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1 Introduction
Among the problems of stability and bifurcation of solutions of various equa-

tions of fluid dynamics, some of these can be reduced to an eigenvalue problem
of system of ordinary differential equations including physical parameters. They
are boundary value problems for linear systems of ODEs. It is, however, difficult
to analyze how an eigenvalue of the system depends on parameters, since these
systems are not self-adjoint and have variable coefficients.

In this article we propose a method to analyze this. Namely, taking as
a concrete example the free boundary problem of viscous incompressible fluid
flowing down an inclined plane, we study the stability of the stationary laninar
flow when its Reynolds number changes. It can be expected that, at certain
critical Reynolds number, this stationary solution becomes unstable and the
Hopf bifurcation occurs. These will be proved by showing how the eigenvalue
of this system behaves as parameters change. We explain how the above can be
shown by a computer assisted proof. This method is an extended version of the
ones employed in [1] and [2]. In [1] it was proved that, for the periodically forced
dissipative systems of ODEs, there exist periodic solutions with the same period,
double period, triple period and so on. The systems include Duffing equation
as an example. In [2] it was shown that the autonomous systems including the
Lorenz equation have a periodic solution. Therefore, our method is applicable
to the system of nonlinear ODEs.
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2 Stability of surface waves of viscous fluid
flowing down an inclined plane

For the free boundary problem of viscous incompressible fluid flowing down
an inclined plane, the existence of local in time solutions is obtained in [7], and,
when the Reynolds number and the angle of inclination are $smaU$ , the global
existence theorem is proved in [6] for small initial data. As in [4] we consider
two dimensional fluctuations of the steady laminar flow for simplicity. We use
dimensionless variables employed in [4]. Let $\mathcal{R}$ be the Reynolds number of this
laminar flow. $\alpha$ is the inclination angle. The shallow water parameter $\delta$ denotes
a ratio between wave height and wave length. As $\mathcal{R}$ is increased, the problen of
stability of the stationary solution arises. This stability analysis can be reduced
to study the eigenvalue problem of the following linear equation written in terms
of the stream function $\psi$ .

(2.1) $\psi=0$ , $\psi_{y}=0$ , on $y=0$
(2.2) $\psi_{yyyy}+2\delta^{2}\psi_{yyxx}+\delta^{4}\psi_{xxxx}$

$-\delta \mathcal{R}\{\psi_{yyt}+\delta^{2}\psi_{xxt}+2\psi_{x}+$

$(2y-y^{2})(\psi_{xyy}+\delta^{2}\psi_{xxx})\}=0$, in $0<y<1$ ,
(2.3) $\eta_{t}+\eta_{x}+\psi_{x}=0$ , on $y=1$ ,
(2.4) $\psi_{yy}-\delta^{2}\psi_{xx}=2\eta$, on $y=1$ ,
(2.5) $\psi_{yyy}-\delta \mathcal{R}(\psi_{yt}+\psi_{xy})+3\delta^{2}\psi_{xxy}$

$+2\delta^{3}\mathcal{W}\csc\alpha\eta_{xxx}-2\delta\cot\alpha\eta_{x}=0$ , on $y=1$ .

Here $\mathcal{W}$ is the Weber number. Since we are concerned with only linear distur-
bances periodic in the stream-wise direction and since the coefficients in (2.2)
depend only on $y$ , assuming the periodicity in $x$ , we can consider $\psi$ of the form

(2.6) $\psi=\phi(y)\exp(inx+\lambda t)$ .
The free surface position $\eta$ can be recovered from (2.3) as

(2.7) $\eta=\frac{-in\phi(1)}{\lambda+in}\exp(inx+\lambda t)$ .

After substituting (2.6) and (2.7) into $(2.1)-(2.5)$ , we obtain the eigenvalue
problem of the ODE for $\phi$ :

(2.8) $\phi(0)=0$ , $\phi’(0)=0$ , on $y=0$ ,
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(2.9) $\phi^{\prime m}-2m^{2}\phi’’+m^{4}\phi$

$=im\mathcal{R}\{(2y-y^{2}+\mu)(\phi’’-m^{2}\phi)+2\phi\}$ , in $0<y<1$ ,

(2.10) $\phi^{n}(1)+m^{2}\phi(1)+\frac{2}{\mu+1}\phi(1)=0$ , on $y=1$ ,

(2.11) $\phi^{m}(1)-im\mathcal{R}(\mu+1)\phi’(1)$

$-3m^{2} \phi’(1)+\frac{2im^{3}}{\mu+1}\mathcal{W}\phi(1)+\frac{2im}{\mu+1}\cot\alpha\phi(1)=0$, on $y=1$ .

Here we put $\mu=-\frac{\lambda}{in},$ $m=\delta n$ . By this formulation, the original problem
of stability is now reduced to investigate the behavior of the real part of the
eigenvalue $\lambda$ when the parameters $\mathcal{R}$ and $m$ vary.

For our present concern, the problem is to find $\mathcal{R}=\mathcal{R}_{c}$ at which $\lambda$ becomes
$\pm i\omega(\omega\in R)$ for certain periodicity in $x,$ $m$ fixed, and,further, to show

(2.12) $\frac{\partial{\rm Re}\lambda}{\partial \mathcal{R}}|_{R=R_{c}}>0$ .

We carry out these in the following sections. By (2.12) and by the fact
that the original evolution problem for the linearized system forms an sectorial
operator, we see that a sufficient condition given in [5] for the occurence of the
Hopf bifurcation holds. Hence, we see that the laminar flow becomes unstable
for $\mathcal{R}>\mathcal{R}_{c}$ and the Hopf bifurcation occurs at $\mathcal{R}=\mathcal{R}_{c}$ .

3 Criterion for existence of critical eigenvalue
To obtain the eigenvalue and the eigenfunction for $(2.8)-(2.11)$ , we consider

the initial value problem for (2.9) for $y\geq 0$ and express its solution as

(3.1) $\phi=a\phi_{1}(y)+b\phi_{2}(y)$ , $y>0$ ,

where $\phi_{j}(y),$ $j=1,2$ satisfy (2.9) on $y>0$ and the initial conditions

(3.2) $\{\phi_{u,1}(0)\phi_{2}^{j}(0)\phi^{u}(0)===001’,\phi^{j}(0)\phi_{1_{2}}(0)\phi^{n_{u^{/}/}^{/}}(0)=_{=}0_{1}=0,j=1,2$

$a$ and $b$ are constants to be determined. In order that the function (3.1) is the
eigenfunction, (3.1) must satisfy the conditions (2.10) and (2.11). This condition
is written as follows

(3.3) $(\begin{array}{ll}a_{11} a_{12}a_{21} a_{22}\end{array})(\begin{array}{l}ab\end{array})=0$ ,
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where the coefficients $a_{ij}$ are explicitly given by $\phi_{k}(1),$ $\phi_{k}’(1),$ $\phi_{k}^{u}(1),$ $\phi_{k}’’’(1)$ ,
$k=1,2$ . In order that (3.1) is nontrivial, it is necessary that

(3.4) $\det A\equiv a_{11}a_{22}-a_{12}a_{21}=0$ ,

and (3.4) is sufficient for (3.1) to be the eigenfunction. Thus, we now come
to search, for the fixed parameters $\alpha$ and $m$ , the values of $\mathcal{R}=\mathcal{R}_{c},$ $\lambda=i\omega_{c}$

satisfying
$\det A=0$ .

We put
(3.5) $\det A=\mathcal{F}(\mathcal{R}, \lambda ; \alpha, m)$ .
Noting that (3.4) can be rewritten as

(3.6) $\mathcal{F}(\mathcal{R}, \lambda)=\mathcal{F}(\mathcal{R}_{0}, \lambda_{0})$

$+ \frac{\partial \mathcal{F}}{\partial \mathcal{R}}(\mathcal{R}-\mathcal{R}_{0})+\frac{\partial \mathcal{F}}{\partial\lambda}(\lambda-\lambda_{0})=0$ ,

we can state our criterion for existence of the critical eigenvalue based on the
simplified Newton method as below

Theorem Suppose, for small $\epsilon>0$ , there exist $\mathcal{R}_{0}$ and $\lambda_{0}$ such that

(3.7) $\Vert \mathcal{F}(\mathcal{R}_{0}, \lambda_{0})\Vert<\epsilon$.

Put

(3.8) $L_{0} \equiv\ulcorner\frac{\partial \mathcal{F}}{\partial \mathcal{R}}(\mathcal{R}_{0}, \lambda_{0}),$ $\overline{\frac{\partial \mathcal{F}}{\partial\lambda}}(\mathcal{R}_{0}, \lambda_{0}))$ .

Suppose further that, for small $\delta$ , there is a $\rho_{1}$ such that the estimate

(3.9) 11 $D\mathcal{F}(\mathcal{R}, \lambda)-L_{0}\Vert<\delta$

holds for any $(\mathcal{R}, \lambda)$ such that

$(\mathcal{R}-\mathcal{R}_{0})^{2}+|\lambda-\lambda_{0}|^{2}<\rho_{1}^{2}$ .

For $\epsilon,$ $\rho_{1},$
$\delta$ and $L_{0}$ as above, if it holds that

(3.10) I $L_{0}^{-1}$ I $( \frac{\epsilon}{\rho_{1}}+\delta)$ $\leq 1$ ,

then there exist some $\mathcal{R}_{c}$ and $\lambda_{c}$ in the $\rho_{1}$ -neighborhood of $\mathcal{R}_{0}$ and $\lambda_{0}$ satisfying

(3.11) $\mathcal{F}$ $( \mathcal{R}_{c}, \lambda_{c})=0$ .
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To utilize this criterion to our problem, we only need to justify the following
steps:

i) Find appropriate values $\mathcal{R}_{0}$ and $\lambda_{0}$ , and estimate $\epsilon$ ;
ii) At this pair of $\mathcal{R}_{0},$ $\lambda_{0}$ , find an approximate derivative $L_{0}$ and estimate

the norm 1 $L_{0}^{-1}\Vert$ ;
iii) Estimate $\delta$ for which the estimate (3.9) holds in the $\rho_{1}$-neighborhood of

$\mathcal{R}_{0}$ and $\lambda_{0}$ ;
iv) For these values in $(i, ii, iii)$ , prove that the criterion (3.10) holds.

Example I. We here cite a nunerical example for the flxed parameters
$\alpha=0.5$ and $m=0.5$. By the shooting method based on the fourth order
Taylor difference scheme, $\phi$ and its derivatives are calculated. The number of
mesh-points on the interval $0<y\leq 1$ is $K=1024\cross 32$ . To obtain the zero
$(\mathcal{R}_{0}, \lambda_{0})$ of (3.5) we use the Newton scheme. We obtain numerically

(3.12) $\{\begin{array}{l}\lambda_{0}\mathcal{R}_{0}\end{array}$ $==$ $082985155635865.2680855830985^{\cross}$

.
$i$

$(3l3)\{\begin{array}{l}|detA|<\frac{\overline\partial detA}{\partial \mathcal{R}}=\frac{\overline\partial detA}{\partial\mu}=\end{array}-0.0^{0^{e}.2^{obta\dot{e}n_{3-i\cross 34602824006}}}Atthi$

roximate

$ze_{1}r_{505583910^{10^{-14}}}$–.
The notation with over line denotes the value obtained numerically. The error
from the exact value can be derived by using the theory of pseudo trajectory,
so we have

(3.14) $|\det A(\mathcal{R}_{0}, \lambda_{0})-\overline{\det A(\mathcal{R}_{0},\lambda_{0})}|<0.428\cross 10^{-11}$

Thus we have
(3.15) $\epsilon=|\det A(\mathcal{R}_{0}, \lambda_{0})|<0.429\cross 10^{-1}$ ‘

The jacobian of $\mathcal{F}$ can also be estimated as

(3.16) II $D\mathcal{F}(\mathcal{R}, \lambda)-L_{0}\Vert<0.4\cross 10^{7}\cross\rho_{1}$

for $|\mathcal{R}-\mathcal{R}_{0}|^{2}+|\lambda-\lambda_{0}|^{2}<\rho_{1}^{2}$ .
In estimating these errors by using the theory of pseudo trajectory, we have

to estimate the rounding error of numerical computation as well as the trun-
cation error by discretization. The former must be performed on a computer
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by software for an interval arithmetic. The rounding error on each step of our
difference scheme is expected to be less than $10^{-13}$ by the computation of double
precision and expected to be less than $10^{-26}$ by the computation of quadruple
precision. For the estimate below we need quadruple precision in order that
$\rho_{1}=10^{-10}$ in the estimate in $(3.7)-(3.11)$ .

Thus, from (3.15), (3.16) and $\rho_{1}=10^{-10}$ , and because of $\delta=0.4\cross 10^{7}\cross$

$10^{-10}$ ,

(3.17) $\Vert L_{0}^{-1}|$ } $( \frac{\epsilon}{\rho_{1}}+\delta)$

$=10 \cross(\frac{0.429\cross 10^{-11}}{10^{-10}}+0.4\cross 10^{7}\cross 10^{-10})<0.5$ ,

our criterion holds. Hence, we see that there exist the exact eigenvalue $\lambda=i\omega_{c}$

and the Reynolds number $\mathcal{R}=\mathcal{R}_{c}$ in the $\rho_{1}$ -neighborhood of $(\mathcal{R}_{0}, \rho_{0})$ of
(3.12).

4 Behavior of eigenvalue at critical Reynolds
number

We finally show how to study the behavior of the eigenvalue $\lambda=\lambda(\mathcal{R};m, \alpha)$

in the neighborhood of $\mathcal{R}=\mathcal{R}_{c}$ . For notational convenience we write the
equation (2.9) and the boundary conditions (2.8), (2.10) and (2.11) as

(4.1) $L\phi=0$ and $B\phi=0$

respectively. Let $L^{*}$ and $B^{*}$ be the formal adjoint operator of $L$ and the adjoint
boundary conditions respectively. It is known that, if (4.1) has a nontrivial
solution, then the adjoint problem

(4.2) $L^{*}\psi=0$ and $B^{*}\psi=0$

also has a nontrivial solution. Let $\psi$ be the nontrivial solution of (4.2) corre-
sponding to $\lambda_{c}$ and $\mathcal{R}_{c}$ . Differentiating (2.9) in $\mathcal{R}$ yields

(4.3) $L \frac{\partial\phi}{\partial \mathcal{R}}=a[\phi]\frac{\partial\lambda}{\partial \mathcal{R}}+b[\phi]$

where

(4.4) $a[ \phi]=-\frac{m}{n}\mathcal{R}(\phi’’-m^{2}\phi)$

and
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(4.5) $b[ \phi]=im\{(2y-y^{2}-\frac{\lambda}{in})+2\phi\}$ .

Taking the $L^{2}(0,1)$-inner product of (4.3) with the solution $\psi$ of the problem
adjoint to (4.1), we obtain

(4.6) $(a[ \phi]\frac{\partial\lambda}{\partial \mathcal{R}}+b[\phi],$ $\psi)_{L^{2}}=0$ .

From this we have

(4.7) $\frac{\partial\lambda}{\partial \mathcal{R}}|_{R=R_{c}}=-\frac{(b[\phi],\psi)_{L^{2}}}{(a[\phi],\psi)_{L^{2}}}$

We calculate this integration in double precision and obtain numerically

(4.8) $\frac{\overline\partial\lambda}{\partial \mathcal{R}}|_{\mathcal{R}=\mathcal{R}_{0}}$

$=$ 0.0175358825 $+i\cross 0.02193$ 88106.

For this numerical integration we use the trapezoidal rule, so the error can be
estimated by

(4.9) $| \phi(y)-(\overline{\phi}_{k}+\frac{\overline{\phi}_{k+1}-\overline{\phi}_{k}}{\Delta y}(y-k\Delta y))|$

$\leq\max_{y}|\phi’’(y)|(\Delta y)^{2}+\max_{k}|\phi(k\Delta y)-\overline{\phi}_{k}|$

for $k\Delta y\leq y\leq(k+1)\triangle y$

and by the theory of pseudo trajectory. Thus we can conclude that

(4.10) $\frac{\partial{\rm Re}\lambda}{\partial \mathcal{R}}|_{\mathcal{R}=\mathcal{R}_{c}}>0$ .

This shows that the stationary solution is stable for $\mathcal{R}$ $<$ $\mathcal{R}_{c}$ and becomes
unstable for $\mathcal{R}>\mathcal{R}_{c}$ and that the Hopf bifurcation occurs at $\mathcal{R}=\mathcal{R}_{c}$ .

Example II. We here cite another example. Take $\alpha=0.5$ and $m=1.0$ .
The number of mesh-points is $K=1024\cross 32$ . We compute by quadruple
precision.

(4.11) $\{\begin{array}{l}\lambda_{0}\mathcal{R}_{0}\end{array}$ $==$ $133.01905847491\cross i213719001766506$

.
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At this approximate zero, we obtain

(4.12) $\{\begin{array}{l}\overline{|detA|}<1.0\cross 10^{-20}\frac{\overline\partial detA}{\partial \mathcal{R}}=-0.4137054211-i\cross 0.1013529912\frac{\overline\partial detA}{\partial\mu}=-40.7867179530-i\cross 26.0961353005\end{array}$

(4.13) $\frac{\overline\partial\lambda}{\partial \mathcal{R}}|_{\mathcal{R}=R_{0}}$

$=$ 0.0028415752 $+i\cross 0.00832$ 50456

(4.14) 1 $L_{0}^{-1}\Vert<$ 7.26820.
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