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Alternating-Move Preplays and $vN-M$ Stable Sets

in Two Person Strategic Form Games

東北大学経済学部 武藤滋夫 (Shigeo Muto)

1 Introduction

This is a summary of the paper, “Alternating-Move Preplays and $vN-M$ Stable Sets in

Two Person Strategic Form Gemes,” CentER Discussion Paper No.9371, Center for Economic

Research, Tilburg University, 1993. Motivation and basic definitions are fully described; but

results are only briefly mentioned. Refer to the original paper for details.

An alternating-move preplay negotiation procedure for two-person games was proposed by
’

Bhaskar [1989] in the context of a pnice-setting duopoly. The preplay proceeds as follows. One

of the players, say player 1, first announces the price that he intends to take; and then $P_{\backslash }^{1ayer2}$

announces his price. Player 1 is now given the opion of changing his price. If he does so, player

2 can change his price. The process continues in this manner; and it comes to an end when one

of the two players chooses not to change his price. Bhaskar succeeded in showing that through

this process only the monopoly price pair can be attained in equihbrium where the equilibrium

is the subgame perfect equilibrium with undominated strategies.

One of the aims of this paper is to examine the validity of the alternating-move preplay

process in other two-person games. In addition to the conditions that Bhaskar imposed on

equilibria, we require that strategies in equilibrium be Markov (or stationary). It will be shown

that the preplay process works well in typical $2\cross 2$ games such as the prisoner’s dilemma and a

pure coordination game. The pair of (Cooperation, Cooperation) and a Pareto optimal strategy

pair are obtained as the unique equilibrium outcome, respectively. Further in the price-setting

duopoly it will be shown that the monopoly price pair can be reached even if the preplay starts

from any price pair. The preplay, however, does not always work well. In fact, a sort of the

Folk Theorem is shown to hold in the prisoner’s dilemma with continous strategy spaces: in the

game every individual rational outcome can be attained as an equilibrium outcome.

Another objective of this paper is to study the von Neumann and Morgenstern $(vN-M)$

stable sets in two-person strategic form games. Recently Greenberg [1990] proposed a way
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to apply $vN-M$ stable sets, or at least its spirit, to strategic form games by appropriately

introducing a dominance relation on the space of strategy combinations. Later studies, Chwe

[1992] and Muto and Okada [1992], however, revealed that a modffication of the dominance

relation is desirable as Harsanyi [1974] already pointed out in his study of the $vM-N$ stable set

in characteristic function form games. Following Harsanyi’s discussion, we will study relations

between $vN-M$ stable sets in strategic form games and equihibria in their extended games

with preplays.

2 The Extended Game with Alternating-Move Preplays

Throughout the paper we will work on the following two-person game:

$G=(N=\{1,2\}, \{X_{i}\}_{i=1,2}, \{u_{i}\}_{i=1,2})$

where $N=\{1,2\}$ is the set of players, $X_{i},$ $i=1,2$ , is player $i’ s$ action set and $u;,$ $i=1,2$ ,

is player $i’ s$ payoff function, i.e., $a$ real valued function on $X=X_{1}\cross X_{2}$ . We assume $u_{i}$ takes

nonnegative values.

The alternating-move preplays, proposed by Bhaskar [1989], proceed as follows. One of the

players, say player 1, moves first and announces the action $x_{1}\in X_{1}$ that he intends to take.

The first player to move is determined in advance of the preplays. Then player 2 announces an

action $x_{2}\in X_{2}$ . Player 1 now has the option of changing his action to $x_{1}’$ . If he does so, player

2 can change his action to $x_{2}’$ and so on. The preplay process comes to an end when any of the

two players chooses not to change.

Let $x^{k}=(x_{1}^{k}, x_{2}^{k})$ be the action combination at the end of the kth period. For convenience let

$x^{1}=x_{1}^{1}$ : $x_{1}^{1}$ is the action that player 1 announces at the 1st period. Suppose the preplay process

ends at the Kth period with player $i’ s$ turn; thus $x^{K-1}=x^{K}$ . Then since player $i$ chooses not

to move, he is satisfied with his action $x^{K}=x_{i}^{K-2}$ against $j’ s$ action $x_{j}^{K}=x_{j}^{K-1}$ . Further

player $j’ s$ action $x_{j}^{K-1}$ is his response to player $i’ sx_{i}^{K-2}$ . Thus both players are satisfied with

the action combination $x^{K}$ . Player $i$ wiu be paid $u_{i}(x^{K}),$ $i=1,2$ . If the equality $x^{K}=x^{K-1}$

never arises, then the game will go on indefinitely. In this event, we define the players’ payoffs

are zero.

Hereafter, we will call this alternating-move game the extended game of $G$ .
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3 Formal Descriptio $n$ of $t$ he $Ext$ended Game

In the folowing we describe the extended game in which player 1 moves first. Thus in the

following player 1 (player 2, resp.) moves in odd (even, resp.) number of periods. The game in

which player 2 moves first is described in the same manner.

3.1 Strategies and Payoffs

Take the kth period, and suppose actions announced up to the $(k-1)st$ period ale $x_{1}^{1},$ $x_{2}^{2},$ $x_{1}^{3},$

$\ldots,$
$x_{\mathfrak{i}}^{k-1}$

where $i$ is the player who moved at the $(k-1)st$ period. Then the action combination $x^{l}$ at the

end of the lth period is given by

$x^{l}=\{\begin{array}{l}(x_{2}^{l-1},x_{1}^{l})(x_{1}^{l-1},x_{2}^{l})\end{array}$ $ififllisevenisoddandl\geq 3$

The history up to the $(k-1)st$ period is written as $h^{k-1}=(x^{1}, x^{2}, \ldots, x^{k-1})$ . Let the set of

all possible $h^{k}$ by $H^{k}$ , and let $H= \bigcup_{k=0}^{\infty}H^{k}$ where $H^{0}=\{e\}$ and $e$ denotes the empty history.

Players’ strategies, denoted by $\sigma_{1}$ for player 1 and $\sigma_{2}$ for player 2, are maps such that

$\sigma_{1}$ : $\bigcup_{k=0}^{\infty}H^{2k}arrow X_{1}$

and

$\sigma_{2}$ : $\bigcup_{k=0}^{\infty}H^{2k+1}arrow X_{2}$ .

A strategy combination $(\sigma_{1}, \sigma_{2})$ is denoted by $\sigma$ . The set of all starategies of player 1 (player

2, resp.) $\sim is$ denoted by $\Sigma_{1}$ ( $\Sigma_{2}$ , resp.). The outcome (action combination) path induced by a

strategy combination $\sigma$ is denoted by $\pi(\sigma)$ .

Player $i’ s$ payoff under a strategy combination $\sigma$ is given by

$f_{1}(\sigma)=\{0u:(z)$ $if\pi(\sigma)isoffinite1ength,i,ifthegameend_{s}safte_{e}rafinitenumberof^{e}peridsotherwis^{fi.na1outcome,i.e.,z=x^{o_{K}}when}zithe$

the game ends at the $Kth$ period
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3.2 Subgames

The extended game is a game with perfect information; and thus games starting from each

move of players are subgames. Let $h$ be a history up to the $(k-1)st$ period, and denote by $\Gamma(h)$

the subgame starting from the kth period after the history $h$ . Let $\sigma_{i}(h),$ $i=1,2$ , be player $i’ s$

strategy in $\Gamma(h)$ , and let $\sigma(h)=(\sigma_{1}(h), \sigma_{2}(h))$ . Denote by $\pi(\sigma(h))$ the outcome p\‘ath in $\Gamma(h)$

induced by $\sigma(h)$ . Player $i’ s$ payoffs in $\Gamma(h)$ under $\sigma(h)$ are given by

$f_{i^{h}}(\sigma(h))=\{0^{i}u(z)$ $if\pi(\sigma(h))isoffinitelength:otherwisezisthefi.naloutcomeinthe$ path $\pi(\sigma(h))$

3.3 Equilibrium

Similarly to Bhaskar [1989], we require equilibrium strategies to be subgame perfect and also

require that in equihbria the strategies played after any history should not be weakly domi-

nated. The latter is defined in the following manner. Take a subgame $\Gamma(h)$ , and take player

$i’ s$ two strategies $\sigma_{i}(h)$ and $\sigma_{i’}(h)$ in $\Gamma(h)$ . We say that $\sigma_{t}(h)$ weakly dominates $\sigma_{i}’(h)$ in $\Gamma(h)$

if (1) $f_{i^{h}}((\sigma_{i}(h), \sigma_{j}(h)))\geq f_{t}^{h}((\sigma_{i’}(h), \sigma_{\dot{J}}(h)))$ for all player $j’ s$ strategies $\sigma_{j}(h)$ in $\Gamma(h)$ , and (2)

$f_{i}^{h}((\sigma_{i}\langle h), \sigma_{j}(h)))>f^{h}((\sigma_{i’}(h), \sigma_{j}(h))$ for at least one $\sigma_{j}(h)$ in $\Gamma(h)$ . The second condition that

Bhaskar imposed requires that if $\sigma=(\sigma_{1}, \sigma_{2})$ is the equilibrium, then the following hold for

both players $i=1,2$ ; in each subgame $\Gamma(h)$ , there is no strategy of player $i$ which dominates

$\sigma_{i}|h$ in $\Gamma(h)$ where $\sigma_{t}|h$ is the restriction of $\sigma_{t}$ to the subgame $\Gamma(h)$ .
In addition to the two conditions, we require equilibrium strategies to be Markov (or sta-

tionary) and conservative.

A player’s strategy is called Markov if each action induced by the strategy depends only

on a prevailing action combination. Thus player l’s (player $2’ s$ , resp.) Markov strategy is a

function from $\{e\}\cup X$ to $X_{1}$ (from $X_{1}\cup X$ to $X_{2}$ , resp.). We will hereafter use $\rho_{1}$ and $\rho_{2}$ to

denote Markov strategies of players 1 and 2.

The restriction to Markov strategies greatly simplifies the analysis since interactions of play-

ers’ strategies are kept as simple as possible. But a more important reason for imposing the

Markov property comes from one of the objectives of the paper; that is, the study of the $vN-M$

stable set or its variants in strategic form games from the viewpoint of equilibria in their ex-

tended games with preplays. Since the $vN-M$ stable set is a static solution concept, we want
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the stability being independent of the history of pIeplay negotiations.i

A mathematical justification of restricting to the Markov strategy was given in Harsanyi

[1974, Lemmas 6 and 7]. That is, if $\rho=(\rho_{1}, \rho_{2})$ is a Nash equilibrium when players are

restricted to using the Markov strategies, then $\rho$ is still an equilibrium even if each player is

free to use any strategy in $\Sigma_{i}$ (not necessarily Markov).

The conservativeness, initially defined by Harsanyi [1974], assumes that each player never

moves unless he will positively benefit from this move. The assumption arises also from the

study of the $vN-M$ stable set: it assumes such conservativeness in its definition. Formally

the conservativeness is defined in the following manner. Take a strategy combination $\rho^{*}$ , and

a subgame $\Gamma(h^{k})$ which follows the history $h^{k}=(x^{1}, x^{2}, \ldots, x^{k})$ up to the kth period. $\rho^{*}$ is

called conservative in $\Gamma(h^{k})$ if the following hold. Let $z$ be the final outcome in $\Gamma(h^{k})$ under the

restriction of $\rho^{*}$ to this subgame: $z$ may be an infinite sequence of outcomes. Then (1) $z=x^{k}$ or

(2) If $x^{k+1},$ $x^{k+2},$
$\ldots$ ( $i^{k+1},$ $i^{k+2},$

$\ldots$ , resp.) is the sequence of outcomes (of corresponding players,
$\delta$

resp.) under $\rho^{*}$ , then

$u_{i^{1}}(z)>u_{i^{l}}(x^{l-1})$ for all $l=k+1,$ $k+2,$ $\ldots$

except for $l=K$ or $K-1$ where $K$ is the period that the game ends.

Since payoffs are nonnegative and further in case the game never ends they are zero, the

game must end after a finite number of steps if a pair of players’ strategies is conservative.

A strategy combination $\rho=(\rho_{1}, \rho_{2})$ is called a conservative Markov perfect equilibrium,

denoted by CMPE hereafter, of the extended game if it satisfies the four conditions above, i.e.,

1. $\rho$ is subgame perfect;

2. $\rho_{1},$ $\rho_{2}$ are not weakly dominated in each subgame;

3. $\rho_{1},$ $\rho_{2}$ are Markov strategies; and

4. $\rho$ is conservative in each subgame.

1 Other defenses of assuming the Markov property, in particular, in analyzing duopoly markets, are found in

Maskin and Tirole [1988].
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The restriction to Markov strategies makes it possible to describe subgames in a simpler

way. That is, it is sufficient to make clear starting action combination $x$ and player $i$ to move

first. Thus subgames will hereafter be denoted by $\Gamma(x, i),$ $x\in X,$ $i=1,2$ . $\Gamma(e, 1)(\Gamma(e, 2)$ , resp.)

is the whole extended game starting fr$om$ the move of player 1 (player 2, resp.).

We say $\rho=(\rho_{1}, \rho_{2})$ is a CMPE in the subgame $\Gamma(x, i)$ if $\rho_{i}’ s$ are Markov and $\rho$ satisfies

(1),(2),(4) above in each subgame of $\Gamma(x, i)$ .

4 Applications

Consider first the following prisoner’s dilemma and its extended games.

1 $\backslash 2$ $C$ $D$

$C$ 4,4 0,5

$D$ 5,0 1,1

Proposition 4.1: Let $\rho^{*}$ be a CMPE in $\Gamma(e, i),$ $i=1$ or 2. Then the following must hold.

$\rho_{1}^{*}(CC)=C$ , $\rho_{1}^{*}(CD)=D$ , $\rho_{1}^{*}(DC)=D$ , $\rho_{1}^{*}(DD)=D$ ,

$\rho_{2}^{*}(CC)=C$ , $\rho_{2}^{*}(CD)=D$ , $\rho_{2}^{*}(DC)=D$ , $\rho_{2}^{*}(DD)=D$ .

That is, player 1 (playei 2, resp.) changes his action only at the outcome $CD$( $DC$ , resp.).

Figure 4.1 depicts $\rho_{1}^{*},$ $\rho_{2}^{*}$ and the induced movements.

Therefore the subgames $\Gamma(CC, 1)$ and $\Gamma(CC, 2)$ end at the outcome $CC;\Gamma(CD, 2)(\Gamma(DC, 1)$ ,

resp.) ends at $CD$ ( $DC$ , resp.); and $\Gamma(CD, 1),$ $\Gamma(DC, 2),$ $\Gamma(DD, 1)$ and $\Gamma(DD, 2)$ end at $DD$ .

On the baSiS Of PropoSition4.1, We may ShOW that in the WhO1egame eVery CMPE produCeS

the unique outcome $CC$ .

Proposition 4.2: Take the whole game $\Gamma(e, i),$ $i=1$ or 2. Then every CMPE in $\Gamma(e, i)$ induces

$CC$ as its final outcome.

In a similar manner, it is shown in the pure coordination game that the Pareto superior

payoff pair is produced as the unique final outcome. In the battle of the sexes, Pareto efficient

outcomes are also obtained; but the so-called second mover advantage appears: the player who

moves first gets less.

Consider next the following symmetric duopoly. Two firms 1,2 are producing homogeneous

goods with the same marginal cost $c$ . For simplicity, let $c=0$ in what follows. Consumers’
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demands are represented by a demand function $D(p)$ . $D(p)$ is decreasing in $p$ , and there exists

a price $\overline{p}$ such that $D(p)=0$ for all $p\geq\tilde{p}$ . The market profit at price $p$ is $\pi(p)=pD(p)$ , and

$\pi(0)=\pi(\overline{p})=0$ . Suppose $\pi(p)$ is continuous and strictly concave. Then there is a unique price

$p^{m}$ , caJled the monopoly price, which maximizes $\pi(p)$ . Denote firm l’s (firm 2’s, resp.) price

level by $p^{1}$ ($p^{2}$ , resp.). If their prices are equal, they split even the market profit; otherwise all

sales go to a lower pnicing firm. This duopoly market is written as the following two-person

game:

$G^{B}=(N=\{1,2\}, \{X_{i}\}_{i=1,2}, \{u_{t}\}_{i=1,2})$

where $X_{i}=[0,\tilde{p}]$ for $i=1,2$ ,

and

$u_{i}$ : $X=X_{1}xX_{2}arrow R+$ (nonnegative reals) defined by

$u_{i}(p_{t},p_{j})=\{0\pi(p^{t})/2\pi(p_{i})$ $ifififp_{t}p_{i}p_{i}=><pp_{j}^{j}p_{j}$

.
for $i,j=1,2,$ $i\neq j$

We assume that player (firm) 1 is first to move. But, needless to say,the same results hold

even if player 2 moves first because of their symmetry.

The first proposition shows that under every CMPE, the following holds: in each price pair

other than the pair of the monopoly prices, at least one player has an incentive to move, and

his move induces a sequential movement of prices which eventually reaches the monopoly price

pair.

Proposition 4.3: Let $\rho=(\rho_{1}, \rho_{2})$ be a CMPE of $\Gamma(e, 1)$ and take a price pair $(p_{1},p_{2})$ . Then

the subgames $\Gamma((p_{1},p_{2}),$ $i$ )
$,$
$i=1,2$ , has the final outcome $(p^{m},p^{m})$ under $\rho,$ $ex$cept when $p^{m-}\leq$

$p_{i}\leq p^{m+}$ and $p_{i}<p_{j}$ ; and if this is the case the subgame ends at $(p_{1},p_{2})$ .

The following two propositions then follow which show that the momopoly price pair is the

unique final outcome.

Proposition 4.4: Let $\rho=(\rho_{1}, \rho_{2})$ be a CMPE $of\Gamma(e, 1)$ . Take $p_{1}$ with $p^{m-}\leq p_{1}\leq p^{m+}$ . Then
$\rho_{2}(p_{1})\leq p_{1}$ must hold, and the subgame $\Gamma(p_{1},2)$ has the final outcome $(p^{m},p^{m})$ under $\rho$ .
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Proposition 4.5: Let $\rho=(\rho_{1}, \rho_{2})$ be a CMPE of $\Gamma(e, 1)$ , Then player l’s choice $\rho_{1}(e)$ in the

first period can be arbitrary; and the game ends at the monopoly price pair $(p^{m},p^{m})$ irrespective

of his choice.

So far we have shown that the alternating-move preplay process works well in various exam-

ples. It is shown, however, that in the mixed extension of prisoner’s dilemma every individually

rational outcome could be attained as a final outcome of a CMPE: a sort of Folk theorem holds.

5 Final Outcomes under CMPE and Stable Sets

We next examine relations between stable outcomes under CMPE and the $vN-M$ stable set.

Similarly to Greenberg [1990], Chwe [1992] and Muto and Okada [1992], we define a binary

relation, called the dominance relation, on the outcome space in the following manner. Take

two outcomes $x=(x_{1}, x_{2})$ and $y=(y_{1}, y_{2})\in X$ . We say that $x$ is induced from $y$ by player $i$ ,

denoted $xarrow|_{i}y$ , if $x_{j}=y_{j}$ , for $i,$ $j=1,2,$ $i=j$ .

Definition 5.1 (Domination): For $x,$ $y\in X$ and player $i=1,2,$ $x$ dominates $y$ via $i$ , denoted by

$xdom_{i}y$ if (1) $xarrow|_{i}y$ and (2) $u_{i}(x)>u_{i}(y)$ . We simply say $x$ dominates $y$ , denoted xdomy, if

$xdom_{1}y$ or $xdom_{2}y$ .

Definition 5.2 (The $vN-M$ stable set w.r. $t$ . $dom$ ): A set $V\subseteq X$ is a stable set w.r. $t$ . $dom$ if

the following two conditions are satisfied. (1) For any two outcomes $x,$ $y$ in $V$ , neither xdomy

nor ydomx; and (2) for any $z$ not in $V$ , there exists $x\in V$ such that xdomz. (1) and (2) are

$ca\mathbb{I}ed$ internal and external stabihty, respectively.

Muto and Okada [1992] applied the $vN-M$ stable set w.r. $t$ . $dom$ to the price-setting

duopoly; and they showed that unreasonable outcomes may be included in the stable set. They

claimed that, to remove out these outcomes, one must take into account not only a direct

domination but also a sequence of players’ reactions that may ensue after a player changes his

action. Harsanyi [1974] already pointed out the necessity of this indirect domination in the

context of cooperative characteristic function form games. On the basis of Harsanyi’s idea, we

define the following indirect dominance relation on the outcome space.
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Definition 5.3 (Indirect domination): For $x,$ $y\in X,$ $x$ indirectly dominates $y$ , denoted by xidomy,

if there exist a sequence of pairs of actions $y=x^{0},$ $x^{1},$
$\ldots,$

$x^{m}=x$ and the corresponding

sequence of players $i^{1},$

$\ldots,$
$i^{m}$ such that for all $k=1,2,$ $\ldots,$ $m,$ $i^{k}\neq i^{k-1},$ $x^{k}arrow|_{i^{k}}x^{k-1}$ and

$u_{i^{k}}(x)>u_{i^{k}}(x^{k-1})$ .

Since there may exist various sequences of action pairs, Harsanyi $\not\supset roposed$ to pick up a particular

one which may be supported by an equilibrium of an appropriately constructed noncooperative

bargaining game. The game models players’ negotiation on how to distribute the amount that

the grand coalition can gain. In parallel with the Harsanyi’s approach, we consider the extended

game with preplays, and pick up a particular sequence of indirect domination which is supported

by a CMPE.

Definition 5.4 (Effective domination): Take a CMPE $\rho$ of the extended game $\Gamma(e, 1)$ or $\Gamma(e, 2)$ .

For $x,$ $y\in X,$ $x$ effectively dominates $y$ under $\rho$ , denoted xedom$(\rho)y$ , if (1) xdomy, or,(2) xidomy

with a sequence of action pairs $y=x^{0},$ $x^{1},$
$\ldots,$

$x^{m}=x$ and a sequence of players $i^{1},$

$\ldots,$
$i^{m}$ such

that $x^{k}=\rho_{i^{k}}(x^{k-1})$ for $k=2,$ $\ldots,$
$m$ .

Definition 5.5(Effectively stable set) A set $V(\rho)\subseteq X$ is an effectively stable set under $\rho$ if the

following two conditions are satisfied. (1) For any two outcomes $x,$ $y$ in $V(\rho)$ , neither xedom $(\rho)y$

nor yedom$(\rho)x$ ; and (2) for any $z$ not in $V(\rho)$ , there exists $x\in V(\rho)$ such that xedom $(\rho)z$ . $(1)$

and (2) are called internal effective stability and external effective stability, respectively.

In general, $K(\rho)$ always satisfies the internal effective stability as the next proposition shows.

Proposition 5.1: Let $\rho$ be a CMPE, and take the set $K(\rho)$ of its stable outcomes under $\rho$ :

$K(\rho)$ is the set of action pairs.in which neither player moves under $\rho$ . Then $K(\rho)$ satisfies the

effective internal stability.

However, $K(\rho)$ may not always satisfy the external stability. One sufficient condition for

$K(\rho)$ to satisfy the external effective stability is given in the next proposition.

Proposition 5.2: Let $\rho$ be a CMPE and $K(\rho)$ be the set of its stable outcomes under $\rho$ . Suppose

there is no sequence (cycle) of outcomes $x^{0},$ $x^{1},$
$\ldots,$

$x^{m}=x^{0}$ such that $x^{k}=\rho_{i^{k}}(x^{k-1})$ for
$k=1,$ $\ldots,$ $m,$ $i^{k}\neq i^{k-1},$ $k=1,$ $\ldots,$ $m-1$ , and $i^{1}=i^{m}$ , Then $K(\rho)$ satisfies also external

effective stablity, and thus it is an effectively stable set.
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