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1 Introduction

Among the problems of stability and bifurcation of solutions of various equa-
tions of fluid dynamics, some of these can be reduced to an eigenvalue problem
of system of ordinary differential equations including physical parameters. They
are boundary value problems for linear systems of ODEs. It is, however, difficult
to analyze how an eigenvalue of the system depends on parameters, since these
systems are not self-adjoint and have variable coeflicients.

In this article we propose a method to analyze this. Namely, taking as
a concrete example the free boundary problem of viscous incompressible fluid
flowing down an inclined plane, we study the stability of the stationary laminar
flow when its Reynolds number changes. It can be expected that, at certain
critical Reynolds number, this stationary solution becomes unstable and the
Hopf bifurcation occurs. These will be proved by showing how the eigenvalue
of this system behaves as parameters change. We explain how the above can be
shown by a computer assisted proof. This method is an extended version of the
ones employed in [1] and [2]. In [1] it was proved that, for the periodically forced
dissipative systems of ODEs, there exist periodic solutions with the same period,
double period, triple period and so on. The systems include Duffing equation
as an example. In [2] it was shown that the autonomous systems including the
Lorenz equation have a periodic solution. Therefore, our method is applicable
to the system of nonlinear ODEs.
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2 Stability of surface waves of viscous fluid
flowing down an inclined plane

For the free boundary problem of viscous incompressible fluid flowing down
an inclined plane, the existence of local in time solutions is obtained in [7], and,
when the Reynolds number and the angle of inclination are small, the global
existence theorem is proved in [6] for small initial data. As in [4] we consider
two dimensional fluctuations of the steady laminar flow for simplicity. We use
dimensionless variables employed in [4]. Let R be the Reynolds number of this
laminar flow. ais the inclination angle. The shallow water parameter § denotes
a ratio between wave height and wave length. As R is increased, the problem of
stability of the stationary solution arises. This stability analysis can be reduced
to study the eigenvalue problem of the following linear equation written in terms
of the stream function . :

(2:1) v =0 v, =0, ony =0 ,
(22) Yyvyy + 26°Yyyee + 6" Yoo
—6R {yye + 6ot + 2ot
(2y - v°) ("»bwyy + 52¢zzz)} =0, in0<y<]l,
(2:3) M + N + Y,=0, on y =1,
(2.4) Yy — oy = 27, on y = 1,

(2‘5) "/)y;y'y - 6R (d’yt +¢wy) + 352"/}“:;1/
+ 26°Wcsc angey — 26 cot an, =0, on y = 1.

Here W is the Weber number. Since we are concerned with only linear distur-
bances periodic in the stream-wise direction and since the coefficients in (2.2)
depend only on y, assuming the periodicity in z, we can consider 1 of the form

(2.6) ¥ = ¢(y)exp(inz + At).
The free surface position 7 can be recovered from (2.3) as
—ing(1) .
2.7 ‘ = — .
(2.7) ‘ n A+inexp(znz+)\t)

After substituting (2.6) and (2.7) into (2.1) - (2.5), we obtain the eigenvalue
problem of the ODE for ¢:

(2.8) $(0) = 0, #(0) =0, ony =0,



(2‘9) ¢IIII _2m2¢u + m4¢
= im’R{(Qy——yz—l—,u) ((;S" —m2¢) + 2¢}, in0<y<l,
Ui 2 — —
210) S+ ) ¢ o) = 0, oy = 1
(2.11) ¢"(1) — imR(u+1)¢/(1)
oy 2im? 2im B -
—3m*¢'(1) + ,u+1W¢(1) + ) cotag(l) = 0, ony = 1.

A
Here we put 4 = M= én. By this formulation, the original problem

of stability is now reduced to investigate the behavior of the real part of the
eigenvalue A when the parameters R and m vary.

- For our present concern, the problem is to find R = R, at which A becomes
+iw (w € R) for certain periodicity in z, m fixed, and ,further, to show

ORe)
OR |

We carry out these in the following sections. By (2.12) and by the fact
that the original evolution problem for the linearized system forms an sectorial
operator, we see that a sufficient condition given in [5] for the occurence of the
Hopf bifurcation holds. Hence, we see that the laminar flow becomes unstable
for R. > R. and the Hopf bifurcation occurs at R = R..

(2.12) > 0.

=R¢

3 Criterion for existence of critical eigenvalue

To obtain the eigenvalue and the eigenfunction for (2.8) — (2.11), we consider
the initial value problem for (2.9) for y > 0 and express its solution as

(3.1) ¢ = adi(y) + bea(y), y > O,
where ¢;(y), 7 =1,2 satisfy (2.9) on y > 0 and the initial conditions

(3.2) ¢1(0) = 1, ¢7'(0) = 0,

2(0) = 0, ¢5'(0) = 1
a and b are éonsta.nts to be determined. In order that the function (3.1).is the

eigenfunction, (3.1) must satisfy the conditions (2.10) and (2.11). This condition
is written as follows

an a2 a
3.3 =0
(33) ( az1 Q22 ) ( b ) ’

i

{ ¢](0) = 0’ ¢_,1(0) = 07 .7 :l1’2’
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where the coefficients a;; are explicitly given by éi(1), ¢4(1), dr(1), ¢ (1),
k =1,2. In order that (3.1) is nontrivial, it is necessary that

(34) det A = a110922 — Q12021 = 0,

and (3.4) is sufficient for (3.1) to be the eigenfunction. Thus, we now come
to search, for the fixed parameters o and m, the values of R = R, A = iw,
satisfying

det A = 0.

We put
(3.5) det A =F(R,\; a,m).

Noting that (3.4) can be rewritten as
oOF

OF |
+2=(R=Ro) + =(A=2) = 0,

we can state our criterion for existence of the critical eigenvalue based on the
simplified Newton method as below

Theorem Suppose, for small € > 0, there exist Ry and Ao such that
(3.7) IF(Ro, M)l < e.

Put oOF G}
f'
(3.8) LQE ‘ R (Ro, Xo) Y (Ro,)\o)) .

Suppose further that, for small 6, there is a p, such that the estimate
(3.9) | DF(R, A — Log| < §
holds for any (R, X) such that

(R — Ro)? + |X = X2 < 02

For e, p1, 6 and Ly as above, if it holds that
(€
(3.10) | Lg* | ,0_ + 6] £1,
1

then there exist some R. and A in the p,-neighborhood of Ry and Ay satisfying
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To utilize this criterion to our problem, we only need to justify the following
steps:

i) Find appropriate values Ry and ), and estimate ¢;

i) At this pair of Ry, A, find an approximate derivative L, and estimate
the norm || Lg! |;

i1) Estimate & for which the estimate (3.9) holds in the p;-neighborhood of
Ro and Ag; ‘

i) For these values in (4, i, %), prove that the criterion (3.10) holds.

Example I . We here cite a numerical example for the fixed parameters
a = 0.5and m = 0.5. By the shooting method based on the fourth order
Taylor difference scheme, ¢ and its derivatives are calculated. The number of
mesh-points on the interval 0 < y < 1is K = 1024 x 32. To obtain the zero
(Ro, Ao) of (3.5) we use the Newton scheme. We obtain numerically

(3.12) { Ao = 0.82985 15563 586 x

Ro =  5.26808 55830 985 .

At this‘approx_imate zero, we obtain

([det 4] < 0.2 x 10~1
(3.13) 4 8‘;‘;’4 = —0.05529 67703 — i x 0.20463 24459
6‘;;‘4 = 1.50558 39103 — i x 3.46028 24006

The notation with over line denotes the value obtained numerically. The error
from the exact value can be derived by using the theory of pseudo trajectory,
so we have

(3.14) |det A(Ro, Xo) — detA(Ro, Ao)| < 0.428 x 107

Thus we have
(3.15) e = |det A(Ro,Xo)| < 0.429 x 1071,

The jacobian of F can also be estimated as
(3.16) |IDF(R,A) — Lo| < 0.4 x 10" x py
7 for [R —Rol> + A= Xof> < p2.
In estimating these errors by using the theory of pseudo trajectory, we have

to estimate the rounding error of numerical computation as well as the trun-
cation error by discretization. The former must be performed on a computer
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by software for an interval arithmetic. The rounding error on each step of our
difference scheme is expected to be less than 10712 by the computation of double
precision and expected to be less than 10-26 by the computation of quadruple
precision. For the estimate below we need quadruple precision in order that
p1 = 1071 in the estimate in (3.7) - (3.11).

Thus, from (3.15), (3.16) and p; = 107!, and because of § = 0.4 x 107 X
10—10 ,

(3.17) 121 (£ + 4)

-11
0y (0.429 x 10

= oo+ 0:4x107x 10—10) < 05,

our criterion holds. Hence, we see that there exist the exact eigenvalue A = iw,
and the Reynolds number R = R, in the p; -neighborhood of (Rq , po) of
(3.12).

4 Behavior of eigenvalue at critical Reynolds
number

We finally show how to study the behavior of the eigenvalue A = A(R;m,a)

" in the neighborhood of R = R.. For notational convenience we write the

equation (2.9) and the boundary conditions (2.8), (2.10) and (2.11) as

(4.1) Lp =0 and Bop =0

respectively. Let L* and B* be the formal adjoint operator of L and the adjoint
boundary conditions respectively. It is known that, if (4.1) has a nontrivial
solution, then the adjoint problem

(4.2) L*% = 0 and B*'Y = 0

also has a nontrivial solution. Let ¢ be the nontrivial solution of (4.2) corre-
sponding to A; and R.. Differentiating (2.9) in R yields

(43 2~ a2 + b
where
(4.4) alg] = - ZR(¢" — m’9)

and
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(4.5) blg] = im { (2y —y? = %) + 2¢>} .

Taking the L2(0, 1)-inner product of (4.3) with the solution 9 of the problem
adjoint to (4.1), we obtain '

(4.6) (aloigg + el w) =0,

L2
From this we have

oX
0R

(b[¢]a d))Lz

R=R, - (ald], )2

We calculate this integration in double precision and obtain numerically

(4.7)

OX
OR R=Ry
= 0.01753 58825 + ¢ x 0.02193 88106 .

(4.8)

For this numerical integration we use the trapezoidal rule, so the error can be
estimated by

(4.9 ot6) - (B + By - )|
< max |¢"(y)| (Ay)* + max|g(kAy) - &
for kAy<y<(k+1)Ay

and by the theory of pseudo trajectory. Thus we can conclude that

ORe )

(4.10) =

> 0.

R=R.

This shows that the stationary solution is stable for R < 7R. and becomes
unstable for R > R, and that the Hopf bifurcation occurs at R = R..

Example II. We here cite another example. Take a = 0.5 and m = 1.0.
The number of mesh-points is K = 1024 x 32. We compute by quadruple
precision.

Ro 21.37190 01766 506 .

(4.11) {)\0 = 1.33019 05847 491 x 1
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At this approximate zero, we obtain

([detA] < 1.0 x 107
(412) | 3‘;‘;;‘4 = —0.41370 54211 — i x 0.10135 29912
L a‘i;tA = —40.78671 79530 — i X 26.09613 53005
p |
O\
(4.13) —=
OR | pn,
= 0.00284 15752 + i x 0.00832 50456
(4.14) | Lot | < 7.26820 .
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