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Multi-dimensional localized behavior of

electrostatic ion wave in a magnetized plasma

東大工 西成 活裕 (Katsuhiro Nishinari)

東大数理科学 薩摩順吉 (Junkichi Satsuma)

\S 1. Introduction

Over the last few decades a considerable number of studies have

been made on nonlinear dynamics of $(1+1)$ dimension by means of the

soliton theory. Behaviors of nonlinear phenomena in multi-dimension,

however, are still not well understood. Several articles have been de-

voted to the studies in multi-dimension, e.g., the resonant interaction

of solitons1) and the coherent structures. The coherent structures are

usually unstable in more than two spacial dimension. For example, Zka-

harov showed that the wave described by the three-dimensional non-

linear Schr\"odinger(NLS) equation collapses in a finite time2) . Whether

there are stable localized structures or not has been an object of study

for a long time. Zkaharov and Kuznetsov found that in a longitudinal

magnetic field a localized ion sound wave of low frequency mode can

propagate parallel to the magnetic field without deformation. They also

showed that the coherent structure is stable by Lyapunov theorem3).

The equation which they derived to describe an ion wave of low fre-

quency mode in a three-dimensional magnetized plasma is of the $KdV$
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type. As for the NLS type, particular solutions with two-dimensionally

localized structures called’ dromion’ 4) were recently found in the Davey-

Stewartson(DS) equations5) by the soliton theory. There are two types

of the DS $equations^{6)}$ ; DS1 and DS2. It should be mentioned that the

DSI equations admit the dromion solutions, but DS2 do not.

In our previous paper7) , we have shown that a multi-dimensional ion

wave packet $witho^{J}ut$ magnetic field is described by the DS2 equations.

Hence we do not expect to have two-dimensionally localized structures

in such a system. As far as we know, the DSI equations have only been

derived physically in the long wave limit of the Benny-Roskes equations8)

which describe the evolution of three-dimensional packets of surface wa-

ter waves.

In this paper, we study three-dimensional electrostatic ion wave

in a magnetized plasma and show that such a wave is approximately

described by the DS equations which can be DSI in some cases. The

system which we consider is the same system as Zkaharov and Kuznetsov,

but we focus on high frequency mode of the wave instead of low frequency

mode.

\S 2. Dynamics of ion wave packet in a magnetic field

Let us consider a plasma in an applied magnetic field $B_{O}$ . We as-

sume that the plasma is collisionless and described by its fluid behavior.

We also assume that the temperature of the electrons is so high that the
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temperature of the ions can be neglected. Moreover, the charge of the

ions is assumed to be compensated by the electrons, and the electrons

are considered to be in thermal equilibilium as long as we focus upon

movement of the ions. The basic equations of a nondimensional form

governing such plasma dynamics are

$\frac{\partial n}{\partial t}+div(nv)=0$ , (1)
$\partial v$

$–+(v\cdot grad)v=-grad\phi+a(v\cross b)$ , (2)
$\partial t$

$\triangle\phi=\exp\phi-n$ , (3)

where $n,$ $v=(v_{x}, v_{y}, v_{z})$ are the density and the velocity of ions, respec-

tively, $\phi$ is the electrostatic potential, $b=(1,0,0)$ and $\triangle=\partial^{2}/\partial x^{2}+$

$\partial/\partial y^{2}+\partial/\partial z^{2}$ . The nondimensional parameter $a$ is given by $a= \frac{\omega}{\Omega}\dot{A}i$

where $\omega_{i}=\frac{ZeB_{0}}{Mc}$ and $\Omega_{i}^{2}=\frac{4\pi n_{0}Ze^{2}}{M}$ Here, $n_{0}$ is the initial unperturbed

ion density, $M$ and $Z$ is the mass and the charge number of an ion,

respectively, $-e$ is the charge of an electron, $c$ is the speed of light, and

$B_{0}$ is the magnitude of the applied magnetic field.

The linear dispersion relation of this system is given by

$\omega^{4}-(a^{2}+\frac{|k|^{2}}{1+|k|^{2}})\omega^{2}+a^{2}(b\cdot k)^{2}(\frac{1}{1+|k|^{2}})=0$ . (4)

This dispersion relation has two modes, which we call higher mode and

lower mode in this paper. In the following, we focus upon higher mode.

We note that Zkaharov and Kuznetov consider the lower mode of this

system3) .
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We begin with considering a time evolution of a perturbation $\sim$

$\exp[\iota(k\cdot x-\omega t)]$ on this system. Without loss of generality, we take

$k=(kx, ky, 0)$ . Initial ion wave packets of perturbation are modulated

by nonlinear effect. If we see the packet from the coordinate moving at

the group velocity which is determined by the linear dispersion relation

(4), then the time variation of the wave packets looks slow. Hence we can

introduce the stretched variables, $\xi=\epsilon(x-V_{gx}t)$ , $\eta=\epsilon(y-V_{gy}t)$ , $\zeta=$

$\epsilon z$ , $\tau=\in^{2}t$ , where $V_{gx}$ and $V_{gy}$ is the $x$ and $y$ components of the group

velocity, respectively. Next we expand the physical quantities around

their stationary values as

$n=1+ \sum_{n=1}^{\infty}\epsilon^{n}\sum_{l=-\infty}^{\infty}n_{l}^{(n)}(\xi, \eta, \zeta, \tau)\exp[\iota l(k\cdot x-\omega t)]$ , (5)

$\phi=$ $\sum_{n=1}^{\infty}\epsilon^{n}\sum_{l=-\infty}^{\infty}\phi_{l}^{(n)}(\xi, \eta,\zeta, \tau)\exp[\iota l(k\cdot x-\omega t)]$, (6)

$v=$ $\sum_{n=1}^{\infty}\epsilon^{n}\sum_{l=-\infty}^{\infty}(_{v_{zl}^{(n)}(\xi,\eta,\zeta,\tau)}^{v_{yl}^{(n)}(\xi,\eta,\zeta,\tau)}v_{(n)}^{xl}(\xi,\eta,\zeta,\tau))\exp[xl(k\cdot x-\omega t)]$, (7)

where the relations $n_{l}^{(n)*}=n_{-l}^{(n)}$ , $\phi_{l}^{(n)*}=\phi_{-l}^{(n)}$ , $v_{l}^{(n)*}=v_{-l}^{(n)}$ should

be satisfied because of the reality condition of physical variables. We

then substitute eqs.(5)$-(7)$ into the basic eqs. (1)$-(3)$ and equate each

coefficient of 6. In the following calculation, we shall closely follow the

procedure in our $P^{re1^{\dot{r}iouspaper^{7)}}}$ .

We calculate up to the third order of 6 to obtain the coupled equa-

tions of $n_{1}^{(1)}$ and $n_{0}^{(2)}$ For simplicity, we introduce the notations $A$ and
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$Q$ by $A=n_{1}^{(1)}$ and $Q=n_{0}^{(2)}+cv_{x0}^{(2)}$ , where $c$ is a constant, and the

resultant equations are the followings:

$\iota A_{\tau}+\alpha_{1}A_{\xi\xi}+\alpha_{2}A_{\xi\eta}+\alpha_{3’}A_{\eta\eta}+\alpha_{4}A_{\zeta\zeta}+\alpha_{5}|A|^{2}A+\alpha_{6}QA=0_{\tau}$ (8)

and

$(1-V_{gx}^{2})Q_{\xi\xi}-2V_{gx}V_{gy}Q_{\xi\eta}-V_{gy}^{2}Q_{\eta\eta}$

$+\alpha_{7}(|A|^{2})_{\xi\xi}+\alpha_{8}(|A|^{2})_{\xi\eta}+\alpha_{9}(|A|^{2})_{\eta\eta}=0$ . (9)

Here and hereafter, the subscripts denote the partial differentiations

with respect to the indicated variables. Coefficients are function of $a$

and $k$ . They are, however, so complicated that we shall omit the explicit

form of them in this paper. The coupled equations (8) and (9) describe

the nonlinear evolution of the ion wave packet in this system. These

equations are the well-known DS equations except the terms which have

cross derivative of $\xi$ and $\eta$ . The relation between eqs. (8) - (9) and DS

equations will be discussed in Sec.4.

\S 3. The wave pallarel to the magnetic field

We consider limiting cases of foregoing results in this and next sec-

tions. First, we study an ion wave propagating parallel to the applied

magnetic field. If we put $k_{y}=0$ , then from eq.(4) we have the disper-

sion relations of this case is $\omega=a$ and $\omega=\infty\sqrt{1+k_{x}^{2}}^{k}$ In the following, we

consider the wave which has the dispersion relation $\omega=\frac{k_{x}}{\sqrt{1+k_{x}^{2}}}$
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The equation is given by taking $k_{y}=0$ . We shall ommit the details

of the calculation and finally obtain

$x \frac{\partial}{\partial\tau}A+c_{1}\frac{\partial^{2}}{\partial\xi^{2}}A+c_{2}(\frac{\partial^{2}}{\partial\eta^{2}}A+\frac{\partial^{2}}{\partial\zeta^{2}}A)+c_{3}|A|^{2}A=0$, (10)

where

$c_{3}^{1}=c=( \frac{1}{\omega^{2}-a^{2}}-1)-\frac{433k_{x}^{4}+5k_{x}^{6}-\frac{\frac,c_{2}=\partial^{2}\omega\partial k_{x}^{2}k_{x}^{3}}{+34k_{x}^{2}V_{gx}(1+_{+}k_{x}^{2})^{2}}\frac{1}{2}\frac{k_{x}^{2}}{2\omega(1+k_{x}^{2})^{2}}}{12\omega(1+k_{x}^{2})^{2}}-\frac{k_{x}^{2}(2+k_{x}^{2})(2+k_{x}^{2}V_{gx}^{2})}{2\omega V_{g^{2}x}(V_{g^{2}x}-1)(1+k_{x}^{2})^{4}}$

.

$\}$ (11)

This is a three dimensional generalized NLS equation. In the case $k_{y}=$

$0$ , we obtain the single equation (10), while we have obtained coupled

equations (8) and (9) for $k_{y}\neq 0$ .

Equation (10) is transformed into

$\iota\frac{\partial}{\partial\tau}A+d_{1}\frac{\partial^{2}}{\partial\xi^{2}}A+d_{2}(\frac{\partial^{2}}{\partial\eta^{2}}A+\frac{\partial^{2}}{\partial\zeta^{2}}A)+d_{3}|A|^{2}A=0$ , (12)

by suitable scaling transformations of variables. In eq.(12), $d_{1},$ $d_{2}$ and $d_{3}$

are normalized $to\pm 1$ . It is easily shown that eq.(12) has the following

two conserved quantities, $I_{1}= \int|A|^{2}dv$ and

$I_{2}= \int(d_{1}|A_{\xi}|^{2}+d_{1}d_{2}(|A_{\eta}|^{2}+|A_{\zeta}|^{2})-\frac{d_{1}d_{2}}{2}|A|^{4})dv$ , (13)

where $dv=d\xi d\eta d\zeta$ . Following Gibbon and Mcguinness9) , we consider

the possibility of collapse of ion wave by means of these conserved quan-

tities. From the virial theorem, we obtain the identity
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$\frac{\partial^{2}}{\partial t^{2}}\int r^{2}|A|^{2}dv=$

8 $\int(d_{1}^{2}|A_{x}|^{2}+d_{2}^{2}(|A_{y}|^{2}+|A_{z}|^{2}))dv-2d_{3}(d_{1}+2d_{2})\int|A|^{4}dv,$ (14)

where $r^{2}=\xi^{2}+\eta^{2}+\zeta^{2}$ . We find fron eq.(14) that there exist two types

of behaviors for the solutions of eq.(12).

First, in the case $(d_{1}, d_{2}, d_{3})=(\pm 1, \pm 1, \pm 1),$ $eq.(14)$ becomes

$\frac{\partial^{2}}{\partial t^{2}}\int r^{2}|A|^{2}dv=8I_{2}-2\int|A|^{4}dv\leq 8I_{2}$ . (15)

Then we obtain

$\int r^{2}|A|^{2}dv\leq 4I_{2}t^{2}+l_{1}t+l_{2}$ . (16)

Thus, if $I_{2}<0$ , the complex amplitude $A$ has a singularity within a

finite time, namely, the wave collapses.

Second, in the case $(d_{1}, d_{2}, d_{3})=(\pm 1, \pm 1, \mp 1),$ $eq.(36)$ becomes

$\frac{\partial^{2}}{\partial t^{2}}\int r^{2}|A|^{2}dv=8I_{2}+2\int|A|^{4}dv\geq 8I_{2}$ . (17)

It is clear that $I_{2}>0$ in this case and we recognize that any localized

structures will disperse away.

Let as go back to eq.(10). From the above consideration and the

values of $c_{i}’ s$ , we obtain the following results. When $a>1_{Y}$ localized

structures will disperse if $k_{x}<k_{cr}$ , and will collapse if $k_{x}\geq k_{cr}$ . When

$1>a>a_{cr}$ , they will disperse if $k_{x}<k_{cr}$ , and will collapse if $k_{cr}\leq$
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$k_{x}\leq k_{a}$ . Finally, when $a_{cr}>a_{\backslash }$ they will disperse if $k_{x}\leq k_{a}$ . Here

$k_{cr}=1.47$ is the root of $c_{3}=0,$ $k_{a}$ is the root of $k_{x}/\sqrt{1+k_{x}^{2}}=a$ and

$a_{cr}=1.47/\sqrt{1+147^{2}}\simeq 0.827$.

This shows that if $a>a_{cr}$ , the ion wave collapses for $k_{x}>1.47$ .

This wave number is the same as that of the modulational instability of

ion sound $wave1$).

\S 4. The wave perpendicular to the magnetic field

In the case of perpendicular propagation, we must take into account

the fact that electron inertia should not be neglected. Then the basic

eq.(3) is not valid in an exact sense. Electrons form the Boltzmann dis-

tribution along the magnetic line. On the other hand, they can not keep

up with ion motion perpendicular to the nagnetic field due to its small

ramour radius. Thus eq.(3) is valid in the range that the angle between

the vector normal to the direction of the magnetic field and the wave

number vector is larger than $vi_{th}/ve_{th}\sim\sqrt{(mT_{i})}/(MT_{e})$, where $vi_{th}$ is

ion thermal velocity and so $on^{11)}$ . The magnitude of $\sqrt{(mT_{i})}/(1\mathcal{V}IT_{e})$ is,

however, so small usually that we may consider “perpendicular” propa-

gation in this sense. Then we can take $k_{x}arrow 0$ in Sec.2 and assume that

all the variable is independent of $\zeta$ to obtain

$\iota A_{\tau}+\alpha_{1}A_{\xi\xi}+\alpha_{3}A_{\eta\eta}+\alpha_{5}|A|^{2}A+\alpha_{6}QA=0$ , (18)
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$Q_{\xi\xi}-v_{gy}^{2}Q_{\eta\eta}+\alpha_{7}(|A|^{2})_{\xi\xi}=0$ , (19)

from eqs.(8) and (9). It is natural that the terms of cross derivatives

vanish, because this system has the spacial symmetry in this case.

Equations (18) and (19) are the DS equations, and become DS1 if

$\alpha_{1}\alpha_{3}>0$ .

The regions of parameters $a$ and $k_{y}$ , where eqs.(18) and (19) become

DSI, are given in the following figure 1.

[Figure 1]

The regions of parameters a and
$k_{y}$ where eqs.(18) and (19) satisfies the
DS1 condition, self-focusing occurs and
modulational instability occurs.

In the regions 2 and 3, the DS1 condition is satisfied.

We next consider the modulational instability and self-focusing for

eqs. (18) and (19). The plane wave solution with modulation is given

by

$A=(A_{0}+A’)\exp\iota(p_{1}\xi+p_{2}\eta+p_{3}\zeta-\Omega\tau+\theta_{0}+\theta^{l}),$ $Q=Q_{0}+Q’,$ (20)

where

$(\begin{array}{l}A’\theta^{l}Q’\end{array})=(\begin{array}{l}\triangle A\triangle\theta\triangle Q\end{array}){\rm Re}[\exp s(\mu_{1}\xi+\mu_{2}\eta+\mu_{3}\zeta-\nu\tau)]$, (21)
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and $\mu_{1},$ $\mu_{2},$ $\mu_{3},$ $\triangle A,$
$\triangle\theta$ and $\triangle Q$ are real constants. Substituting eqs.(20)

and (21) into eqs.(18) and (19), we obtain a stability condition that $\nu$

does not have imaginary part:

$-( \mu_{1}^{2}\alpha_{1}+\mu_{2}^{2}\alpha_{3})(-\mu_{1}^{2}\alpha_{1}-\mu_{2}^{2}\alpha_{3}+2\alpha_{5}A_{0}^{2}+2A_{0}^{2}\alpha_{6}\frac{\mu_{1}^{2}\alpha_{7}}{V_{gy}^{2}\mu_{2}^{2}-\mu_{1}^{2}})>0$ . (22)

Let us consider two particular cases of long wave modulation.

Casel) $\mu_{2}=0,$ $\mu_{1}arrow 0$ .

The condition (22) is approximated $by-\alpha_{1}(\alpha_{5}-\alpha_{6}h_{7})>0$ , which is

illustrated also in fig.1. In the regions 1 and 2, the system is stable. We

see that if the magnetic field becomes strong, the critical wave number

decreases. Moreover, if $a>1$ , then plane wave is always unstable.

Case 2) $\mu_{1}.=0,$ $\mu_{2}arrow 0$ .

The condition (22) is approximated by $-\alpha_{3}\alpha_{5}>0$ , which is also

illustrated in fig. 1. The system is stable in the regions 2 and 4. Regard-

less of $a$ , there is region in which the system becomes unstable for any

value of $k_{y}$ . Instabilities of the cases 1 and 2 correspond to self-focusing

and modulational instability, respectively. It is to be noted that both of

them are possible to occur in this system.

\S 5. Concluding discussions

$ln$ this paper we have derived by means of RPM the DS-like eqs.(8)

and (9) which describe dynamics of an ion wave packet propagating arbi-

trary direction in a magnetized plasma. In the particular case of pallarel



201

propagation, the equations are reduced into single equation, which is

the three dimensionally generalized NLS equation. From the virial the-

orem, we have shown the possibility of collapse of ion wave. We have

also given the critical wavenumber and the magnitude of magnetic field.

The critical wave number of collapse is the same as the modulational

instability of ion sound wave, $k_{cr}=1.47$ . At such high wave nunbers

ion Landau damping will occur, and as a result the observation of the

modulational instability and hence collapse might be difficult. The effect

of finite ion temperature, however, causes a significant lowering of the

critical wavenumber $k_{cr}$ , which will make the observation less difficult12) .

In Sec.4, we have shown the DSI condition of eqs.(18) and (19). In some

region of $a$ and $k$ shown in Sec.4, there is the possibility of observing

dromion. We consider a formation of dromion as follows: In the case

of wave propagation perpendicular to a magnetic field, we have shown

that both of self-focusing and modulational instability are possible to

occur. If both of them grow simultaneously and then nonlinear satura-

tion occur, the formation of a localized structure can be expected in this

system. In the region of 3 in fig.2, the DS1 condition is satisfied and

also both of the instabilities can occur. Thus we believe that the local-

ized structure are nothing but dromion when an appropriate boundary

$condition^{4)}$ is set in this system.
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