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GEOMETRIES AND CHAMBER
SYSTEMS

Antonio Pasini

1 INTRODUCTION
Chamber systems have been introduced by Ronan [12] and Tits [15] for the
needs of the theory of universal 2-covers. Every geometry can be viewed as a
chamber system and every chamber system admits a universal 2-cover (Ronan
[12]). Thus, given a geometry $\Gamma$ , we can consider the universal 2-cover $C\overline{(\Gamma}$)
of the chamber system $C(\Gamma)$ of F. If $C\overline{(\Gamma}$ ) is the chamber system of some
geometry $\tilde{\Gamma}$ , then $\tilde{\Gamma}$ is the universal 2-cover of F.

Unfortunately, things are not so easy as they look. It is likely that we
always have $C\overline{(\Gamma}$) $=C(\tilde{\Gamma})$ for some geometry F. However, this conjecture has
been proved only in particular cases (see \S 3.2.3). No proof is known for the
general case.

Thus, either we renounce to consider universal 2-covers when we do not
know in advance that they will correspond to some geometries; or we ac-
knowledge chamber systems as respectable mathematical objects, deserving
to be investigated of their own.

The first option cannot be taken serious. According to it, we should re-
nounce to classify a family of flag-transitive geometries when the only method
we can see is to determine the amalgamated product of rank 2 parabolics,
which corresponds to a 2-simply connected chamber system (Section 6, The-
orem 6.1), maybe not defined by any geometry.

The latter option only remains. Unfortunately, developing a rich general
theory of chamber systems is not so easy. For instance, the so-called Direct
Sum Theorem, which is the headstone of diagram geometry, fails to hold for
chamber systems in general (\S \S 4.2.3, 4.4).

Nevertheless, some theory has been developed and I am confident that
more can be done. In particular, by considering what I call the cell-geometry
of a chamber system (Section 5), problems on chamber systems appear to be
equivalent to seeningly easier problems on certain quasi-thin geometries with
string diagrams.

In sections 2, 3 and $4I$ will survey some known facts on chamber systems,
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geometries and their relations. Most of what I will say has a natural group-
theoretic translation. I shall give it in Section 6.

2 BASIC CONCEPTS

2.1 Chamber Systems

2.1.1 Some notation for equivalence relations

Chambers systems (to be defined in the next subsection) are families of equiv-
alence relations satisfying certain properties. Thus, it will be useful to have
stated some notation for equivalence relations.

Given a nonempty set $C$ , we denote by $\Omega$ the largest equivalence relation
on $C$ , having $C$ as its unique equivalence class. The identity relation $=will$

be denoted by as.
Given an equivalence relation $\Phi$ on $C$ and an element $x\in C$ , we denote

the equivalence class of $\Phi$ containing $x$ by $[x]\Phi$ .
Given two equivalence relations $\Phi$ and $\Psi$ on $C,$ $\Phi\vee\Psi$ is the least equiva-

lence relation containing both $\Phi$ and $\Psi$ , whereas $\Phi\Psi$ is their product, defined
by the following clause: given any two elements $x,$ $y\in C,$ $(x, y)\in\Phi\Psi$ if and
only if $x\Phi z$ and $z\Psi y$ for some $z\in C$ .

If $\Phi\subseteq\Psi$ , then $\Psi/\Phi$ denotes the quotient of $\Psi$ by $\Phi$ , defined on $C/\Phi$ by
the following clause: $([x]\Phi, [y]\Phi)\in(\Psi/\Phi)$ if and only if $x\Psi y$ .

2.1.2 Definition of chamber systems

A chamber system over a finite set of types $I$ is a pair $C=(C, (\Phi_{i})_{i\in I})$ where
$C$ is a nonempty set, whose elements are called chambers, and $(\Phi:)_{i\in I}$ is a
family of equivalence relations on $C$ with the following properties:

(C1) $_{i\in I}\Phi_{i}=\Omega$ ;
(C2) $\Phi_{i}\cap\Phi_{j}=lT$ for any two distinct types $i,j\in I$ ;
(C3) $|[x]\Phi_{t}|\geq 2$ for every type $i\in I$ and every chamber $x\in C$ .

The positive integer $n=|I|$ is called the rank of $C$ . The relation $\Phi_{i}$ is
called the i-adjacency relation $(i\in I)$ . Two chambers are said to be adjacent
if they are i-adjacent for some $i\in I$ .

Remark. The above definition of chamber systems is more restrictive
than other ones that can be found in the literature. We have chosen it because
it is as close as possible to the definition of geometries we will state in \S 2.2.1.
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2.1.3 Cells, Residues, Panels and Vertices

Let $C=(C, (\Phi_{i})_{2\in I})$ be a chamber system of rank $n=|I|$ . We set $\Phi_{\emptyset}=lJ$ and
$\Phi_{J}=_{j\in J}\Phi_{j}$ for every nonempty subset $J$ of $I$ .

Given a chamber $x$ and a subset $J$ of $I$ , the pair $([x]\Phi_{J}, J)$ is called a
cell of type $J$ . The numbers $|J|$ and $n-|J|$ are respectively the rank and the
corank of $([x]\Phi_{J}, J)$ . We often write $[x]\Phi_{J}$ for $([x]\Phi_{J}, J)$ (thus identifying
a cell with its set of chambers) when this abbreviation does not cause any
confusion. (Note that it might happen that $[x]\Phi_{J}=[x]\Phi_{K}$ with $J\neq K.$ )

Trivially, if $X$ is a cell of type $J\neq\emptyset$ and $\Phi_{i}^{X}$ is the restriction of $\Phi_{t}$ to $X$ ,
then $C_{X}=(X, (\Phi_{j}^{X})_{j\in J})$ is a chamber system of rank $|J|$ over the set of types
$J$ and it is called a residue of $C$ of type $J$ .

The cells of rank 1 are called panels. Those of corank 1 are called vertices.
We say that two vertices $X,$ $Y$ are incident if $X\cap Y\neq\emptyset$ . We denote by
$\Gamma(C)$ the graph defined on the set of vertices of $C$ by taking the above defined
incidence relation as adjacency relation. This graph is called the incidence
graph of $C$ .

2.1.4 Chamber systems as coloured graphs

A chamber system $C$ can also be viewed as a coloured graph: its edges are
the pairs of distinct adjacent chambers and an edge $\{x, y\}$ gets the colour $i$

if $x$ and $y$ are i-adjacent. Every edge has just one colour (property (C2)),
every vertex belongs to at least one edge of each colour (C3) and the graph
is connected (C1). For every colour $i$ , the subgraph formed by the edges of
that colour is the disjoint union of cliques (indeed the i-adjacency relation is
an equivalence relation).

This way of looking at chamber systems is the most convenient one when
considering morphisms and automorphisms (\S 2.7).

2.1.5 Chamber systems as spaces with parallelism

A chamber $C$ system of rank $n$ can $al$so be viewed as an incidence structure,
with chambers and panels as “points” and “lines” respectively and a“paral-
lelism” between lines, two lines being parallel when they have the same type
as pancls of $C$ . We denote this structure by $\Pi_{C}$ . It satisfies the following
properties:

$(C’ 1)$ any two points are joined by some path of points and lines;
$(C’ 2)$ every line has at least two points;
$(C’ 3)$ dictinct lines never meet in more then one point;
$(C’ 4)$ the parallelism is an equivalence relation with $n$ classes;
$(C’ 5)$ every point belongs to precisely one line of each parallel class.
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Properties $(C’ 1)$ and $(C’ 2)$ rephrase (C1) and (C3), respectively. Proper-
ties $(C^{J}3)$ and $(C’ 5)$ embody (C2). Property $(C’ 5)$ forces each parallel class
to partition the set of points. That is, it reminds us that for every type $i$ , the
i-adjacency relation is an equivalence relation on the set of chambers. Finally,
$(C’ 4)$ expresses the fact that $C$ has rank $n$ . The type set of $C$ can be viewed
as the “line at infinity” of this structure.

It is clear that, given any incidence structure \ddagger I with parallelism satisfying
the above properties $(C’ 1)-(C’ 5)$ , there is a chamber system $C$ such that II $=$

$II_{C}$ and $C$ is uniquely determined by $\Pi$ , modulo re-naming the types.
The point of view now offered on chamber systems will be further devel-

oped in Section 5.

2.2 Geometries
2.2.1 Definition

A geometry of rank 1 is a set of size $\geq 2$ , namely a graph with no edges
and at least two vertices. According to [10], a geometry of rank $n>1$ is a
pair $(\Gamma, \Theta)$ where $\Gamma$ is a connected graph, $\Theta$ is an n-partition of $\Gamma$ (called the
type-partition of F) and, for every vertex $x$ of $\Gamma$ , the neighbourhood $\Gamma_{x}$ of $x$ ,
with the $(n-1)$-partition induced by $\Theta$ on it, is a geometry of rank $n-1$ .
The type-partition $\Theta$ is uniquely determined by the graph $\Gamma$ ([10], Theorem
1.25). Thus, we will always write $\Gamma$ for $(\Gamma, \Theta)$ , even if this is an abuse.

Remark. More general definitions of geometries can be found in the
literature. However, the definition we have stated is general enough to cover
almost all interesting examples. Furthermore, if we chose a less restrictive
definition, we should possibly renounce some of the few general theorems on
geometries (such as the Direct Sum Theorem of Section 4, for instance).

2.2.2 Some terminology

Let $\Gamma$ be a geometry of rank $n$ . The adjacency relation of the graph $\Gamma$ is
called the incidence relation of the geometry F. The vertices and the cliques
of the graph $\Gamma$ are respectively called elements and flags of the geometry $\Gamma$ .
By convention, $\emptyset$ and the elements of $\Gamma$ are flags, too. The rank (ccran,le) of a
flag $F$ is its size $|F|$ (resp., $n-|F|$ ). A flag $F$ is maximal if and only if it has
rank $n$ ([10], Lemma 1.7). Maximal flags are called chambers of F.

The residue $\Gamma_{F}$ of a non-maximal flag $F$ is the geometry of rank $n-|F|$

induced by $\Gamma$ on the neighbourhood $\bigcap_{x\in F}\Gamma_{x}$ of $F$ .
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2.2.3 Types

Given a geometry $\Gamma$ of rank $n$ , let $S$ be its set of elements and let $\Theta$ be its
type partition. A surjective function $t$ : $Sarrow I$ having the classes of $\Theta$ as
fibers is called a type function for $\Gamma$ and $I$ is said to be a set of types for $\Gamma$ .
A geometry over a set of types $I$ is a pair $(\Gamma, t)$ as above.

Let $(\Gamma, t)$ be a geometry over the type set $I$ . Given a flag $F$ of $\Gamma$ , the
subsets $t(F)$ and $I-t(F)$ of $I$ are respectively called the type and the cotype
of $F$ . Clearly, the cotype of a non-maximal flag $F$ is a set of types for the
residue $\Gamma_{F}$ . We cal1 it the type of $\Gamma_{F}$ .

2.3 Geometric Chamber Systems

Given a geometry $\Gamma$ over a set of types $I$ , the chambers (i.e. maximal flags)
of $\Gamma$ form a chamber system $C(\Gamma)$ , two chambers of $\Gamma$ being i-adjacent when
they intersect in a flag of cotype $i$ . Clearly, $\Gamma(C(\Gamma))\cong\Gamma$ for every geometry
F. That is, we can always recover a geometry from its chamber system.

On the other hand, the incidence graph $\Gamma(C)$ of a chamber system $C$ need
not be a geometry, in general (see [8], Section 4). It might also happen that
$\Gamma(C)$ is a geometry but $C(\Gamma(C))\not\cong C$ (that is, we cannot recover $C$ from $\Gamma(C)$ ).

$\Gamma(C)$ is a geometry and $C\cong C(\Gamma(C))$ if and only if the cells of $C$ correspond
to the cliques of the graph $\Gamma(C)$ (in particular, chambers correspond to max-
imal cliques), in such a way that a cell is the intersection of all vertices of $C$

containing it and every clique of $\Gamma(C)$ is the set of the vertices of $C$ containing
some given cell. This happens if and only if the following hold (compare [3];
also [10], \S 12.5):

(G1) $\Phi_{J}=\bigcap_{j\not\in J}\Phi_{I-\{j\}}$ for every $J\subseteq I$ ;
(G2) $\Phi_{J}\cap(\Phi_{I-\{i\}}\cdot\Phi_{I-\{j\}})=(\Phi_{J}\cap\Phi_{I-\{i\}})\cdot(\Phi_{J}\cap\Phi_{I-\{j\}})$ for any two

distinct types $i,$ $j\in I$ and every subset $J$ of $I$ containing both $i$ and $j$ .

If $C$ belongs to a diagram having strings or isolated nodes as connected
components (see \S 2.5), then (G1) implies (G2) (Meixner and Timmesfeld [5]).

If both (G1) and (G2) hold in $C$ , then we say that $C$ is geometric. Trivally,
the chamber system of a geometry is always geometric. Hence a chamber
system is geometric if and only if it is the chamber system of some gometry.

Many examples of non-geometric chamber systems are known (see [8],
Section 4 and remarks following Theorem 2.5; also [13], [4], [6], [17]; and [3]).

2.4 The Rank 2 Case
Trivially, all chamber systems of rank 2 are geometric. Hence we can $al$ways
replace them with their geometries. Thus, we shall only speak of geometries
here, recdling some notions on those of rank 2.
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Let $\Gamma$ be a geometry of rank 2. We take {1, 2} as its set of types. For
$i=1,2$ , the i-diameter $d$; of $\Gamma$ is the maximal distance between two vertices
of the graph $\Gamma$ at least one of which has type $i$ . All circuits of the graph $\Gamma$

have even length. Thus $\Gamma$ has even girth. The gonality $g$ of the geometry $\Gamma$

is half of the girth of the graph $\Gamma$ .
If $g=d_{1}=d_{2}=m$ , then $\Gamma$ is called a generalized m-gon (a generalized

digon, triangle, quadrangle if $m=2,3,4$ respectively). Generalized triangles
are precisely (possibly degenerate) projective planes. Generalized digons are
just colnplete bipartite graphs with at least two elements in each class of the
bipartition. Chamber systems of generalized digons are characterized by the
relation $\Phi_{1}\Phi_{2}=\Phi_{2}\Phi_{1}$ .

If $g>2$ then $\Gamma$ is called a semilinear space (also partially linear space
or partial plane). Note that $g>2$ if and only if $\Gamma$ satisfies $(C’ 3)$ of \S 2.1.5.
Therefore, the incidence structure $\coprod_{C}$ defined in \S 2.1.5 is a semilinear space
(provided that $C$ has rank $>1$ ).

2.5 Diagrams
2.5.1 Definition

Let $I$ be a set of types. A diagram $D$ over $I$ is a mapping defined from the set
of unordered pairs of types $\{\{i, j\}\}_{t,j\in I,i\neq j}$ which assigns to every pair $\{i, j\}$

some class $D_{i,j}$ of rank 2 geometries over $\{i, j\}$ .
A geometry $\Gamma$ (a chamber system $C$ ) over I belongs to the diagram $D$

over $I$ if, for every pair of distinct types $i,$ $j\in I$ , the class $D_{i,j}$ contains
(the geometry of) every residue of $\Gamma$ of type $\{i, j\}$ . If generalized digons and
other rank 2 geometries are hoarded up together in some class $D_{i,j}$ , then we
$al$so assume that at least one of the residues of $\Gamma$ (of $C$ ) of type $\{i,j\}$ is not
a generalized digon. (Diagrams with such bad classes are never taken into
consideration in “real life”, but they might be, in principle.)

Clearly, a geometric chamber system belongs to a diagram $D$ if and only
if its geometry belongs to D. This is not true in general for a non-geometric
chamber system $C$ , even if $\Gamma(C)$ is a geometry.

2.5.2 Some conventions for diagrams

A diagram $D$ over a type set $I$ is usually depicted as a graph, drawing an
edge between two types $i,$ $j$ if and only if $D_{i,j}$ is not a class of generalized
digons and labelling an edge $\{i,j\}$ by some symbol denoting the class $D_{i,j}$ .
For instance, a label $m\geq 3$ on a stroke $\{i, j\}$ means that $D_{t,j}$ is the class of
generalized m-gons
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$imjarrow\bullet$

Further conventions are used to make pictures easier to read. For instance,
when $D_{i,j}$ is the class of generalized triangles no label is put on the edge $\{i,j\}$

$ijarrow\bullet$

If $D_{i,j}$ is the class of generalized quadrangles, then a double stroke the is used
instead of the label 4

$i$ $j$

$=\bullet$

2.5.3 Diagrams as graph

Since a diagram can be viewed as a graph, we can extend to diagrams the
terminology currently used for graphs, thus speaking of connected or dicon-
nected diagrams, of the connected component of a diagram, of diagrans that
are complete graph, or strings, ...

If a diagram $D$ splits into $m$ connected components $D_{1},$ $D_{2},\ldots,$ $D_{m}$ , then
we write $D=D_{1}+D_{2}+\ldots+D_{m}$ . We say that a diagram is trivial if it has
no edges. For instance, the following is the trivial diagram of rank 3

$\bullet$ $\bullet$ $\bullet$

2.5.4 Coxeter diagrams

A diagram $D$ over the type set $I$ is called a Coxeter diagram if, for every
choice of distinct types $i,$ $j,$ $D_{i,j}$ is the class of generalized $m_{i,j}$-gons, for some
$m_{i,j}=2,3,4,$

$\ldots,$
$\infty$ .

The following connected Coxeter diagrams of rank 3 are said to be of
spherical type.

$(A_{3})$ $arrowarrow\bullet$

$(C_{3})$ $arrow=\bullet$

$(H_{3})$
$arrowarrow^{5}\bullet$

Following Tits [15], we denote by $I_{2}(m)$ the diagram of rank 2 representing
the class of generalized m-gons. We write $A_{2}$ for $I_{2}(3)$ and $C_{2}$ for $I_{2}(4)$ .
We denote the diagram of rank 1 by $A_{1}$ . Thus, according to a convention
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stated in \S 2.5.3, $A_{1}+A_{1}$ is a name for the class $I_{2}(2)$ of generalized digons,
$A_{1}+A_{1}+A_{1}$ is the trivial diagram of rank 3 and $A_{1}+I_{2}(m)$ is the following
disconnected Coxeter diagram

$arrow\bullet(m)$
1

The trivial diagram $A_{1}+A_{1}+A_{1}$ and the diagrams $A_{1}+I_{2}(m)(m<\infty)$ are
the disconnected Coxeter diagrams of rank 3 and spherical type. $A_{1}+I_{2}(\infty)$

is the unique disconnected Coxeter diagram of rank 3 that is not of spehrical
type.

2.6 Orders
A chamber system $C$ admits order $q$ at some type $i$ if all panels of $C$ of type $i$

have size $q+1$ . If $C$ admits the same order $q$ at every type, then we say that
it has uniform order $q$ .

A chamber system $C$ is said to be thin at a type $i$ if it admits order 1 at
$i$ . It is thin if it has uniform order 1.

Similar definitions are stated for geometries.

2.7 Morphisms, Isomorphisms and Automorphisms
2.7.1 Automorphisms and morphisms of chamber systems

As we remarked in \S 2.1.4, a chamber is a coloured graph. An automorphism
of a chamber system $C$ is a colour-preserving automorphism of the coloured
graph $C$ . We denote the automorphism group of $C$ by $Aut(C)$ . We say that
$C$ (a subgroup $G$ of $Aut(C)$ ) is transitive if $Aut(C)$ (resp. $G$) is transitive on
the set of chambers of $C$ .

A morphism (in particular, an isomorphism) of chamber systems over the
same set of types is a colour-preserving morphism (isomorphism) of graphs.

2.7.2 Morphisms and automorphisms of geometries

Given two geometries $\Gamma$ and I” over the same type set $I$ with type functions
$t$ and $t’$ respectively, a morphism from the geometry $\Gamma$ to the geometry $\Gamma’$ is
a morphism of graphs $f$ : $\Gammaarrow\Gamma$ ‘ such that $t’f=t$ (that is, $f$ preserves
types).

Automorphisms of geometries can be defined without mentioning type
functions at all. The type-partition $\Theta$ of a geometry $\Gamma$ is uniquely determined
by $\Gamma$ , as we remarked in \S 2.2.1. Hence every automorphism $f$ of the graph $\Gamma$

induces a permutation $\tau_{f}$ of the classes of $\Theta$ . If $\tau_{f}$ is the identity, then we call
$f$ an automorphism of the geometry F. Otherwise $f$ is called a correlation of
F. We denote the automorphism group of the geometry $\Gamma$ by $Aut(\Gamma)$ .
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Since $\Gamma(C(\Gamma))\cong\Gamma$ (see \S 2.3.2), a natural isomorphism exist between
$Aut(C(\Gamma))$ and $Aut(\Gamma)$ .

2.8 The Functor $C_{I}$

Given a finite nonempty set $I$ , let $G_{I}$ and $CS_{I}$ be the categories of geometries
and chamber systems respectively, over the type set $I$ , with morphisms defined
as in \S 2.7.2.

Given geometries $\Gamma$ and $\Gamma’$ over $I$ , let $f$ : $\Gammaarrow\Gamma$ ‘ be a morphism. Since
$f$ preserves types, it maps chambers of $\Gamma$ onto chambers of $\Gamma’$ and it preserves
i-adjacencies for every $i\in I$ . Therefore it induces a morphism $C(f)$ from $C(\Gamma)$

to $C(\Gamma$
‘

$)$ .
The functor $C_{I}$ : $G_{I}arrow CS_{I}$ sending $\Gamma\in Obj(G_{I})$ to $C(\Gamma)\in Obj(CS_{I})$

and $f\in Hom(G_{I})$ to $C(f)\in Hom(CS_{I})$ is full and faithfull. However, it
is not an equivalence of categories, since the class $C_{I}(Obj(G_{I}))$ of geometric
chamber systems over $I$ is a proper subclass of the class $Obj(CS_{I})$ of chamber
systems over $I$ .

However, $C_{I}$ is an equivalence of categories between $G_{I}$ and the category
$GCS_{I}$ of geometric chamber systems over $I$ .

3 2-COVERS

3.1 Definition
Given two chamber systems $C$ and $C’$ of rank $>2$ over the same set of types
$I$ and a morphism $f$ : $Carrow C’$ , we say that $f$ is a 2-covering if, for every
cell $X$ of $C$ of rank 2, $f(X)$ is a cell of C’ and $f$ induces an isomorphism from
the residue $C_{X}$ of $X$ in $C$ to the residue $C_{j(X)}’$ of $f(X)$ in $C$‘. If there is a
2-covering $f$ : $Carrow C’$ , then we say that $C$ is a 2-cover of C’ and that C’
is a 2-quotient of C. 2-coverings, 2- covers and 2-quotients of geometries are
defined in a similar way.

With the notation of \S 2.8, let $G_{I,2}$ and $CS_{I,2}$ be the subcategories of $G_{I}$

and $CS_{I,2}$ with the same objects as those categories but with 2-coverings as
morphisms. The functor $C_{I}$ induces a full and faithful functor $C_{I,2}$ from $G_{I,2}$

to $CS_{I,2}$ . If $GCS_{I,2}$ is the category induced by $CS_{I,2}$ on the class $Obj(GCS_{I})$

of geometric chamber systems over $I$ , then $C_{I,2}$ is an equivalence between the
categories $G_{I,2}$ and $GCS_{I,2}$ .
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3.2 Universal 2-Covers
3.2.1 Universal 2-covers of chamber systems

Given a chamber system $C$ of rank $>2$ over a set of types $I$ and a chamber
system $\tilde{C}$ over $I$ , we say that $\overline{C}$ is the universal 2-cover of $C$ if there is a
2-covering $f$ : $\tilde{C}arrow C$ such that, for every 2-covering $g$ : $C’arrow C$ , there is
just one 2-covering $h$ : $\tilde{C}arrow C’$ with $hf=g$ . A 2-covering $f$ : $\overline{C}arrow C$ as
above is said to be universal.

Theorem 3.1 (Ronan [12]) Every chamber system of rank $n>2$ admits a
universal 2-cover.

It is clear that the universal 2-cover of a chamber system is uniquely
determined up to isomorphisms. A chamber system of rank $>2$ is said to be
2-simply connected if it is its own universal 2-cover. It easily follows from the
definition of universal 2-covers that the universal 2-cover of a chamber system
is 2-simply connected. That is, a chamber system of rank $>2$ is 2-simply
connected if and only if it is the universal 2-cover of some chamber system.

3.2.2 Universal 2-covers and classification problems

Determining universal 2-covers is a crucial step in many classification prob-
lems. Aiming to a classification for some family $C$ of chamber systems, we
might organize our work in two stages:

(1) describe the universal 2-covers of the members of $C$ ;
(2) investigate quotients of the objects determined at the previ$0$us stage.
For instance, the following celebrated theorem of Tits is the first step in

stage (1) when $C$ is a class of chamber systems with Coxeter diagrams.

Theorem 3.2 (Tits [15]) $LetC$ be a chamber system belonging to a Coxeter
diagram $D$ over a set of types I and assume that, for every subset $J$ of I of
size 3 such that the diagram $D_{J}$ induced by $D$ on $J$ is spherical, every residue
of $C$ of type $J$ is 2-covered by a building. Then the universal 2-cover of $C$ is
a building.

The reader can see chapter 22 of [1] (sections 2 and 3) for a survey of
classification theorems exploiting the above result. I am not going to insist
on this matter here.

3.2.3 Universal 2-cover of geometries

Universal 2-covers and 2-simple connectedness can be defined for geometries
in the same way as for chambers systems. On the other hand, no analogue of
Theorem 3.1 is known for geometries. We can only obtain the following from
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that theorem. Let $\tilde{C}$ be the universal 2-cover of the chamber system $C(\Gamma)$ of
a geometry $\Gamma$ . If $\tilde{C}$ is geometric, then the universal 2-cover of $\Gamma$ exists: the
geometry $\Gamma(\tilde{C})$ of $\tilde{C}$ is indeed the universal 2-cover of $\Gamma$ .

However, the above does not tell us that every geometry of rank $>2$

admits a universal 2-cover. Proving that every geometry admits a universal
2-cover is almost the same as proving the following

Conjecture 1 The universal 2-cover of any geometric chamber system is
geometric.

No proof has yet been found for Conjecture 1. On the other hand, no
counterexample is known to it. Furthermore, some partial results have been
achieved, proving that Conjecture 1 holds true in many important cases. For
instance, buildings are geometric chamber systems. Therefore the universal
2-cover of a chamber system as in Theorem 3.2 is geometric. Namely, every
geometry satifying the hypotheses of Theorem 3.2 admits a universal 2-cover.

The following propositions are special cases of a theorem on $(n-1)$-covers
stated in in [10] (Theorem 12.39).

Proposition 3.3 The universal 2-covers of any geometric chamber system
of rank 3 is geometric.

Proposition 3.4 Let $C$ be a geometric chamber system of rank $n\geq 4$ . If all
residues of $C$ of rank $n-1$ are 2-simply connected, then the universal 2-cover
of $C$ is geometric.

More results on universal 2-covers of geometric chamber systems will be
given in \S 4.3.

Remark. Conjecture 1 is slightly stronger than the conjecture that every
geometry admits a universal 2-cover. Indeed, even if every geometric chamber
system which is universal in the category $CS_{I,2}$ is universal in $GCS_{I,2}$ too,
it still might happen that some object of $GCS_{I,2}$ is universal in $GCS_{I,2}$

without being universal in $CS_{I,2}$ . That is, there might be 2-simply connected
geometries whose chamber systems are not 2-simply connected. Actually, I
do not believe this can happen. However, I do not know how to prove that it
is impossible.

3.2.4 Non-geometric 2-simply connected chamber systems

There are 2-simply connected chamber systems that are not geometric. An
example of this kind is given in [9], with trivial diagram of rank 3. It is finite,
but not transitive. It is likely that many other finite examples like this exist
(see \S 5.4 of this paper). I do not know if any of them might admit a transitive
automorphism group.
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Further examples, with diagram $A_{1}+I_{2}(m)$ , are mentioned by Tits in [15]
(\S 6.1.5(b)). They are neither finite nor transitive.

The Wester chamber system ([17], [6]; also [8], 4.6) is a non-geometric
2-simply connected chamber system of rank 4, with affine diagram $\tilde{B}_{3}$ . It is
finite and transitive. A few examples of higher rank 5 and 6 containing the
Wester chamber system as a residue are described in [17] (see also [6]).

4 REDUCIBILITY

4.1 Truncations and Direct Products
4.1.1 Truncations of geometries

Given a geometry $\Gamma$ over a set of types $I$ and a proper nonempty subset $J$ of
$I$ , the truncation of $\Gamma$ over $J$ (J-truncation of $\Gamma$ , for short) is the geometry
$tr_{J}(\Gamma)$ over the set of types $J$ induced by I’ on the set of elements of $\Gamma$ of type
$j\in J$ .

If $C=(C, (\Phi_{i})_{i\in I})$ is the chamber system of $\Gamma$ , then the chamber system
of $tr_{J}(\Gamma)$ can be recovered in $C$ as follows: the quotient $C/\Phi_{I-J}$ corresponds
to the set of chambers of $tr_{J}(C)$ and, for every $j\in J,$ $\Phi_{(I-J)\cup\{j\}}/\Phi_{I-J}$ is the
j-adjacency relation.

4.1.2 Truncations of chamber systems

The above construction can be done for any chamber system $C=(C, (\Phi_{i})_{i\in I})$ .
It gives us a chamber system provided that both the following hold:

(T1) $\Phi_{(I-J)\cup\{j\}}\cap\Phi_{(I-J)\cup\{k\}}=\Phi_{I-J}$ for any two distinct types $j,$ $k\in J$ ;
(T2) all classes of $\Phi_{(I-J)\cup\{j\}}/\Phi_{I-J}$ have size $\geq 2$ , for all $j\in J$ .

(Needless to say, both (T1) and (T2) hold if $C$ is geometric.) If (T1)
and (T2) hold, then the chamber system $(C/\Phi_{I-J}, (\Phi_{(I-J)\cup\{j\}}/\Phi_{I-J})_{j\in J})$ will
be called the truncation of $C$ over $J$ (also J-truncation of $C$ , for short). We
denote it by $tr_{J}(C)$ .

4.1.3 Direct sums of geometries

Given two finite nonempty disjoint sets $J$ and $K$ , let $\Gamma_{1}$ and $\Gamma_{2}$ be two ge-
ometries over the sets of types $J$ and $K$ respectively, with no elements in
common, the direct sum of $\Gamma_{1}$ and $\Gamma_{2}$ is the graph $\Gamma=\Gamma_{1}\oplus\Gamma_{2}$ obtained by
taking $\Gamma_{1}$ and $\Gamma_{2}$ together and joining every vertex of $\Gamma_{1}$ with every vertex of
$\Gamma_{2}$ by a new edge. $\Gamma$ is in fact a geometry over the set of types $I=J\cup K$ .
We have $\Gamma_{1}\cong tr_{J}(\Gamma)$ and $\Gamma_{2}\cong tr_{K}(\Gamma)$ and, for every flag $F$ of $\Gamma$ of type $K$

(of type $J$ ), $\Gamma_{1}$ (resp., $\Gamma_{2}$ ) is isomorphic to $\Gamma_{F}$ .
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Let $C,$ $C_{1},$ $C_{2}$ be the chamber systems of $\Gamma,$ $\Gamma_{1}$ and $\Gamma_{2}$ respectively. Then
$C_{1}$ and $C_{2}$ are the truncations of $C$ over $J$ and $K$ respectively and we have:

(R1) $\Phi_{j}\Phi_{k}=\Phi_{k}\Phi_{j}$ for $al1j\in J$ and $k\in K$ ;
(R2) $\Phi_{J}\cap\Phi_{K}=\iota J$ .

(Note that (R1) just says that all residues of type $\{j, k\}$ with $j\in J$ and
$k\in K$ are generalized digons.) Therefore, the set $C$ of chambers of $C$ can be
identified with the direct product of the sets of chambers of $C_{1}$ and $C_{2}$ , repre-
senting $x\in C$ as $([x]\Phi_{K}, [x]\Phi_{J})$ . For every $j\in J$ , the j-adjacency relation $\Phi_{j}$

of $C$ corresponds to the pair of equivalence relations $((\Phi_{K\cup\{j\}})/\Phi_{K}, U_{2})$ , where
$U_{2}$ is the identity relation on the set of chambers of $C_{2}$ . The k-adjacency
relations with $k\in K$ can be represented in a similar way. The fact that
$tr_{J}(\Gamma)\cong\Gamma_{F}$ for every flag $F$ of $\Gamma$ of type $K$ can now be rephrased as follows:
we have $tr_{J}(C)\cong C_{X}$ , for every cell $X$ of $C$ of type $J$ .

4.1.4 Direct products of chamber systems

The above suggest the following definition. Let $C_{1}=(C_{1}, (\Psi_{j})_{j\in J})$ and $C_{2}=$

$(C_{2}, (\Psi_{k})_{k\in K})$ be any two chamber systems over mutually disjoint sets of types
$J$ and $K$ . We define the direct product $C=C_{1}\cross C_{2}$ of $C_{1}$ and $C_{2}$ by taking
$I=J\cup K$ as set of types, $C=C_{1}\cross C_{2}$ as set of chambers and the pairs
$(\Psi_{j}, lJ_{2}),$ $(U_{1}, \Psi_{k})$ as adjacency relations ($j\in J,$ $k\in K$ and $Z$ : is the identity
relation on $C_{t},$ $i=1,2$).

Trivially, (R1) and (R2) of \S 4.1.3 hold in $C$ for the partition $\{J, K\}$ of $I$ .
Conditions (T1) and (T2) of \S 4.1.2 also hold, $tr_{J}(C)\cong C_{1}\cong C_{X}$ for every cell
$X$ of $C$ of type $J$ and $tr_{K}(C)\cong C_{2}\cong C_{Y}$ for every cell $Y$ of $C$ of type $K$ .

$C_{1}\cross C_{2}$ is geometric if and only if both $C_{1}$ and $C_{2}$ are geometric. If this is
the case, then $\Gamma(C_{1}\cross C_{2})=\Gamma(C_{1})\oplus\Gamma(C_{2})$ .

Conversely, let $C$ be a chamber system over a set of types $I$ and let $\{J, K\}$

be a partition of $I$ in two disjoint nonempty subsets. Assume that (R1) and
(R2) hold in $C$ for the partition $\{J, K\}$ . Then (T1) and (T2) also hold ([10],
12.5.2). Thus we can consider the truncations of $C$ over $J$ and $K$ . By (R1)
and (R2), we have $C\cong tr_{J}(C)\cross tr_{K}\{C)$ .

Needless to say, the above can be generalized to define products of any
finite number of chamber systems.

Remark. It is not difficult to find a category in which direct products of
chamber systems are precisely product objects. On the other hand, I do not
know of any sensible category where direct sums of geometries are coproduct
or product objects.
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4.2 Reducibility
4.2.1 Definition

A chamber system (a geometry) is said to be reducible if it splits as the direct
product (the direct sum) of some of its truncations. Otherwise, it is called
irreducible.

Clearly, every reducible chamber system $C$ (geometry T) splits as the direct
product (sum) of a finite number of irreducible chamber systems (geometries)
and that splitting is unique modulo permutations of the factors (summands).
The factors (summands) of that splitting are called the irreducible components
of $C$ (of $\Gamma$ ). If $C$ (resp. $\Gamma$ ) is irreducible, then we say that it is its own unique
irreducible component.

4.2.2 The Direct Sum Theorem for geometries

The structure of a reducible chamber system is completely determined by its
irreducible components. Thus, in many contexts we can safely restrict our
interest to irreducible cases. In the geometric case, the irreducible components
are easily recognized from the diagram, as stated by the following well known
theorem.

Theorem 4.1 (Direct Sum Theorem) Given a diagram $D$ , let $\Gamma$ be a ge-
ometry belonging to D. Then the irreducible components of $\Gamma$ are the trunca-
tions of $\Gamma$ over the connected components of D.

The reader can find an easy proof of this theorem in [10] (chapter 4, \S 4.2).

4.2.3 Completely reducible chamber systems

Unfortunately, the statement of the Direct Sum Theorem fails to hold for non-
geometric chamber systems. Many counterexamples are given in [8], Section
4 (also [9]). Many of them are finite and transitive.

The reason of that failure is soon explained. (R1) is the only information
we can get from the disconnectedness of a diagram, but (R1) is not sufficient
to obtain splittings in direct products. We also need (R2) for that. However,
(R2) does not hold in non-geometric chamber systems, in general. Thus, a
chamber system $C$ is certainly irreducible if it belongs to a connected diagram,
but the converse is not true in general.

We say that a chamber sytem $C$ with disconnected diagram graph $D$ is
completely reducible if $C$ admits truncations over every connected component
of $D$ and these truncations are the irreducible components of $C$ .

Clearly, if $D$ has just two connected components, then reducibility and
complete reducibility are the same property. Also, a chamber system of rank
3 with a trivial diagram is completely reducible if and only if it is reducible.
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4.3 Covers of Direct Products
Let $C$ be a chamber system of rank $n\geq 3$ with type set $I$ , let $\{I_{1}, I_{2}, \ldots, I_{m}\}$

be a partition of $I$ such that $C$ admits truncation over each of $I_{1},$ $I_{2},\ldots,$ $I_{m}$

and let $C=\Pi_{1=1}^{m}C_{*}$ , where $C$; is the $I$;-truncation of $C$ , for $i=1,2,$ $\ldots,$
$m$ .

If $|I:|\geq 3$ , then $\tilde{C_{1}}$ will denote the universal 2-cover of $C_{1}$ . Otherwise, we set
$\tilde{C}_{1}=C_{*}$ . Let $\tilde{C}$ be the universal 2-cover of $C$ . Then the following holds ([10],
12.5.2):

Theorem 4.2 $\tilde{C}=\prod_{i=1}^{m}\tilde{C_{i}}$ .

The next corollaries easily follow from this theorem:

Corollary 4.3 Assume that, for every $i=1,2,$ $\ldots,$
$m_{f}$ either $C_{i}$ is 2-simply

connected or it has $rank\leq 2$ , Then $C$ is 2-simply connected.

Corollary 4.4 If all truncations $C_{1},$ $C_{2},\ldots,$ $C_{m}$ have $rank\leq 2$ , then $C$ is
2-simply connected.

A direct product of geometric chamber systems is geometric. Hence by
Theorem 4.2 we also get the following

Corollary 4.5 Assume that for all $i=1,2,$ $\ldots,$
$m$ the chamber system $\tilde{C_{1}}$ is

$geomet_{i}\cdot ic$ . Then $\tilde{C}$ is gecmetric.

Assume furthermore that $C$ is geometric and that $I_{1},$ $I_{2},\ldots,$ $I_{m}$ are the
connected components of a diagram $D$ for $C$ . Then $C=\Pi_{i=1}^{m}C_{*}$ by the
Direct Sum Theorem and $\tilde{C}=\Pi_{i=1}^{m}\tilde{C}_{l}$ by Theorem 4.2. By Proposition 3.3
and Corollary 4.5 and recalling that direct products of geometric chamber
systems are geometric, we get the following

Corollary 4.6 Assume the above and assume furthermore that $|I_{i}|\leq 3$ for
every $i=1,2,$ $\ldots,$

$m$ , Then $\tilde{C}$ is geometric.

4.4 The Reducibility Problem
Let’s turn back to Theorem 3.2. Given a chanber system $C$ belonging to a
Coxeter diagram $D$ of rank $\geq 3$ , assume we want to know if $C$ can be obtained
as a 2-quotient of a building. According to Theorem 3.2 we should check if all
rank 3 residues of $C$ belonging to subdiagrams of spherical type are 2-quotients
of buildings. In particular, we should check this for disconnected subdiagrams.
Buildings are geometries. Hence, by the Direct Sum Theorem, a chamber
system belonging to a disconnected Coxeter diagram with all components of
rank $\leq 2$ is a building if and only if it is completely reducible. Thus, $C$ is 2-
covered by a building only if, for every triple of types $J$ such that $D$ induces a
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disconnected diagram on $J,$ $\mathfrak{N}$ residues of $C$ of type $J$ have reducible universal
2-covers.

However, irreducible chamber systems exist that belong to disconnected
Coxeter diagrams of rank 3 (see [8], Section 4) and some of them are even 2-
simply connected (see [9], for instance). It would be nice to get some contr$o1$

over this situation proving that pathological examples as those mentioned
above are really exceptional; for instance, answering the following question in
the negative:

Problem 1 Is there any transitive 2-simply connected irreducible chamber
system of rank 3 with disconnected Coxeter diagram ?

In particular

Problem 2 Is there any transitive 2-simply connected irreducible chamber
system of rank 3 with trivial diagram ?

Some partial results obtained in [8] (\S 5.1) seem to suggest that, if examples
of that kind existed, they should have trivial diagrams. However, we are still
from a solution of the above problems.

5 CELL-GEOMETRIE$S$

5.1 Definition and Basic Properties
5.1.1 Cell-geometries and panel-spaces

Let $C$ be a chamber system of rank $n>1$ over the type set $I$ . We can
construct a geometry of rank $n$ over the set of types $\{0,1,2, \ldots, n-1\}$ by
taking as elements of type $i$ the cells of $C$ of rank $i$ , and defining the incidence
relation as follows: given two cells $X,$ $Y$ of type $J$ and $K$ respectively, we
declare $X$ and $Y$ to be incident if either $X\subseteq Y$ and $J\subseteq K$ or $Y\subseteq X$ and
$K\subseteq J$ . It is easy to check that this is indeed a geometry. We call it the
cell-geometry of $C$ , denoting it by $Gr_{I}(C)$ .

The semilinear space $II_{C}$ considered in \S 2.1.5 is the $\{0,1\}$-truncation of
$Gr_{I}(C)$ . We call it the panel-space of $C$ . As we remarked in \S 2.1.5, the panel-
space of $C$ uniquely determines $C$ . Hence $Gr_{I}(C)$ uniquely determines $C$ .

Note that, if $C$ is geometric, then $Gr_{I}(C)$ is just the geometry of flags of
$\Gamma=\Gamma(C)$ , called the I-Grassmann geometry of $\Gamma$ and denoted by $Gr_{I}(\Gamma)$ in
[10]. The notation $Gr_{I}(C)$ is motivated by that.

The residues of $Gr_{I}(C)$ of type $\{0,1\}$ are the panel-spaces of the rank 2
residues of $C$ . They are linear spaces with even gonality (\S 2.4). Needless to
say, the panel-space and the cell-geometry of a chamber system of rank 2 are
the same thing.
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Remark. Scharlau [14] has developed a general theory of “shadow ge-
ometries” of chamber systems (I should call them “ Grassmann geometries”,
to be consistent with [10], Chapter 5). Cell-geometries as defined above are
in fact examples of shadow geometries as in [14].

5.1.2 Diagram and orders of a cell-geometry

It is not difficult to prove that $Gr_{I}(C)$ belongs to the following diagram, where
the label X on the first stroke of the diagram denotes a class of semilinear
spaces with even gonality containing the panel-spaces of the rank 2 residues
of $C$

$0$ X I 2 $n-2$ $n-1$
$(X.A_{n-1})$

$arrowarrowarrow 11^{\cdot}$
....

$arrow\bullet 11$

The integers $0,1,\ldots,$ $n-1$ above the nodes of the diagram are the types. The
number 1 below them is an order. That is, $Gr_{I}(C)$ is thin at all types $i>0$ .

For instance, if $C$ belongs to a Coxeter diagram with all edges labelled by
$m$ , then $Gr_{I}(C)$ belongs to the following Coxeter diagram:

$2m$

$(I_{2}(2m).A_{n-1})$
$arrowarrowarrow 11^{\cdot}$

....
$arrow\bullet 11$

In particular, if the diagram of $C$ is trivial, then $Gr_{I}(C)$ is the dual of a thin-
lined $C_{n}$-geometry

$(C_{n})$
$=arrowarrow 11^{\cdot}$

....
$arrow\bullet 11$

5.1.3 Interlude: parallelisms in geometries

Let $\Gamma$ be a geometry of rank $\geq 2$ and let $0$ be one of the types of T. According
to [2], a O-parallelism of $\Gamma$ is an equivalence relation Il on the set of elements
of $\Gamma$ of type $\neq 0$ such that

(1) if $x$ Il $y$ , then $x$ and $y$ have the same type;
(2) given any two elements $a,$

$b$ of $\Gamma$ of type $0$ and elements $x,$ $y\in\Gamma_{a}$ and
$u,$ $v\in\Gamma_{b}$ , if $x$ II $u,$ $y$ II $v$ and $x$ is incident to $y$ , then $u$ is incident to $v$ ;

(3) for every element $a$ of type $0$ and every element $x$ not of type $0$ , there
is just one element $y$ of $\Gamma_{a}$ such that $y$ II $x$ .

Let $\Gamma$ admit a O-parallelism. It easily follows from (1)$-(3)$ that the residues
of the elements of $\Gamma$ of type $0$ are mutually isomorphic. Any geometry iso-
morphic to them can be taken as the geometry at infinity of $\Gamma$ (line at infinity
of $\Gamma$ when $\Gamma$ has rank 2).
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5.1.4 A parallelism in $Gr_{I}(C)$

Let now $\Gamma=Gr_{I}(C)$ for some chamber system $C$ of rank $n\geq 2$ over the
type set $I$ . It is straightforward to check that the relation “having the same
type” between cells of $C$ is a O-parallelism of $Gr_{I}(C)$ . Let us denote it by $||_{C}$ .
As geometry at infinity we take the geometry $\mathcal{P}(I)$ of the proper nonempty
subsets of $I$ .

The O-parallelism $||_{C}$ of $Gr_{I}(C)$ induces on the panel-space $\coprod_{C}$ the paral-
lelism considered in \S 2.1.5. If we take $I$ as the line at infinity of $\coprod_{C}$ , then
$Gr_{I}(C)$ is just the parallel expansion of $\mathcal{P}(I)$ in $II_{C}$ , in the meaning of [2].

5.2 A Characterization of Cell-Geometries
5.2.1 Some terminology

Let $\Gamma$ be a geometry of rank $n>1$ belonging to the diagram $X.A_{n-1}$ of \S 5.1.2.
The elements of I’ of type $n-1,$ $n-2$ and $n-3$ (if $n\geq 3$ ) will be called
points, lines and planes respectively, as if we wer.$e$ reading the diagram from
right to left. We say that two points of $\Gamma$ are collinear if they are incident to
the same line. If $n\geq 3$ , then we say that three points are coplanar if they are
incident to the same plane.

The collinearity graph $\mathcal{G}(\Gamma)$ of $\Gamma$ is the graph having the points of $\Gamma$ as
vertices and the collinearity relation as the adjacency relation. Note that, if
$\Gamma$ is the cell-geometry of a chamber system $C$ , then its collinearity graph is
just the incidence graph $\Gamma(C)$ of $C$ .

If every line of $\Gamma$ is incident to precisely two points (that is, $\Gamma$ is thin at
the type $n-1$ ), then we say that $\Gamma$ is thin-lined. The diagram $X.A_{n-1}$ is such
that, if $\Gamma$ is thin-hned, then it is thin at all nodes types except possibly $0$ .

5.2.2 The characterization theorem

Let $C$ be a chamber system of rank $n$ over a set of types $I$ . The O-parallelism
$||_{C}$ of $Gr_{I}(C)$ (see \S 5.1.4) induces an n-partition on the collinearity graph
of $Gr_{I}(C)$ , which is in fact the type-partition of the geometry $\Gamma(C)$ . This
property characterizes cell-geometries of chamber systems.

Theorem 5.1 Let $\Gamma$ be a geometry of rank $n\geq 2$ belonging to the diagram
$X.A_{n-1}$ of \S 5.1.2, where X denotes a class of semilinear spaces with even
gonality. Then the following are equivalent:

(i) $\Gamma$ is the cell-geometry of a chamber system;
(ii) the collinearity graph of $\Gamma$ is n-partite and $\Gamma$ is thn-lined.

This theorem is proved in [9] (Theorem 4.1). The proof is quite easy. We
can explain it in a few words. Let $\Gamma$ be thin-lined. Then an n-partition
of $\mathcal{G}(\Gamma)$ uniquely determines a O-parallelism 11 on $\Gamma$ . The $\{0,1\}$-truncation
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of $\Gamma$ endowed with the parallelism inherited from I satifies $(C’ 1)-(C’ 2)$ of
\S 2.1.5. Hence it uniquely determines a chamber system $C$ and $\Gamma$ is just the
cell-geometry of $C$ .

5.3 Universal Covers of Cell-Geometries

Using Theorem 5.1 and some results on Grassmann geometries from [7], the
following can be proved (see [9], Corollary 4.2).

Lemma 5.2 Let $\Gamma$ be as in Theorem 5.1, with X denoting a class of panel-
spaces of chamber systems of rank 2. Assume furthermore that $\Gamma$ has rank
$n>2$ and that it is 2-simply connected. Then $\Gamma$ is the cell-geometry of a
2-simply connected chamber system.

The next theorem is a straightforward consequence of this lemma.

Theorem 5.3 Given a chamber system $C$ of rank $n>2$ with type set $I$ , let $\overline{C}$

be the universal 2-cover of C. Then $Gr_{I}(\tilde{C})$ is the universal 2-cover of $Gr_{I}(C)$ .

5.4 Cell-Geometries of Geometric Chamber Systems
5.4.1 The properties (LL), (IP), (TP) and (CP)

Let $\Gamma$ belong to the diagram $X.A_{n-1}$ of \S 5.1.2, with $n\geq 3$ . According to
\S 5.2.1, the elements of type $n-1,$ $n-2,$ $n-3$ of $\Gamma$ are called points, lines
and planes respectively. We say that $\Gamma$ has a good system of lines if its
$\{n-2, n-1\}$-truncation is a semilinear space. This is the property usually
called (LL) in the literature.

We say that (LL) residually holds in $\Gamma$ if $\Gamma_{F}$ has a good system of lines for
every flag $F$ of $\Gamma$ of type $\{m, m+1, \ldots, n-1\}$ , for every $m=3,4,$ $\ldots,$

$n$ (with
the convention that $F=\emptyset$ if $m=n$ ; note that $\Gamma_{\emptyset}=\Gamma$).

By a theorem of [10] (Theorem 7.25), (LL) residually holds in $\Gamma$ if and
only if $\Gamma$ satisfies the Intersection Property (IP) (the reader is referred to
Chapter 6 of [10] for the statement and an analysis of this property).

We say that $\Gamma$ satisfies the Triangular Property (TP) if any three $m_{u}^{11}tually$

collinear points of $\Gamma$ are coplanar in F. If for any set of pairwise collinear
points of $\Gamma$ there is an element of $\Gamma$ incident to all of them, then we say that
$\Gamma$ satisfies the Clique Property (CP).

Assume that the Intersection Property (IP) holds in $\Gamma$ (that is, (LL) resid-
ually holds in F). It is not difficult to prove that $\Gamma$ satisfies the Clique Property
(CP) if and only if the Triangular Property (TP) residually holds in $\Gamma$ , that
is (TP) holds in $\Gamma_{F}$ for every flag $F$ of $\Gamma$ of type $\{m, m+1, \ldots, n-1\}$ , for
every $m=3,4,$ $\ldots,$

$n$ (with the convention that $F=\emptyset$ if $m=n$).
Note that, if (IP) holds in $\Gamma$ and $\Gamma$ is thin-lined, then (CP) says that the

elements of $\Gamma$ of type $i>0$ are just the i-cliques of the collinearity graph of
$\Gamma$ .
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5.4.2 A characterization of geometric chamber systems

We can now characterize geometric chamber systems by properties of their
cell geometries.

Theorem 5.4 Let $C$ be a chamber system of rank $n\geq 3$ . Then $C$ is geometric
if and only if both $(LL)$ and $(TP)$ residually hold in its cell-geometry.

Sketch of the Proof. Property (LL) residually holds in $Gr_{I}(C)$ if and only
if (G1) of \S 2.3 holds in $C$ . The Clique Property (CP) holds in $Gr_{I}(C)$ if and
only if (G2) holds in $C$ . Moreover, (LL) residually holds in $Gr_{I}(C)$ if and
only if $Gr_{I}(C)$ satisfies (IP). On the other hand, if (IP) holds in $Gr_{I}(C)$ , then
$Gr_{I}(C)$ satisfies (CP) if and only if (TP) residually holds in it. Hence $C$ is
geometric if and only of both (LL) and (TP) residualy hold in $Gr_{I}(C)$ . $\square$

Corollary 5.5 A chamber system of rank 3 is geometric if and only if both
$(LL)$ and $(TP)$ hold in its cell-geometry.

(This is just a special case of the previous theorem.)

5.5 Back to Conjecture 1
By theorems 5.4 and 5.5, proving Conjecture 1 of \S 3.2.3 is the same as proving
the following.

Conjecture 2 Let $\Gamma$ be as in Theorem 5.1 with $n>2$ and let $\tilde{\Gamma}$ be a 2-cover
of $\Gamma$ . Assume that both $(LL)$ and $(TP)$ residually hold in T. Then the same
is true in $\tilde{\Gamma}$

,

A proof of this conjecture is fairly easy in the rank 3 case. Thus we obtain
a“geometric” proof of Proposition 3.3. Actually, this also shows that any
2-cover of a geometric chamber system of rank 3 is geometric (compare [10],
Lemma 12.37). Conjecture 2 can also be proved in the following case, which
includes the rank 3 case: a 2-covering $f$ : $\tilde{\Gamma}arrow\Gamma$ is given such that, for every
point $p$ of $\tilde{\Gamma}$ , an isomorphism from $\tilde{\Gamma}_{p}$ to $\Gamma_{f(p)}$ is induced by $f$ . Thus, we get
Proposition 3.4.

5.6 Some Special Cases
Henceforth $\Gamma$ is a thin-lined geometry belonging to the diagram $I_{2}(2m).A_{n-1}$

of \S 5.1.2, with $n\geq 3$ .
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5.6.1 The case where $m\geq 3$

Exploiting some results on Grassmann geometries from [7] and Theorem 5.1,
the following has been proved in [9] (Corollary 4.3).

Proposition 5.6 Let $\Gamma$ be as above, with $m\geq 3$ , Assume furthermore that
$\Gamma$ is 2-simply connected. Then $\Gamma$ is the cell-geometry of a building belonging
to a Coxeter diagram of rank $n$ with all strokes labelled by $m$ .

5.6.2 Thin-lined $C_{n}$-geometries

When $m=2,$ $I_{2}(2m).A_{n-1}$ is the spherical diagram $C_{n}$ (see \S 5.1.2) and $\Gamma$

is called a (thin-lined) $C_{n}$-geometry. By generalizing an argument used by
S. Rees in [11] for thin-lined $C_{3}$-geometries, it is possible to prove that the
collinearity graph of a thin-lined $C_{n}$ geometry is n-partite ([9], Lemma 5.1).
Hence, by Theorem 5.1 we get the following:

Theorem 5.7 Every thin-lined $C_{n}$ geometry is the cell-geometry of a cham-
ber system with trivial diagram.

Therefore, and since the cell-geometry of a chamber system of rank $n$ with
trivial diagram is a thin-lined $C_{n}$-geometry, there is an obvious equivalence
between the category of thin-lined $C_{n}$-geometries and the category of chamber
systems of rank $n$ with trivial diagram, with 2-coverings as morhisms in both
of these categories.

By Theorem 5.6, a chamber system $C$ of rank $n$ with trivial diagram is
geometric if and anly if both (LL) and (TP) residually hold in the correspond-
ing thin-lined $C_{n}$-geometry. Trivally, a chamber system with trivial diagram
is geometric if and only if it is completely reducible. On the other hand, a
$C_{n}$-geometry is a polar space if an only if it satisfies (LL) residually ([10],
Chapter 7, 7.4). Furthermore (TP) residually holds in every polar space
([10], Lemma 7.36). Therefore, finding a non completely reducible but 2-
simply connected chamber system with trivial diagram is the same as finding
a 2-simply connected thin-lined $C_{n}$-geometry that is not a polar space.

Actually, there is at least one thin-lined $C_{3}$ geometry with these properties,
as it is shown in [9]. Hence there is at least one chamber systems with trivial
diagram that is 2-simply connected but not completely reducible. However,
the automorphism group of that $C_{3}$-geometry is not transitive on the set of
planes of the geometry. Namely, the corresponding chamber system is not
transitive.

We can rephrase Problem 2 of \S 4.4 as follows:

Problem 3 Let $\Gamma$ be a 2-simply connected thin-lined $C_{3}$ -geometry. Is it pos-
sible that $Aut(\Gamma)$ is transitive on the set of planes of $\Gamma$ without $\Gamma$ being a polar
space ?
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By a result of S. Rees [11], this is in fact a problem on certain systems of
latin squares.

6 COVERS AND AMALGAMS

6.1 Parabolic Systems

6.1.1 From chamber systems to parabolic systems

Given a transitive chamber system $C=(C, (\Phi_{i})_{\in I})$ , let $G$ be a transitive
subgroup of $Aut(C)$ . Given a chamber $c\in C$ , let $B$ be the stabilizer of $c$ in
$G$ and, for every $i\in I$ , let $P_{i}$ be the stabilizer in $G$ of the panel $[c]\Phi_{i}$ . The
following hold:

(P1) $G=\{P_{*}\}_{i\in I}$ ;
(P2) $P_{i}\cap P_{j}=B$ for any two distinct types $i,j\in I$ ;
(P3) $B\neq P_{i}$ for $aUi\in I$ ;
(P4) $\bigcap_{g\in G}B^{g}=1$ .

Property (P1) follows from (C1) of \S 2.1.2 and from the transitivity of
$G$. Properties (P2) and (P3) respectively correspond to (C2) and (C3) of
\S 2.1.2. Property (P4) holds because $G$, being an automorphism group of $C$ ,
acts faithfully on the set of chambers of $C$ .

We denote the family $(P_{i})_{i\in I}$ by $P_{c}(G, C)$ and we call it the parabolic
system defined by $C$ in $G$ at $c$ . Note that, if $d$ is another chamber of $C$ , then
$\mathcal{P}_{d}(G, C)$ and $P_{c}(G, \mathcal{G})$ are conjugated in $G$ . Thus, as far as we are interested
in $\mathcal{P}_{c}(G, C)$ modulo conjugation, we can write $\mathcal{P}(G, C)$ for $\mathcal{P}_{c}(G, \mathcal{G})$ , dropping
the subscript $c$ .

Let us state some more notation, to be used later. Given $J\subseteq I$ , we set
$P_{J}=\{P_{j})_{j\in J}$ for short, with the convention that $P_{\emptyset}=B$ . Thus, $P_{J}$ is the
stabilizer in $G$ of the cell $[c]\Phi_{J}$ . In particular, $P_{I}=G$ (see (P1)). We also
write $P_{i,j}$ for $P_{\{i,j\}}$ .

Remark. The expression”parabolic system” is currently used in a rather
more restrictive meaning in the literature, assuming that $C$ belongs to a Cox-
eter diagram $D$ and that, for any two types $i,j$ joined in $D$ , the residues of
$C$ of type $\{i, j\}$ are classical finite thick generalized polygons and $P_{i,j}$ acts
on the cells it stabilizes as a Lie type group appropriate to that cell, with a
few exceptions. Somebody uses the expression “amalgam” to mean what I
have called a parabolic system. I find this a bit misleading: it reminds me
of amalgamated products, which are related with the simply connected case
(see \S 6.2). All considering, I prefer to give the expression “ parabolic system”
the broad meaning I have stated above. After all, the subgroups $P_{J}$ of $G$ are
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usually called parabolic subgroups of $G$ in the literature, thus...

6.1.2 From parabolic systems to chamber systems

Conversely, let $B$ and $\mathcal{P}=(P_{i})_{i\in I}$ be a subgroup of a group $G$ and a fi-
nite family of subgroups of $G$ satisfying properties $(P1)-(P4)$ of the previous
paragraph. We call $\mathcal{P}$ a parabolic system in $G$ , of rank $n=|I|$ .

We can construct a chamber system $C(\mathcal{P})$ as follows. Take the right cosets
in $G$ of $B$ as chambers and for every $i\in I$ define the i-adjacency relation $\Phi_{i}$

by declaring that $fB$ and $gB$ are i-adjacent when $g^{-1}f\in P_{i}$ , for $f,$ $g\in G$ .
The group $G$ , acting on the right cosets of $B$ by left multiplication, is a

transitive subgroup of $Aut(C(P))$ and we have $\mathcal{P}(G, C(\mathcal{P}))=\mathcal{P}$ .
On the other hand, ifC isatransitive chamber system andGisatransitive

subgroup of $Aut(C)$ , then $C(\mathcal{P}(G, C))\cong C$ .
Thus, transitive chamber systems and parabolic systems are basically the

same things. Properties (G1) and (G2) of \S 2.3, (T1) and (T2) of \S 4.1.2
and (R1) and (R2) of \S 4.1.3 can easily be translated into the language of
parabolic systems: just substitute the letter $P$ for the letter $\Phi$ everywhere in
those properties.

6.2 Universal Covers and Amalgamated Products
Let $\mathcal{P}=(P_{i})_{i\in I}$ be a parabolic system in a group $G$ and let $\tilde{G}$ be the amal-
gamated product of the subgroups $P_{i,j}(i,j\in I, i\neq j)$ , with amalgamation
over the subgroups $P_{i}(i\in I)$ .

For every $i\in I$ , the subgroup $P_{1}$ of $G$ lifts to a subgroup $\tilde{P}_{i}$ of $\tilde{G}$ and
$\tilde{\mathcal{P}}=(\tilde{P}_{*})_{i\in I}$ is a parabolic system in $\tilde{G}$ . We call it the universal 2-amalgam
of $\mathcal{P}$ .
Theorem 6.1 The chamber system $C(\tilde{P})$ of the universal 2-amalgam $\tilde{\mathcal{P}}$ of
$\mathcal{P}$ is the universal 2-cover of the chamber system $C(\mathcal{P})$ of $P$ .

(Tits [16]; also [10], Theorem 12.28).

6.3 Revisiting Conjecture 1 and Problems 1 and 2
By Theorem 6.1, Conjecture 1 of \S 3.2.3 can be rephrased as follows for tran-
sitive chamber systems:

Conjecture 3 Let $\mathcal{P}=(P_{i})_{t\in I}$ be a parabolic system satisfying the following:

$(G’1)$ $P_{J}= \bigcap_{j\not\in J}P_{I-\{j\}}$ for every $J\subseteq I$ ;
$(G’2)$ $P_{J}\cap(P_{I-\{i\}}P_{I-\{j\}})=(P_{J}\cap P_{I-\{i\}})(P_{J}\cap P_{I-\{j\}})$ for any two distinct

types $i,j\in I$ and every subset $J$ of I containing both $i$ and $j$ .

Then these properties also hold in the universal 2-amalgam of $\mathcal{P}$ .
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Since the universal 2-cover of a geometric chamber system of rank 3 is
geometric (Proposition 3.3), the above conjecture holds true when $|I|=3$ .
Problems 1 and 2 of \S 4.4 sound as follows:

Problem 4 Let $(P_{1}, P_{2}, P_{3})$ be a parabolic system of rank 3 in a group $G$ and
assume that $P_{1}P_{1}=P_{i}P_{1}$ for $i=2,3$ . Let $\tilde{G}$ be the amalgamated product of
the subgroups $P_{1,2},$ $P_{2,3}$ and $P_{3,1}$ with amalgamation over the subgroups $P_{1}$ ,
$P_{2}$ , $P_{3}$ . Is it possible that $\tilde{G}$ is not embeddable into $P_{1}\cross P_{2,3}$ ?

Problem 5 Let $(P_{1}, P_{2}, P_{3})$ be a parabolic system of rank 3 in a group $G$ and
assume that $P_{i}P_{j}=P_{j}P_{i}$ for $i,j=1,2,3$ . Let $\tilde{G}$ be the amalgamated product
of the subgroups $P_{1},{}_{2}P_{2,3}$ and $P_{3,1}$ with amalgamation over the subgroups $P_{1}$ ,
$P_{2},$ $P_{3}$ , Is it possible that $\tilde{G}$ is not embeddable into $P_{1}\cross P_{2}\cross P_{3}$ ?
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