variational condition for a global optimality to a $cIass$ of

quasiconvex mininization problems where vanishing gradients are not enough to the

optimality. Using this condition we show that a quasiconvex minimization problem,

whose local minima may not global ones, can be reduced to a generalized equation,

and can, in principle, be solved by homotopy approaches.
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1 Introduction

Mathematical programming problems pioneered by the contributions of Dantzig in

the $1940’ s$ became one of central areas in Economic Theory with broad applications.

In convex programs we can use the first-order optimality conditions (Karush-Kuhn-

Tucker conditions) by which we can obtain a big connection to other important

problems such as complementarity, variational inequality, or fixed point problems

(see, e.g., Refs.[1,4,9,12,16]). Many powerful computational methods can be trans-

ferred between these problems. For example, the recent interior point approach for

mathematical programs can be applied to an wide class of complementarity problems

(Ref.[10]). With appropriate relaxations of convexity assumptions one can extend the

first-order optimality conditions to more general problems (see, e.g., Refs.[12,16]). A

basic obstacle in quasiconvex minimization problems is the fact that the usual gra-
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dients are not able to characterize the increasing directions at critical points. In the

other words, a vanishing gradient is not sufficient for the optimality.

In this paper, using a generalized quasisubdifferential we present a first-order opti-

mality condition for a quasiconvex minimization problem. By the optimality condi-

tion we can reduce the optimization problem to a generalized variational inequality.

Therefore we can, in principle, solve a quasiconvex minimization problem which is

multi-extremal, by path-following methods, provided that quasisubdifferentials are

computable. For an illustration we present a homotopy inclusion which defines a

monotone curve from an interior feasible solution to the set of optimal solutions.

In Section 2 we present a generalized convexity and a connection to the previous

results. In Section 3 we present an optimality condition and a reduction to a gen-

eralized variational inequality. In Section 4 we apply a homotopy approach to the

variational inequality, and in Section 5 we draw concluding remarks.

2 A generalized convexity and the explicit qua-

siconvexity

Let $f$ : $R^{n}\mapsto R\cup\{\pm\infty\}$ be a function. We call the set $\{x : f(x)<\sup_{x\in R}. f(x)\}$

the domain of $f$ and denote it by $dmf$ :

$domf= \{x : f(x)<\sup_{x\in R^{n}}f(x)\}$ .

The domain of a quasiconvex function is a convex set. If $f$ is a nonconstant convex
function, then $\sup_{x\in R^{n}}f(x)=+\infty[15]$ , hence $d\alpha nf$ has the usual meaning;

$domf=\{x : f(x)<+\infty\}$ .
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Deflnition 2.1. A function $f$ is explicitly quasiconvex iff $f$ is quasiconvex

and for every $x\in dornf,$ $y\in domf,$ $f(x)<f(y),$ $\lambda\in[0,1$ ) one has $f(x+\lambda(y-$

$x))<f(y)$ .

The concept of explicit quasiconvexity (sometimes called strict quasiconvexity, or

functional quasiconvexity) was used in many literatures [11,12,16]. It is straight-

forward to see that any local minimum of an explicitly quasiconvex function is global

mininum $[12,16]$ . Let $f$ be a quasiconvex function. We consider the following prop-

erties of $f$ :

(A1) Any local minimizer of $f$ on an arbitrary convex set $D\subseteq dmf$ is a global

minimizer of $f$ on $D,\cdot$

(A2) Any local minimizer of $f$ on an arbitrary segment $[x, y]\subseteq domf$ is a globaJ

minimizer of $f$ on $[x, y]$ ;

(A3) Any local minimizer of $f$ on doen$f$ is a global minimizer.

Theorem 2.1. Let $f$ be a quasiconvex function.

(i) Explicit quasiconvexity $\Leftrightarrow$ (A1) $\Leftrightarrow(A2)\Rightarrow(A3)$ ;

(ii) If $f$ is usc then

Explicit quasiconvexity $\Leftrightarrow(A1)\Leftrightarrow(A2)\Leftrightarrow(A3)$ .

In order to prove the theorem we need the following lemma.

Lemma 2.1. If $f$ is usc, quasiconvex and

$f(0)= \min\{f(x) : x\in R"\}$ ,

then the property (A3) is equivalent to one of the following assertions:

(A3’) $f$ is explicitly quasiconvex;

(A3”) For every $x$ such that $\sup_{y\in R^{n}}f(y)>f(x)>f(0)$, one has

$f(x)>f(\lambda x)\forall\lambda\in(0,1)$ .
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Proof. $(A3)\Rightarrow(A3)$ : see [12];

(A3) $\Rightarrow(A3))$ : Let $x$ be a vector such that $\sup_{y\in R^{n}}f(y)>f(x)>f(0)$ . Since $f$

satisfies (A3) and $f(x)>f(O),$ $x$ is not a local minimizer, hence

$x\in d\{y : f(y)<f(x)\}$ . ( $1\rangle$

Since $f$ is usc, the set $\{y:f(y)<f(x)\}$ is open. Rom (1) this implies that [15]

$[0, x)\subseteq intcl\{y:f(y)<f(x)\}=\{y:f(y)<f(x)\}$ .

Therefore, $f(x)>f(\lambda x)$ $\forall\lambda\in[0_{j}1$).

$(A3’)\Rightarrow(A3‘)$ : Let $x$ and $y$ be vectors in $dmf$ such that:

$f(x)<f(y)< \sup\{f(x) : x\in R^{n}\}$ .

Suppose that there is $\lambda\in(0,1)$ such that $f((1-\lambda)x+\lambda y)=f(y).Then$

$f((1-\theta)x+\theta y)=f(y)\forall\theta\in[\lambda, 1]$ .

Since $\{z : f(z)<f(y)\}$ is open, convex and the intersection of $\{z : f(z)<f(y)\}$

and the segment $[(1-\lambda)x+\lambda y, y]$ is empty, there is a linear function ( $v,$ $.$ } strictly

separating $\{z:f(z)<f(y)\}$ and $[(1-\lambda)x+\lambda y, y]$ :

{ $v,$ $z$ ) $<1$ $\forall z$ : $f(z)<f(y)$ (2)

\langle $v,$ $(1-\theta)x+\theta y$ } $\geq 1$ $\forall\theta\in[\lambda, 1]$ . (3)

$S$ ince $f((1-\theta)x+\theta y)=f(y)>f(x)\geq f(0)$ , from (A3”) one has

$f(t((1-\theta)x+\theta y))<f((1-\theta)x+\theta y)\forall t\in(0,1)\forall\theta\in[\lambda, 1]$

$\Rightarrow\langle v, t((1-\theta)x+\theta y)\rangle<1\forall t\in(0,1)\forall\theta\in[\lambda, 1]$.

This together with (3) implies that

$\{v,$ $(1-\theta)x+\theta y)=1\forall\theta\in[\lambda, 1]$ .
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Therefore the hyperplane $\{z : \{v, z\}=1\}$ contains the line $\{(1-t)x+ty:t\in R\}$ ,

hence ( $v,$ $x$ } $=1$ . We arrive at a contradiction with (2) and the fact that $f(x)<$

$f(y).O$

The proof of Theorem 2.1.

The proof of assertion (i) can be found in [12]. In order to prove assertion (ii) it

remains to prove that if $f$ is usc then the property (A3) implies the explicit quasi-

convexity. Let $f$ be an usc quasiconvex function satisfying (A3). We shall prove that
$f$ is explicitly quasiconvex. Let $x,$ $y\in domf$ such that $f(x)<f(y)$ . Setting

$g(z)$ $:= \max\{f(x))f(x+z)\}$ ,

we have an usc quasiconvex function $g$ satisfying (A3) and

$g(0)= \min\{g(z) : z\in R^{n}\}=f(x)<f(y)=g(y-x)$.

By Lemma 2.1 th$is$ implies that

$g(y-x)>g(\lambda(y-x))\forall\lambda\in(0,1)$

$\Rightarrow f(y)>f(x+\lambda(y-x))\forall\lambda\in(0,1)$ .

This completes the proof. $O$

A quasiconvex function satisfying property (A3) will be called essentially quasicon-

vex. The essential quasiconvexity is slightly weaker than the explicit quasiconvexity,

and in the class of usc quasiconvex functions they are equivalent.

3 A generalized Karush-Kuhn-Tucker condition

Let $f$ be a subdifferentiable closed convex function and $D$ be a closed convex set. It

is well known that the following criterion

$0\in\partial f(x)+N(x, D)$ (4)
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is necessary and sufficient for the optimality of $x$ . In a quasiconvex minimization,

where $f$ is quasiconvex and $\partial f(\cdot)$ stands for Clarke’s generalized subdifferentials,

this criterion is not sufficient for the optimality. However we shall see that if we

replace the set of subdifferentials by $t^{\text{・}}he$ set of the so-called quasisubdifferentials,

then the condition (4) is sufficient for the optimality even in a general quasiconvex

minimizat ion.

Definition 3.1. let $f$ : $R^{n}\mapsto R\cup\{\pm\infty\}$ be a function. A vector $v$ is called a

quasisubdifferential of $f$ at $x$ if

{ $v,$ $x$ ) $=1$ and $f(x)\leq f(y)\forall y:(v, y)\geq 1$ .

Denote by $\partial^{H}f(x)$ the set of quasisubdifferentials of $f$ at $x$ . If $\partial^{H}f(x)\neq\emptyset$

then $f$ is quasisubdifferentiable at $x$ , and if $\partial^{H}f(x)\neq\emptyset\forall x\in X$ then $f$ is

quasisubdifferentiable on $X$ .

It is obvious that

$v\in\partial^{H}f(x)$

$\Leftrightarrow$ \langle $v,$ $x$ } $=1$ and $f(x)= \inf\{f(y):(v, y\}\geq 1\}$ .

There are close relationships between the usual subdifferentials and the quasisubdif-

ferentials. If $f$ is a finite convex function, then for any $x:f(x)>f(0)$ the set $\partial^{H}f(x)$

is nonempty, compact, convex and [20]

$\partial^{H}f(x)=\{\frac{v}{(v_{J}x\rangle}$ : $v\in\partial f(x)\}$ . (5)

Example 3.1. Let $h_{i}$ : $Rarrow R\cup\{\pm\infty\}(\iota=1, \ldots, n)$ be usc increasing functions.

Consider the function $f:R^{n}arrow R\cup\{\pm\infty\}$ defined as follows

$f(x)= \max\{h_{\dot{\iota}}(0), h_{i}(x_{i}):i=1_{\}}\ldots, n\}$ $\forall x=(x_{1}, \ldots x_{n})\in R^{n}$ .
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It is easy to see that $f$ is usc, essentially quasiconvex. For any $\backslash x:\infty>f(x)>f(0)$

denote by $I(x)$ the set of indices $i$ such that $f(x)=h_{i}(x_{i})$ . Then,

$\partial^{H}f(x)=\{\sum_{i\in I(x)}\frac{\theta_{i}}{x_{\mathfrak{i}}}e_{i}$ : $\sum_{i\in I(x)}^{n}\theta_{i}=1,$ $\theta_{i}\geq 0in I(x)\}$ ,

where $e_{\}$ is the i-th unit vector in $R^{n}$ .

We consider now the following program

$\min\{f(x):x\in D\}$ , (6)

where $f$ is quasiconvex, and $D$ is a closed convex set. We suppose a technical as-

sumption that

$f(0)< \min\{f(x):x\in D\}<\sup\{f(x):x\in R^{n}\}$ (7)

and denote

$kerf=\{x:f(x)\leq f(0)\}$ .

If $f$ is usc then $f$ is quasisubdifferentiable on $R^{n}\backslash kerf$ , hence on $D$ , and furthermore
$\partial^{H}f(x)$ is convex, compact for every $x\in R^{n}\backslash kerf[20]$ .

Theorem 3.1. If $f$ is usc, essentially quasiconvex then a vector $x\in D$ is

optimal to problem (9) if and only if

$0\in\partial^{H}f(x)+N(x, D)$ . (8)

If $f$ is a general quasiconvex function, criterion (8) is still sufficient for the global

optimality (although it is not of a second-order type). With a coercivity condition and

the lower semi-continuity of $f$ , program (6) has an optimal solution, hence criterion

(8) is satisfied at at least an optimal solution $x\in D\{20$]. But the above theorem

show further that if $f$ is essentially quasiconvex then condition (8) is satisfied at all

optimal solutions.
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The proof of Theorem 3.1.

Since criterion (8) is sufficient for the optimaJity in a general case (see Theorem

4.1, [20]), it remains to prove that it is necessary. Suppose that $x\in D$ is an optimal

solution. Then, $\{y:f(y)<f(x)\}\cap D=\emptyset$ . There is a linear function { $v,$ $.$ ) separating

$\{y:f(y)<f(x)\}$ and $D$ :

{ $v,$ $y\rangle$ $<1\forall y$ : $f(y)<f(x)$ (9)

\langle $v,$ $y$) $\geq 1\forall y\in D$ . (10)

Since $x\in D$ , one has $\{v, x\}\geq 1$ . On the other hand, $x\in cl\{y:f(y)<f(x)\}$ , because
$f$ is essentially quasiconvex. So, { $v,$ $x$ ) $=1$ . This together with (9) follows that

$f(x)= \inf\{f(y) : (v, x)\geq 1\}$ .

Therefore, $v\in\partial^{H}f(x)$ . Furthermore, $v\in-N(x, D)$ , because of (10) and $(v, x)=1$ .

This completes the proof. $O$

Suppose now that $D$ is given by the following inequalities

$D=\{x : f_{i}(x)\leq 0 i=1, \ldots, m\}$ ,

where $f_{i}$ : $R^{n}arrow R$ are convex functions. Assume that Slater’s condition is satisfied,

i.e.,
$\exists x$ : $f_{i}(x)<0\forall i=1,$

$\ldots,$
$m$ .

It is well known that for every $x\in D$ there are nonnegative numbers $\lambda_{1},$

$\ldots,$

$\lambda_{m}$ such

that [15]

$N(x, D)=cme \{\sum_{i=1}^{m}\lambda_{i}\partial f_{i}(x)\}$ , $\lambda_{i}f_{i}(x)=0$ $i=1,$
$\ldots,$

$m$ .

From Theorem 3.1 we can obtain a generalized Karush-Kuhn-Tucker condition

$0 \in\partial^{H}f(x)+\sum_{i=1}^{m}\lambda_{i}\partial f_{i}(x)$ (11)

$\lambda;f_{i}(x)=0$ $i=1,$
$\ldots,$

$m$ (12)

$\lambda_{\iota}\geq 0i=1,$
$\ldots,$

$m$ , $f_{i}(x)\leq 0i=1,$
$\ldots,$

$m$ . (13)
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Example 3.2. Suppose that $f$ is given as in Example 3.1 and $f_{i}(\forall i)$ is differentiable.

Then the condition (11)$-(13)$ becomes the following equations and inequations:

$0= \sum_{i=1}^{n}\frac{\theta_{l}}{x_{i}}e_{i}+\sum_{\=1}^{m}\lambda_{i}\nabla f_{\dot{t}}(x)$ (14)

$\lambda_{i}f_{i}(x)=0$ , $f_{i}(x)\leq 0$ , $\lambda_{t}\geq 0a=1,$
$\ldots,$

$m$ (15)

$\sum_{i=1}^{n}\theta_{i}=1$ , $\theta_{i}\geq 0$ , $\theta_{i}(f(x)-h_{i}(x_{t}))=0i=1,$
$\ldots,$

$n$ (16)

where $\nabla f_{1}(x)$ denotes the gradient of $f_{l}$. at $x$ . Note that the system (14)-(16) is
different from K-K-T condition even when functions $h$ ; are differentiable. Indeed,

K-K-T condition gives us the system, where (14) is replaced by

$0= \sum_{i=1}^{n}\theta_{i}\nabla h_{i}(x_{i})+\sum_{\iota=1}^{m}\lambda_{i}\nabla f_{t}(x)$ .

At a (stationary’ point $x$ such that $\nabla h_{i}(x_{\mathfrak{i}})=0(\forall i=1, \ldots, n),$ K-K-T condition is

satisfied, but $x$ may not be a minimum, because $h_{i}$ may be nonconvex. Therefore the

system (14)-(16) excludes any stationary point, which is not a minimum.

In order to convert the condition (11)$-(13)$ to a generalized equation we can use a

simple reduction in [9]. By setting $\lambda_{i}^{+}=\max(0, \lambda_{i}),$ $\lambda_{i^{-}}=\max(O_{\lambda}-\lambda_{i})\dot{s}=1,$
$\ldots,$

$m$

the system (11)-(13) is transformed into the following generalized equation

$0\in H(x, \lambda_{1)}\ldots, \lambda_{m})$ , (17)

where $H$ is a point-to-set mapping from $R^{n+m}$ to $R^{n+m}$ defined as follows

$H(x, \lambda_{1}, \ldots, \lambda_{m})=\{(v, \lambda_{1}^{-}-f_{1}(x), \ldots, \lambda_{m}^{-}-f_{m}(x)) : v\in\partial^{H}f(x)+\sum_{a=1}^{m}\lambda_{i}^{+}\partial f_{i}(x)\}$ .

Using the generalized K\sim K-T condition (8) we present now a generalized variational

inequality.

Theorem 3.2. If $f\in\Psi$ is usc, essentially quasiconvex, then a vector $x\in D$

is optimal to problem (6) if and only’ if.$x$ is a solution of a generalized
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variational inequality

$\min$ $(u, x-y)\leq 0\forall y\in D$ . (18)
$u\in\partial^{H}f\langle x)$

Proof. One has

$x$ solves (6)

$\Leftrightarrow$ $0\in\partial^{H}f(x)+N(x, D)$ (by Theorem3.1)

$\Leftrightarrow$ $\partial^{H}f(x)\cap-N(x, D)\neq\emptyset$

$\Leftrightarrow$ $\min$ $\sup(u,$ $x-y\rangle$ $\leq 0$ (since $\partial^{H}f(x)$ is compact)
$u\in\partial^{H}f(x)_{y\in D}$

$\Leftrightarrow$ $\sup$ $\min\{u,$ $x-y$) $\leq 0$ (since $\partial^{H}f(x)$ is convex)
$y\in D^{u\in\partial^{H}f(x)}$

$\Leftrightarrow$ $\min$ $(u,x-y)\leq 0$ $\forall y\in D.O$

$u\in\partial^{H}f(x)$

If $D$ is the cone $\{x:x\geq x_{0}\}$ , where $x_{0}$ is a vector in $R^{r\iota}$ , and the quasisubdifferential

mapping $x\mapsto\partial^{H}f(x)$ is singleton on $D$ , then it is easy to check that the variational

inequality (18) becomes

$\{\partial^{H}f(x),x-x_{0}\}=0$ , $\partial^{H}f(x)\geq 0$ ,

hence the set of optimal solutions is exactly the set of solutions of the following

complementarity problem

$(\partial^{H}f(x),x-x_{0})=0$ , $\partial^{H}f(x)\geq 0$, $x\geq x_{0}$ .

Note that the quasisubdifferential mapping $xrightarrow\partial^{H}f(x)$ is not necessarily monotone

in this complementarity problem.

4 Homotopy inclusion

In the previous sections we show that if $f$ is usc, then a quasiconvex minimization

(6) can be reduced to the variational inequality (18). In this section we present a
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homotopy inclusion to show that this variational inequality can be solved by path-

following methods.

Assume additionally throughout this section that $D$ is bounded. Denote by $\pi(y)$ the
projection of vector $y\in R^{n}$ on $D$ :

$\pi(y)=argmin$ { $||x-y$ II: $x\in D$ }.

The variational inequality (18) is equivalent to the folIowing inclusion [4]

$u\in\partial^{H}f(\pi(u))+\pi(u)$ . (19)

In the sequel we shall prove that $\partial^{H}f(x)(\forall x\in D)$ is contained in a compact set
$K$ (not depending on x) and the quasisubdifferential mapping $x\vdash\div\partial^{H}f(x)$ is hemi-

continuous.

From (7) it follows that there is $\alpha$ such that

$\inf\{f(x) : x\in D\}>\alpha>f(0)$ .

Set $K:=\{y:f(y)<\alpha\}^{0}$ . Since $O\in;_{n}t\{y:f(y)<\alpha\})K$ is compact.

Theorem 4.1. If $f$ is usc, then $\partial^{H}f(x)\subseteq K$ for all $x\in D$ .

Proof. Let $x\in D$ . Since $f$ is $usc$ , one has [21]

$\{t; ; f^{H}(v)\leq-f(x)\}=\{y ; f(y)<f(x)\}^{0}$.

So,

$\partial^{H}f(x)$ $=$ $\{v:\langle v,x\rangle=1, f^{H}(v)=-f(x)\}$

$\subseteq$ $\{v ; f^{H}(v)\leq-f(x)\}\subseteq\{y : f(y)<f(x)\}^{0}$ .

Since $\alpha<f(x)$ , one has $\{y : f(y)<\alpha\}\subseteq\{y : f(y)<f(x)\}$ , hence { $y$ : $f(y)<$

$f(x)\}^{0}\subseteq K$ . Therefore, $\partial^{H}f(x)\subseteq K.O$
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Theorem 4.2. If $f$ is continuous on $D$ , then $\partial^{H}f(.)$ is hemi-continuous on
$D$ .

Proof. Let $x\in D$ and suppose that $\{x_{n}\}arrow x,$ $\{v_{n}\}arrow v$ and $v_{n}\in\partial^{H}f(x_{n})$ . One

has

$v_{n}\in\partial^{H}f(x_{n})$

$\Leftrightarrow$ $(v_{n)}x_{n}$ } $=1, f^{H}(v_{n})\leq-f(x_{n})$ .

Since $f$ is usc, $f^{H}$ is lsc [19]. This together with the continuity of $f$ implies

$\{v, x\}=1,$ $f(v) \leq\lim_{narrow}\inf_{\infty}f^{H}(v_{n})\leq\lim_{narrow\infty}-f(x_{n})=-f(x)$ .

This means $v\in\partial^{H}f(x)$ . Therefore $\partial^{H}f(.)$ is hemi-continuous. $O$

Now we discuss on a homotopy of the inclusion (19) when $f$ is essentially quasiconvex.

If the function $f$ is convex, or in the other words program (12) is a convex program,

then we can use the usual subdifferentials in the inclusion (19):

$u-\pi(u)\in\partial f(\pi(u))$ .

Denote by $U(t)(t\in[0,1])$ the set of solutions of the linear homotopy inclusion

$u-\pi(u)\in t\partial f(\pi(u))+(1-t)(\pi(u)-x_{0})$ ,

where $x_{0}\in D$ . Then the path $\{\pi(U(t)), t\in[0,1]\}$ from $x_{0}$ to the set of optimal

solutions is monotone, i.e., $\pi(U(t))$ is singleton for any $t\in[0,1$ ), because $\pi(U(t))$

contains a unique minimizer of the strictly convex function $tf(x)+(1-t)||x-x_{0}11^{2}/2$

on $D$ . However if $f$ is essentiaUy quasiconvex, but no longer convex, then the function

$tf(x)+(1-t)||x-x_{0}||^{2}/2$ may not be quasiconvex. Therefore we have to use

another homotopy to obtain a monotone path in the case where $f$ is essentially

quasiconvex. The homotopy will be constructed based on a retraction. A general

retraction was proposed by Yamamoto[25] to solve an equation $q(x)=0$. For a
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family $\{D_{t} : t\in[0,1]\}$ of compact convex subsets of $R^{n}$ a continuous mapping
$r_{\mathfrak{i}}$ : $R^{n}arrow R^{n}$ is a retraction onto $D_{t}$ if $r_{\{}(R^{n})\subseteq D_{f}$ and $r_{t}(x)=x\forall x\in D_{\{}[25]$ . The

projection mapping $\pi_{t}(.)$ onto $D_{1}$ is, of course, a retraction. We shall use this type

of retractions and a family $\{D_{t} : t\in[0,1]\}$ which is a continuation from the set of a

singleton vector $x_{0}\in intD$ to $D$ . Suppose that

$D=\{x : d(x)\leq 0\}$ ,

where $d(.)$ is a finite convex function and the constraint qualification

$\exists x$ : $d(x)<0$

is satisfied, Let $x_{0}$ be an arbitrary vector in don$f\cap intD$ . For every $t\in[0,1]$
) set

$D_{1}=\{x:(1-t)||x-x_{0}||^{2}+td(x)\leq 0\}$ .

It is obvious that

$D_{0}=\{x_{0}\}$

$D_{1}=D$

$D_{0}\subseteq D_{\{}\subseteq D_{1’}\subseteq D\forall 0\leq t\leq t’\leq 1$ .

Since $(1-t)$ il $x-x_{\theta}||^{2}+td(x)$ is strictly convex for all $t\in[0,1$ ), the set $D_{t}(t\in[0,1))$

is strictly convex, i.e.,

$x_{1}\in D_{t},$ $x_{2}\in D_{\{},$ $x_{1}\neq x_{2)}\lambda\in(0,1)\Rightarrow\lambda x_{1}+(1-\lambda)x_{2}\in intD_{t}$ .

Now we prove the uniqueness of a minimizer of an essentially quasiconvex function

on a strictly convex set.

Theorem 4.3. Let $f\in\Psi$ be an usc function. Then $f$ is essentially quasi-

convex if and only if for every strictly convex set $C$ such that

$f(0)< \inf\{f(x) : x\in C\}<\sup\{f(x) : x\in R^{n}\}$ . (20)
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$f$ has at most a minimizer on $C$ .

Proof. Suppose that $f$ is essentially quasiconvex. If there are a strictly convex set

$C$ satisfying (20) and two minimizer $x_{1},x_{2},$ $x_{1}\neq x_{2}$ of $f$ on $C$ then $(x_{1}+x_{2})/2$ is a

minimizer on $C$ as well. From (20) it follows that

$\sup_{x\in R^{n}}f(x)>f((x_{1}+x_{2})/2)>f(0)$ .

Therefore by lemma 2.1 one has

$f((x_{1}+x_{2})/2)>f(\lambda(x_{1}+x_{2})/2)\forall\lambda\in[0,1)$ .

We arrive at a contradiction with the fact that $(x_{1}+x_{2})/2\in mtC$ and $(x_{1}+x_{2})/2$ is

a minimizer on $C$ . Now suppose conversely that $f$ is not essentially quasiconvex. By

definition there is a local minimizer, $x$ , of $f$ on donf which is not a global minimizer.

So there is a ball $C$ centered at $x$ such that $C\cap\{y:f(y)<f(x)\}=\emptyset$ . This implies

that $x$ is a minimizer of $f$ on the strictly convex set $C$ . Since $f(\lambda x)\leq f(x)\forall\lambda\in[0,1]$ ,

this implies that $f$ has more than one minimizer on the strictly convex set C. $O$

Let $\pi_{1}$ be the projection mapping on $D_{t}$ . We consider the following homotopy of the

inclusion (19):
$u\in E_{t}(u):=\partial^{H}f(\pi_{\{}(u))+\pi_{t}(u)$ . (21)

Since $x_{0}\in$ intD, the mapping $\pi_{t}(u)$ is hemi-continuous w.r. $t$ . $(t, u)\in[0,1]xR^{n}$ .

Therefore, if $f$ is continuous on $D$ then by Theorem 4.2 $\partial^{H}f(.)$ is hemi-continuous

w.r. $t$ . $x$ on $D$ and hence $E_{t}(u)$ is hemi-continuous w.r. $t$ . $(t, u)$ . Set

$X(t):=\pi_{1}(U)$ ,

where $U$ is the set of solutions of (21). If $f$ is essentially quasiconvex then $X(t)$ is

exactly the set of minimizer of $f$ on $D_{t}$ . Therefore, by Theorem 4.3 $X(t)$ is singleton

for every $t\in[0,1$ ) because $D_{t}$ satisfies (20):

$x_{0}\in D_{1}\Rightarrow D_{1}\cap d\alpha nf\neq\emptyset$

$D_{\{}\subseteq D\Rightarrow D_{t}\cap kerf$ $=\emptyset$ .
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Thus, $\{X(t), t\in[0,1]\}$ forms a monotone path fron $X(0)=x_{0}$ to the set of optimal

solutions to program (6).

5 Conclusions

Based on a generalized convexity (the essential quasiconvexity) we presented a con-
nection between a mathematical program and a generalized variational inequality.

It is understandable that this generalized convexity is a composition of the quasi-

convexity and the property “a local minimum is global” (briefly $(L=G’)$ . Without
property $t(L=G’$ we can only convert the mathematical program into a variational
inequality, but not vice versa. We also present a homotopy inclusion which defines a

monotone curve from a feasible interior solution to the set of optimal solutions.

Similarly as in convex minimization the computation problem of quasisubdifferentials

is very important. In certain cases we can relatively easily compute a quasisubdiffer-

ential, but in the most general case we have to solve a quasiconvex minimization if

we want to compute a quasisubdifferential of a quasiconvex function.

There are relationships between optimality condition $s$ and duality. In principle if we

have a K-K-T-type optimal condition, then we can obtain a convex-type duality. An

optimal K-K-T vector in a primal problem is an optimal solution in the dual problem

and an optimal solution in the primal is an optimal K-K-T vector in the dual.
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