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GEOMETRY OF DISCRIMINANTS AND DYNAMICS
OF DIAGRAMS OF SMOOTH MAPPINGS

ISAO NAKAI
(中居 功)

Department of Mathematics
Hokkaido University

This is a note on the various problems in the dynamical system aproach to diagrams of smooth
mappings. The detaoled argument will appear elsewhere.

The critical point set of a $C^{\infty}$-smooth map $f$ : $N^{n}arrow P^{p}$ is

$\Sigma(f)=$ { $x\in N|$ rank $df(x)\leq p$},

where we assume $p\leq n$ . The discriminant of $f$ is the image

$D(f)=f(\Sigma(f))$ .

Clearly the singular point set is closed by definition, and the discriminant is closed if $f$ is
proper. From now on we assume all manifolds are compact. For generic $f\in C^{\infty}(N, P)$ in
Whitney topology, $\Sigma(f)$ is locally homeomorphic to an real algebraic set of dimension $p-1$
and the singular point set represents a homology class Poincare dual to the Stiefel-Whitney
class $W_{n-p+1}$(TN-f’TP). Here TN-f’TP is the virtual vector bundle over $N$ with the
fiber $T_{x}f^{-1}f(x)$ at $x\in N$ (rank $=n-p$ for generic $f$ ). It is known that for any (contact
invariant) singularity class $I$ , the Poincare dual of the singular locus $\Sigma^{I}(f)$ is witten as a
polynomial of Stiefel-Whitney class of TN–f’TP, which is called Thom polynomial.

Generic $f$ admits an $A_{f^{-}}$ and B-regular stratification. If $f$ is real analytic, the strati-
fication is subanalytic and the direct image is a constractible function. The fibre $f^{-1}(y)$

of generic $y\in,$
$P$ has a unique $Z_{2}$ -euler number. The image $[{\rm Im}(f)]$ is the homology class

defined by
$[{\rm Im}(f)]\cdot[y]=\chi(f^{-1}(y))\in Z_{2}$ .

The discriminant set $D(f)$ defines the cohomology class $[D(f)]\in H_{1}(P, Z_{2})$ , which
assigns to a singular chain $c:S^{1}arrow P$ the $Z_{2}$ -euler number

$c\in H_{1}(P, Z_{2})\chi(N\cross S^{1})f=c\in Z_{2}$ .
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To study systematically introduce the direct image $f_{*}Z$ of the constant sheaf $Z$ over $N$

which assigns to an open $U\subset P$ ,
$f_{*}Z(U)=H_{*}(f^{-1}(U), Z)$ .

The discriminant is interpreted as

$[D(f)] \cdot[c]=\int_{c}f_{*}Z=\int_{c}f_{*}1$

where $\int means$ the integration of the direct image sheaf $f_{*}Z_{2}$ .
Macpherson defined for a complex constractible function $\alpha$ on a variety $V$ a homology

class $c_{*}(\alpha)\in H_{*}(V, Z)$ which satisfies the following properties.
(1) $f_{*}c_{*}(\alpha)=c_{*}f_{*}(\alpha)$

(2) $c_{*}(\alpha+\beta)=c_{*}(\alpha)+c_{*}(\beta)$

(3) $c_{*}(1)=Dua1c(v)$ ,
where $f$ is a holomorphic map, $c(v)$ is the Chern class of $V$ and $f_{*}\alpha$ is the direct image of
the constructible function $\alpha$ defined by

$f_{*} \alpha(y)=\sum_{W}m_{W}\chi(f_{-1}(y)\cap W)$ , a $= \sum_{W}m_{W}1_{W}$ .

To construct $c_{*}(f_{*}1)$ he defined a decomposition of the image (constructible function) by
$V_{i}$ in the manner of

$f_{*}1= \sum_{i}eu(V_{i})$ ,

where eu $(V_{i})$ is the constructible function defined by
eu$(V_{i})(y)=Euler$ obstruction of $V_{i}$ at $y$ .

The union of those $V_{i}$ with positive codimension is the discriminant of $f$ .
Two maps $f$ : $Narrow P,g:Marrow P$ are bordant if there exists a smooth map $h:Warrow P$

such that
(1) $\partial W=N+M$ ,
(2) $f,$ $g$ are restrictions of $h$ .

The bordism class $[f]$ is determned by the Stiefel number, which is the collection of
$F(w_{1}, \ldots, w_{n})\cdot[f^{-1}(y)]$ ,

evaluated at $y\in P$ for all polynomial of Stiefel-Whitney classes of weighted degree $n-p$.
The discriminant class $[D(f)]$ is determined by the bordism class of $[f]$ . The sum of $f,$ $g$

are defined by
$f+g$ : $N\cup Marrow P$.

The product is defined by the fiber product

$f\cross g=N\cross Mf=garrow P$.

If $f,$ $g$ are transversal, the fiber product $N\cross M$ is smooth. By the transversality theorem,
$f=g$

$f,$ $g$ attain the transversality after slight perturbation and the fiber product is well defined
as a bordism class. Clearly $f\cross g=g\cross f,$ $f\cross(g\cross h)=(f\cross g)\cross h$ and $f\cross(g+h)=$
$f\cross g+f\cross h$ . The bordism ring $\Omega(P)$ is generated by all bordism classes and the sum
$+and$ product $\cross$ .
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Theorem.
(1) $Im(f\cross g)=Im(f)\cross Im(g)$ ,
(2) $D(f\cross g)=D(f)\cross Im(g)+Im(f)\cross D(g)$

Proof The first statement is simple interpretation of the formula $\chi(X\cross Y)=\chi(X)\cross\chi(Y)$ .
The second statement is seen by “integrating” the function $Im(f\cross g)$ over cycles of $P$ .

The above theorem should be interpreted and generalized as formulas of constructible
functions rather than homology classes or sheaves. So it seems impotant to generalize
Macpherson’s result for real smooth mappings.

Problem. Generalize Macpherson’s $result$ for smooth mappings to understan$d$ the image
of the various singular loci.

To extract the singularities of mappings to $P$ we may define the reduced bordism ring
$\tilde{\Omega}(P)$ introducing the quotient $f/g=$ ( $f$ : g) and the equivalence relation\sim in the following
manner. We denote

$(f : g)\sim(f’ : g’)$ if $f\cross g’=f’\cross g$

and
$(f : id_{P})\sim(id_{P} : id_{P})=1$ if $f$ is a locally trivial fiber bundle

and define the product $\cross by$

$(f : g)\cross(f’ : g’)=(f\cross f’ : g\cross g’)$ .

By definition
$(f : g)\cross(g : f)=1$

The image and discriminant homology classes are naturally defined for the reduced bordism
classes.

Consider the divergent diagram of smooth maps

$\mathbb{R}^{1}arrow^{\lambda}Narrow^{f}P$,

$p\leq n$ , and regard in two ways as the families of the restrictions

$f_{t}=f$ : $\lambda^{-1}(t)arrow P$, $t\in \mathbb{R}$ ,
$\lambda_{y}=\lambda$ : $f^{-1}(y)arrow \mathbb{R}$ , $y\in P$.

The discriminant sets of the restrictions $f_{t},$ $t\in \mathbb{R}$ constitute complete solutions of a certain
first order PDE with the 1st integral $t$ . We call a discriminant a solution. Here a PDE on
$P$ is a subvariety $V$ of the projective cotangent bundle $PT^{*}P$ with the canonical contact
form $\omega$ . We say a PDE is nonsingular if $V$ is nonsingular. Assume $\dim V=p$ (holonomic).
A 1st integral is a smooth function A on $V$ such that $d\lambda\wedge\omega$ vanishes identically on $V$ .
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Theorem. All $g$erms of $n$onsingular 1st order $PDE$ with nonsingular 1st integrals are
obtained by $di$vergent $di$agram$s$ of smooth map germs.

Problem. $Study$ nonsingular 1st order $PDE$ of $dimp$, which admits local 1st integrals.

In the global case the restrictions $f_{t}$ are all bordant. So it would be interesting to ask

Problem. $Study$ p-fold product $f_{t}\cross\cdots\cross f_{t}$ in the bordism group.

Furthermore we can discuss the fiber product of 1st order PDE’s on $P$ in the manner
of fiber product of diagrams.

Next we consider general problem of the divergent diagrams

$Qarrow^{g}Narrow^{f}P$.

The most important geometric structure is the families of the discriminants of the restric-
tions

$f_{z}=f$ : $g^{-1}(z)arrow P$, $z\in Q$ ,

$g_{y}=g$ : $f^{-1}(y)arrow Q$ , $y\in P$.

These restrictions seem to play conducting role in the Radon transformation of sheaves
$\mathcal{E},$ $\mathcal{F}$ over $P,$ $Q$ defined as follows.

$\mathcal{F}arrow f_{*}g^{*}\mathcal{F}$

$g_{*}f^{*}\mathcal{E}arrow \mathcal{E}$

Here we present the following theorem

Theorem. For a constructible sheaf $\mathcal{F}$ on $N$ , the direct $im$age $f_{*}\mathcal{F}$ under generic real
analytic mapping $f$ is topologically stable, i.e. the direct image is constructible and the
locally trivial stratification of $P$ (along which the cohomology of the direct image is locally
trivial) is topologically sta$ble$ under deformation of $f$ .

The theorem suggests that generic Radon transformation is topologically (cohomologi-
cally) stable.

Problem. Study the stability of $\mathcal{E}arrow f_{*}g^{*}g_{*}f^{*}\mathcal{E}$ .

To observe the dynamical system-aspect of the divergent diagrams, consider the special
case

$\mathbb{P}arrow^{g}Carrow^{f}\mathbb{P}$ ,

where $\mathbb{P}$ is the complex projective line, $C$ is a Riemann surface and $f,$ $g$ are holomorphic
functions. The equivalence relation\sim on $C$ is generated by the relations

$x\sim y$ if $g(x)=g(y)$ or $f(x)=f(y)$ .

The orbit $O(x)$ of an $x$ is the equivalence class of $x$ . The basin of an orbit $O(x)$ is the set
of those $y\in C$ for which the closure of $O(y)$ contains $O(x)$ . Let $x$ be a common singular
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point of $f,$ $g$ and assume that the group of germs of holomorphic diffeomorphisms of $C$

generated by the monodromy of $f,$ $g$ at $x$ is noncommutative. Then the basin of $O(x)$ is
open. The complement of those open basins seem to possess an interesting structure. For
example assume $C$ is defined by the polynomial

$(x-y)(x^{2}+c-y)=\epsilon$

and $f,$ $g$ are the projections onto the x- and y-lines respectively. The $C$ is elliptic curve
and the infinity $(\infty, \infty)$ is the unique isolated equivalence class. The complement of the
basin of the infinity presents fractal structure by numerical experimantation. Clearly for
the case $\epsilon=0$ , the complent is the filled-in Julia set. We call the complement the basin
generalized Julia set. Finally we propose

Problem. Prove the $exis$tence of the generalized $J$ulia set.
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