An Application of Modular approach to
Separable Nonlinear Programming Problem

| 岡山理科大学 | 岩崎 | 彰典（Akinori Iwasaki） |
| :--- | :--- | :--- | :--- |
| 四国大学 | 走田 | 光伯（Mitsunori Hikita） |
| 岡山理科大学 | 仲川 | 勇二（Yuji Nakagawa） |
| 岡山理科大学 | 成久 | 洋之（Hiroyuki Narihisa） |


#### Abstract

A discrete optimization method，which is called modular approach，is proposed for solving a separable nonlinear programming problem．By dividing seach space of variables，the nonlinear pro－ gramming problem is translated into a discrete optimization problem that is equivalent to nonlinear knapsack problem．When the nonlinear knapsack problem is solved，we do not need the convexity and differentiability of original problem．The nonlinear knapsack problem can be solved efficiently by modular approach．It is shown that modular approach can be applied to a nonlinear programming problem by computational experiments．


## 1．Introduction

A separable nonlinear programming problem with one constraint func－ tion is written as follows：
＜N＞

$$
\begin{gather*}
\text { maximize } \quad f(\boldsymbol{x})=\sum_{i \in I} f_{i}\left(x_{i}\right),  \tag{1}\\
\text { subject to } \quad g(\boldsymbol{x})=\sum_{i \in I} g_{i}\left(x_{i}\right) \leq b,  \tag{2}\\
x_{i} \in S_{i} \quad(i \in I), \tag{3}
\end{gather*}
$$

where $I=\{1,2, \ldots, n\}$ ，and $S_{i} \subset R$ is a seach space，and $b$ is a maximum amount of available resource．

We divide the seach space $S_{i}$ into finite set $A_{i}$ for each $i$－$t h$ variable： ＜K＞

$$
\begin{gather*}
\operatorname{maximize} \quad f(\boldsymbol{x})=\sum_{i \in I} f_{i}\left(x_{i}\right),  \tag{4}\\
\text { subject to } \quad g(\boldsymbol{x})=\sum_{i \in I} g_{i}\left(x_{i}\right) \leq b,  \tag{5}\\
x_{i} \in A_{i} \subset S_{i} \quad(i \in I) \tag{6}
\end{gather*}
$$

where $I=\{1,2, \ldots, n\}, A_{i}=\left\{a_{i 1}, a_{i 2}, \ldots, a_{i j}, \ldots, a_{i k_{i}}\right\}$. The search space $S_{i}$ is represented by $k_{i}$ points $\left\{a_{i 1}, \ldots a_{i k_{i}}\right\}$.

The original problem $<\mathrm{N}\rangle$ is translated into discrete optimization problem $\langle\mathrm{K}\rangle$ that is equivalent to the nonlinear knapsack problem. Solving the nonlinear knapsack problem by discrete optimization method, the convexity and differentiability of original problem are not required.

We use modular approach(MA) for solving the nonlinear knapsack problem $<\mathrm{K}>$. MA can solve the large scale nonlinear knapsack problem.

The optimal solution of the problem $\langle\mathrm{K}\rangle$ is a near optimal solution of the original problem $\langle\mathrm{N}\rangle$. The search space $S_{i}$ of the original problem can be reduced to the neighborhood of the near optimal solution. The new problem with reduced search spaces is created and solved by MA. By repetition of the above procedures, the near optimal solutions converge into the optimal solution of original problem $<\mathrm{N}\rangle$.
2. Modular approach

Nakagawa[1] proposed a new solution method called modular approach (MA) for solving discrete optimization problem. MA is a bottom-up scheme as well as Dynamic Programming. First, MA considers an optimization system corresponding to a given discrete optimization problem. Next, MA executes the following items 1) 2) recursively until the number of variables $I$ becomes one.

1) The set $A_{i}$ is reduced by fathoming tests.
2) Integrate two variables into one variable.

As for fathoming tests, we use dominance test, bounding test and feasibility test, which are techniques commonly used by Branch-and-Bound.

To integrate means to introduce a new set $A_{N E W}$ that is corresponding
to cartesian product of the two sets as follows:

$$
\begin{equation*}
A_{N E W}=A_{j} \times A_{m} \tag{7}
\end{equation*}
$$

and $j$ and $m$ are removed from the set $I$.
There are four ways to select the sets $j$ and $m$ in the set $I$. Let $k_{i}$ be the number of elements in the set $A_{i}$.

1) $j$ and $m$ such that $k_{j}$ and $k_{m}$ are the least.
2) $j$ such that $k_{j}$ is the least, and $m$ such that $k_{m}$ is the most.
3) $j$ and $m$ such that $k_{j}$ and $k_{m}$ are the most.
4) $j$ and $m$ in order of $i \in I$.

We choose the item 2) that is the fastest and can solve the largest scale problem. [3]

MA written by pseudo code is shown in figure 1.
The input of Modular Approach () is a data sequence of Problem $<P C>$ and Quosi-Optimal Solution $<N E A R>$. Problem $<P C>$ contains a data sequence of current problem $<P>$ and a data sequence of $<T>$ that is required to translate the current problem $\langle P>$ into primal problem. The Quosi-Optimal Solution $<N E A R>$ is given by Recursive Greedy method[2]. Function Fathom() reduces the set $A_{i}$ by fathoming tests, and renews the current problem $<P>$. Function ChoiceIM() selects two sets $A_{j}$ and $A_{m}$. Function Integrate() integrates the two sets $A_{j}$ and $A_{m}$ into one set $A_{N E W}$. After repeating the fathoming tests and integration, function FindOptimalSolution() gives the optimal solution of the one variable problem.
3. Computational experiments

We divide the serch space $S_{i}$ of given problem into finite set $A_{i}$. We create the nonlinear knapsack problem from the set $A_{i}$. The next two
steps are repeated until required precision is given.

1) MA is applied to the nonlinear knapsack problem, and near optimal solution of given problem is given.
2) The neighborhood of the near optimal solution is divided, and the new nonlinear knapsack problem with reduced seach spaces is created.

### 3.1 Example 1

We consider a convex and differentiable problem as follows:

$$
\begin{array}{cc}
\operatorname{maximize} & f(\boldsymbol{x})=\sum_{i=1}^{10}\left(a_{i}+b_{i} x_{i}\right)^{2} \\
\text { subject to } & g(\boldsymbol{x})=\sum_{i=1}^{10}\left(c_{i}+d_{i} x_{i}\right)^{2} \leq e \\
x_{i} \in R \tag{10}
\end{array}
$$

Coeficients $a_{i}, b_{i}, c_{i}, d_{i}$ and $e$ are shown in Table 1.
This problem is solved by numerical computation and MA. Each results are shown in Table 2. Generally the results of MA are agreement with the results of numerical computation.

### 3.2 Example 2

We consider the nonconvex and undifferentiable problem as follows:

$$
\begin{gather*}
\text { maximize } f(\boldsymbol{x})=\sum_{i=1}^{10} f_{i}\left(x_{i}\right)  \tag{11}\\
f_{i}\left(x_{i}\right)= \begin{cases}a_{i 1}\left|\sin \left(x_{i}+b_{i 1}\right)\right| & \left(0.0 \leq x_{i}<1.0\right) \\
a_{i 2}\left|\cos \left(x_{i}+b_{i 2}\right)\right| & \left(1.0 \leq x_{i}<2.0\right) \\
a_{i 3} \ln \left(x_{i}+b_{i 3}\right) & \left(2.0 \leq x_{i}<3.0\right) \\
a_{i 4} \sqrt{x_{i}+b_{i 4}} & \left(3.0 \leq x_{i}<4.0\right) \\
a_{i 5} \exp \left(x_{i} / 5+b_{i 5}\right) & \left(4.0 \leq x_{i}<5.0\right)\end{cases} \tag{12}
\end{gather*}
$$

$$
\begin{equation*}
g_{i}\left(x_{i}\right)=\left(x_{i}+c_{i}\right)^{2} \leq e . \tag{14}
\end{equation*}
$$

Coefficients $a_{i 1}, \ldots, a_{i 5}, b_{i 1}, \ldots, b_{i 5}, c_{i}$ and $e$ are shown in Table 3.
This problem is solved by MA and the results are shown in Table 4. First, the seach space is divided into 100 elements, and the near optimal solution is given by MA. Next, the neighborhood of the near optimal solution is divided into 100 elements, and the second near optimal solution is also given by MA. The second near optimal solution exhausts the resource of constraint.

## 4. Concluding remarks

Solving two examples, it is shown that MA can solve nonconvex and undifferentiable nonlinear programming problem.

## References

[1] Nakagawa Y.:"A New Method for Discrete Optimization Problems", Trans. IEICE, Vol.J73-A No. 3 pp.550-556 (1990)
[2] Nakagawa Y.,Ohtagaki.H:"A modification of greedy procedure for solving nonlinear knapsack class of reliability optimization problems",

Trans. IEICE, Vol.J74-A No. 3 pp.535-541 (1991)
[3] Nakagawa Y.,Hikita T.,Iwasaki A.:" A Fast Exact Method for the Multiple Choice Knapsack Problem", Trans. IEICE, Vol.J75-A No. 11 pp.1752-1754 (1992)

```
DATADEF
    \(<K>=\left\{I,\left\{K_{1}, K_{2}, \ldots, K_{I}\right\}\right\} ;\)
    \(<f>=\left\{\left\{f_{1}(1), \ldots, f_{1}\left(K_{1}\right)\right\}, \ldots,\left\{f_{I}(1), \ldots, f_{I}\left(K_{I}\right)\right\}\right\} ;\)
    \(\langle g\rangle=\left\{\left\{g_{1}(1), \ldots, g_{1}\left(K_{1}\right)\right\}, \ldots,\left\{g_{I}(1), \ldots, g_{I}\left(K_{I}\right)\right\}\right\} ;\)
    \(\langle P\rangle=\{\langle K\rangle,\langle f\rangle,\langle g\rangle, b\} ;\)
    \(\langle P C\rangle=\{\langle P\rangle,\langle T\rangle\} ;\)
    \(<N E A R>=\left\{f^{N E A R},\left\{x_{1}^{N E A R}, \ldots, x_{I}^{N E A R}\right\}\right\} ;\)
    \(<O P T>=\left\{f^{O P T},\left\{x_{1}^{O P T}, \ldots, x_{I}^{O P T}\right\}\right\} ;\)
    \(<M>=\left\{m_{1}, m_{2}\right\} ;\)
ENDDEF
FUNCTION ModurarApproach()
INPUT Problem< \(P C>\),Quosi-Optimal Solution \(<N E A R>\);
BEGIN yes \(\leftarrow 1 ;\) No \(\leftarrow 0 ;\) IsNearSolOptimal \(\leftarrow N o\);
    WHILE \(I \geq 2\) DO
        \(\{<P C>,<N E A R>\} \Leftarrow\) Fathom \((<P C>,<N E A R>)\);
        IF exist \(i \in\{1, \ldots, I\}\) such that \(K_{i}=0\) THEN
            IsNearSolOptimal \(\leftarrow Y e s ;\)
            \(\{<O P T\rangle\} \leftarrow\{\langle N E A R\rangle\}\);
            EXITWHILE
        ENDIF
        \(\{\langle M>\} \Leftarrow\) Choice I \(M(<P C>)\);
        \(\{<P C>\} \Leftarrow\) Integrate \((<M>,<P C>)\);
    ENDWHILE
    IF IsNearSolOptimal \(=\) No THEN
        \(\{<O P T>\} \Leftarrow\) FindOptimalSolution( \(<P C>\) );
        IF \(f^{O P T}<f^{N E A R}\) THEN
        \(\{\langle O P T\rangle\} \leftarrow\{\langle N E A R\rangle)\} ;\)
        ENDIF
    ENDIF
RETURN Optimal Solution< OPT >
END
```

figure 1. Modular approach

Table 1. Coefficient of Example. 1

| $i$ | $a_{1}$ | $b_{i}$ | $c_{1}$ | $d_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -2. 2073 | 2. 8969 | -0.7442 | -1.0398 |
| 2 | 2.4402 | 4.3 | 3.7626 | -4.3934 |
| 3 | -0.7114 | 5.52 | -1.8898 | 1.871 |
| 4 | 1. 2999 | 7.832 | 1. 9367 | 3. 4018 |
| 5 | -2. 2473 | 5.5 | 3. 2593 | 4. 4436 |
| 6 | -4.9337 | -4. 98 | 1. 0066 | 2.43 |
| 7 | 2. 9042 | 2.9 | 3. 1389 | $-1.7736$ |
| 8 | 1.3991 | -4.2178 | 2.8799 | 2.4 |
| 9 | -1.0905 | 3.0 | -3.4813 | -1.283 |
| 10 | -0.6581 | 4.54 | -3.4915 | -2. 3995 |

Table 2. Results of Example. 1

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ | $x_{9}$ | $x_{10}$ | $f$ | $g$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Numerical | Solution | -6. 498558 | 1. 0223189 | 17.132994 | -1. 120442 | -0.962257 | 0.0719372 | 2. 9085138 | -1.976559 | -7.244958 | -2. 47795 | 10301.902 | 1000 |
| $\mathrm{N}=1000$ | Solution | -6. 56 | 1 | 17.12 | -1.12 | -0.96 | 0.08 | 2.88 | -1.96 | -7.32 | -2.48 | 10301.736 | 999.99833 |
| d=0.04 | Errors | 0.061442 | 0.0223189 | 0.0129939 | $-0.000442$ | -0.002257 | $-0.008063$ | 0.0285138 | $-0.016559$ | 0.075042 | 0.0020505 |  |  |
| $\mathrm{N}=4000$ | Solution | -6.53 | 1.02 | 17.13 | -1.12 | -0.96 | 0.06 | 2.91 | -1.97 | $-7.25$ | -2.48 | 10301.888 | 999.9996 |
| $\mathrm{d}=0.01$ | Errors | 0.031442 | 0.0023189 | 0.0029939 | -0.000442 | -0.002257 | 0.0119372 | -0.001486 | -0.006559 | 0.005042 | 0.0020505 |  |  |
| $\mathrm{N}=10000$ | Solution | -6.508 | 1.024 | 17.132 | -1.12 | -0.964 | 0.072 | 2.904 | -1.976 | -7.244 | $-2.48$ | 10301.899 | 999.99994 |
| $\mathrm{d}=0.004$ | Errors | 0.009442 | $-0.001681$ | 0.0009939 | -0.000442 | 0.0017431 | -6.28E-05 | 0.0045138 | -0.000559 | $-0.000958$ | 0.0020505 |  |  |
| $\mathrm{N}=40000$ | Solution | -6.495 | 1.022 | 17.133 | -1.12 | -0.962 | 0.072 | 2.909 | -1.977 | -7.248 | -2.478 | 10301.901 | 1000 |
| $\mathrm{d}=0.001$ | Errors | $-0.003558$ | 0.0003189 | -6. 14E-06 | -0.000442 | -0.000257 | -6. 28E-05 | -0.000486 | 0.0004414 | 0.003042 | 5. 047E-05 |  |  |
| $\mathrm{N}=1000 * 1000$ | Solution | -6. 49936 | 1. 0224 | 17.13296 | -1.12016 | -0.96224 | 0.07184 | 2.90832 | -1. 97648 | -7.24496 | $-2.47792$ | 10301.902 | 1000 |
| $\mathrm{d}=0.00016$ | Errors | 0.000802 | -8. 11E-05 | 3. $386 \mathrm{E}-05$ | -0.000282 | -1.69E-05 | 9. $721 \mathrm{E}-05$ | 0.0001938 | $-7.86 \mathrm{E}-05$ | 2. $034 \mathrm{E}-06$ | -2. 95E-05 |  |  |
| $\mathrm{N}=4000 * 1000$ | Solution | -6. 49824 | 1. 02232 | 17.13304 | -1. 12048 | -0.96224 | 0.07184 | 2.90832 | $-1.97656$ | $-7.24488$ | -2. 47808 | 10301.902 | 1000 |
| d=0.00008 | Errors | -0.000318 | $-1.05 \mathrm{E}-06$ | $-4.61 \mathrm{E}-05$ | 3. $779 \mathrm{E}-05$ | -1.69E-05 | 9. 721E-05 | 0.0001938 | 1. $374 \mathrm{E}-06$ | -7.8E-05 | 0.0001305 |  |  |

$\mathrm{N}:$ The number of division. ( $4000 * 1000$ means 1000 division after 4000 division)
d :Division width

Table 3. coefficients of Example. 2
$\mathrm{e}=150$

| $i$ | $a_{i 1}$ | $a_{i 2}$ | $a_{i 3}$ | $a_{i 4}$ | $a_{i 5}$ | $b_{i 1}$ | $b_{i 2}$ | $b_{i 3}$ | $b_{i 4}$ | $b_{i 5}$ | $c_{i}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3.6 | 3.5 | 1.6 | 1.1 | 0.7 | 4.5 | 2.2 | 1.5 | 0.8 | 0.4 | 0.8 |
| 2 | 2.4 | 2.2 | 0.6 | 0.2 | 0.2 | 2.0 | 1.9 | 0.6 | 0.3 | 0.7 | 1.5 |
| 3 | 5.0 | 4.8 | 3.1 | 2.5 | 0.8 | 4.0 | 4.2 | 0.8 | 1.0 | 0.5 | 2.0 |
| 4 | 2.0 | 1.9 | 0.7 | 0.2 | 0.1 | 3.6 | 4.1 | 0.2 | 0.2 | 0.6 | 0.5 |
| 5 | 4.5 | 4.0 | 3.0 | 2.4 | 0.7 | 2.9 | 1.2 | 0.9 | 0.9 | 0.5 | 0.2 |
| 6 | 2.8 | 3.0 | 1.1 | 0.8 | 0.5 | 4.7 | 1.6 | 1.2 | 0.5 | 0.8 | 0.9 |
| 7 | 3.9 | 4.1 | 2.9 | 2.5 | 1.0 | 4.4 | 3.8 | 0.4 | 1.3 | 0.3 | 1.3 |
| 8 | 3.2 | 3.4 | 1.2 | 0.9 | 0.6 | 3.3 | 0.7 | 1.8 | 1.1 | 0.9 | 1.8 |
| 9 | 4.7 | 5.0 | 2.7 | 2.7 | 0.6 | 0.8 | 3.6 | 0.1 | 0.7 | 0.4 | 0.7 |
| 10 | 2.7 | 2.7 | 1.0 | 0.5 | 0.1 | 1.1 | 2.3 | 1.9 | 0.6 | 0.2 | 0.3 |

Table 4. Results of Example. 2

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ | $x_{9}$ | $x_{10}$ | $f$ | $g$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~N}=100$ | 0.10 | 0.00 | 3.40 | 0.85 | 3.90 | 0.00 | 3.80 | 4.90 | 3.90 | 0.35 | 39.437 | 149.99 |
| $\mathrm{~N}=100 * 100$ | 0.182 | 0.000 | 3.526 | 0.998 | 4.000 | 0.000 | 3.866 | 4.999 | 4.000 | 0.442 | 39.444 | 150 |

