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l.Introduction

In the last 2 decades, we saw a rapid development of quantum field theory.
Without any doubt Prof.Nakanishi is one of the few persons who presented
us better understandigs of gauge fields on which modern field theory heavily
depends. As is quite well known, the field theory with renormalization the-
ory has been developed through Quantum Electrodynamics, Yukawa theory
and the $\phi_{4}^{4}$ theory. However our present-day conventional wisdom suggtests
that only the asymptotically free theories can be non-trivial, which means
ironicaly enough that QED, Yukawa and the $\phi_{4}^{4}theories\backslash$ cannot exist without
being trivial.

See [1, 2, 3, 4, 5, 6] for arguments which show that the $\phi^{4}$ model in 4
dimensions is expected to be trivial.

Most of these arguments change if the signature of the coupling constant
is reversed [7]: we show here that the four-dimensional $\phi^{4}$ model with a
negative coupling constant exists as a non-trivial theory. The functional in-
tegral is unstable in this case, and then we here complexify field variables
$\{\phi(x);x\in Z^{4}\}$ .

1 e-mail:ito@kurims.kyotuu.ac.jp

数理解析研究所講究録
第 869巻 1994年 58-66



59

2. Lattice Theory

We prepare the theory on the lattice space $aZ^{4},$ $a\equiv L^{-N}$ where $L$ is
a positive integer $(\geq 2)$ and $N(>>1)$ is an arbitralily large interger. Let
$x\in Z^{4}$ and let $\hat{\phi}(ax)$ be the field on $aZ^{4}$ . We replace $a\hat{\phi}(ax)$ by the field
$\phi(x)$ on $Z^{4}$ by absorbing $a$ which comes from the Riemannian sum. We start
with the bare action $v_{0}$ at the distance scale $a=L^{-N}$ , given by

$\frac{1}{2}(\sum_{|x-y|=1}(\phi(x)-\phi(y))^{2}+\sum_{x\in\Lambda}m_{0}^{2}\phi^{2}(x))+\lambda_{0}\sum_{x\in\Lambda}(\phi^{4}(x)-6G_{0}(x, x)\phi^{2}(x))$ (1)

which is set on $Z^{4}$ by the scaling mentioned above. Note that the coupling
constant $\lambda_{0}$ is invariant and the mass is scaled: $m_{0}^{2}=a^{2}\hat{m}_{0}^{2}$ . In eq.(l) $G_{0}$

is the Greens’s function of the free Hmiltonian of massless bosons on the
Lattice $Z^{4}$ (see eq.(5) below.) The effective action $v_{n}$ at the scale $aL^{n}$ is
defined by

$\exp[-v_{n}(\Phi)]=\int\exp[-v_{0}(\phi)]\Pi_{x\in\Lambda_{n}}\delta[\Phi(x)-(C^{n}\phi)(x)]\Pi_{z\in\Lambda}d\phi(z)$ , (2)

where $\Lambda=\Lambda_{0}$ is a rectangular set of integer points in four dimensions:

$\Lambda=\{(x_{1}, .., x_{4});x_{i}=-\frac{L^{K}}{2}, -\frac{L^{K}}{2}+1, .., \frac{L^{K}}{2}-1\}$ . (3)

$\Lambda_{n}=L^{-n}\Lambda\cap Z^{4}$ ( $K$ is an arbitralily large integer) and the block spin operator
$C$ is defined as an averaging operator with a scaling:

$\phi(x)arrow(C\phi)(x)=\frac{1}{L^{3}}\sum_{-L/2\leq z_{\mu}<L/2}\phi(Lx+z)$ (4)

Then (2) is the integration over fluctuations around the fixed block spins
$\Phi(x)$ . The factor $L^{3}$ is chosen so that massless Gaussian measures are fixed
points of $C[5,7]$ . If $\lambda_{0}>0$ is small, one can prove that this converges
to a free system in the limit of $narrow\infty$ . To obtain the continuum theory,
we iterate the recursion formulae $N$ times to obtain the theory at the unit
distance scale. Then we let $Narrow\infty$ keeping these quantities non-zero and
finite. To do this, we have to choose $m_{0}^{2}=m_{0}$ carefully in a way of$(N)2$

depending on $\lambda_{0}=\lambda_{0}^{N}$ .
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Rotate $\phi(x)\in R$ by an angle or $\in(\pi/8, \pi/4)$ in the complex plane :
$\phi(x)arrow e^{i\alpha}\phi(x)$ . Then ${\rm Re} e^{4i\alpha}\lambda_{0}>0$ and the integral (2) exists. Moreover
${\rm Re} e^{2i\alpha}>0$ means that the gaussian integrals $<P> \equiv\int Fd\mu_{1}(e^{i\alpha}z)$ are
well defined whenever $P$ are polynomials of $z$ .

We explain our notation $[5, 6]$ . Let $\phi_{n}(x)=(C\phi_{n-1})(x)$ be the block spin
variable at distance scale $L^{n}(\phi_{0}(x)=\phi(x))$ .

Since
$G_{0}(x,y)=(-\triangle)^{-1}(x, y)\sim(x-y)^{-2}$ (5)

the correlation function of $\phi_{n}$

$G_{n}(x, y)=(C^{n}G_{0}(C^{+})^{n})(x,y)$ (6)

again satisfies
$G_{n}(x, y)\sim(x-y)^{-2}$ . (7)

This means that $\{\phi_{n}\}$ are very similar to the original $\{\phi=\phi_{0}\}.We$ introduce
two operators :the first one is $Q$ which maps $f(x)\in R^{\Lambda_{n}\backslash L\Lambda_{n+1}}$ to $(Qf)(x)\in$
$R^{\Lambda_{n}}$ :

$Q$ : $f(x)arrow(Qf)(x)=\{f(x)-\sum_{y\in B(x)}f(y)i^{ifx\not\in}fx\in L^{L}Z^{Z_{4}^{4}}$ (8)

Then $C(Qf)=0$ and $Q$ is an operator which gets fluctuation fields from the
field. The second one is the projection $R:R^{\Lambda_{n}}arrow R^{\Lambda_{n}\backslash L\Lambda_{n+1}}$ :

$R:f(x)arrow(Rf)(x)=\{0f(x)$ $otherwis^{n}eifx\in\Lambda\backslash L\Lambda_{n+1}$ (9)

Then $C(QRf)=0$ for any function $f(x)$ defined on $\Lambda_{n}$ . Then { $\phi_{n}(x)$ ;
$x\in\Lambda_{n}\}$ is written in terms of spin variables $\{\phi_{n+1}\}$ of next distance scale
and fluctuation fields $\{\xi_{n}(x);x\in\Lambda_{n}\backslash L\Lambda_{n+1}\}$ :

$\phi_{n}(x)=(A_{n}\phi_{n+1})(x)+(Q\xi_{n})(x)$ (10)

where $A_{n}$ : $R^{\Lambda_{n+1}}arrow R^{\Lambda_{n}}$ is given by

$A_{n}(x, y)=(G_{n}C^{+}G_{n+1}^{-1})(x,y)$ (11)

and $\{\xi_{n}(x);x\in\Lambda_{n}\backslash L\Lambda_{n+1}\}$ are gaussian random variables of zero mean and
covariance

$\Gamma_{n}(x,y)=R(G_{n}-G_{n}C^{+}G_{n+1}G_{n}^{-1})R^{+}$ . (12)
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It is not difficult to see that

$|A_{n}(Lx+\tilde{x}, y)|\leq C_{1}\exp[-\beta|x-y|]$ $(13a)$

$|\Gamma_{n}(x,y)|\leq C_{2}\exp[-\beta|x-y|]$ $(13b)$

where $|\tilde{x}|\leq L/2$ . For later convenience, we define

$A_{n}(x, y)=L^{n}A_{0}A_{1}\ldots.A_{n-1}(L^{n}x, y)$ (14)

where $x\in L^{-n}\Lambda$ (lattice width $=L^{-n}$ ), $y\in\Lambda$ (lattice width$=1$ ) and intro-
duce two variables $\psi_{n}$ and $z_{n}$ which are linear combinations of the original
independent random variables $\{\phi_{n}\}$ and $\{z_{n}\}$ :

$\psi_{n}(x)=(A_{n}\phi_{n})(x),$ $z_{n}(x)=(\mathcal{A}_{n}Q\Gamma_{n}^{1/2}z_{n})(x)$ , (15)

where we put $\xi=\Gamma^{1/2_{Z}}$ and $x\in L^{-n}\Lambda$ . We may use notation $\int F(x)dx=$

$L^{-4n}\Sigma_{x}F(x)$ . $Eq.(10)$ is simplified:

$\psi_{n}(x)=\frac{1}{L}\psi_{n+1}(x/L)+z_{n}(x)$ , (16)

where $x\in L^{-n}\Lambda$ . Their means are zero, and their covariances are respectively
given by

$\mathcal{G}_{n}(x,y)=(A_{n}G_{n}A_{n}^{+})(x, y)\sim(x-y)^{-2}$ $(17a)$

and by
$\mathcal{T}_{n}(x,y)=(\mathcal{A}_{n}Q\Gamma_{n}Q^{+}\mathcal{A}_{n}^{+})(x,y)\sim e^{-\beta|x-y|}\triangleleft$

’
$(17b)$

where both $x$ and. $y\in L^{-n}\Lambda$ . We also define

$\mathcal{Q}_{n}(x, y)=\sum_{k=0}^{n-1}L^{2(n-k)}\mathcal{T}_{k}(L^{n-k}x, L^{n-k}y)$

$=L^{2n}G_{0}(L^{n}x, L^{n}y)-\mathcal{G}_{n}(x, y)$ $(17c)$

and
$S_{n}(x_{1}, x_{2}, x_{3})=\mathcal{Q}_{n}(x_{1}, x_{2})\mathcal{Q}_{n}(x_{2}, x_{3})$ . $(17d)$

$\mathcal{T}_{n},$ $\mathcal{Q}_{n}$ and $S_{n}$ have exponential decay property uniform in $n$ and the differ-
ence between $G_{n}$ and $\mathcal{G}_{n}$ is marginal. To calculate the renormalization recur-
sion formulae (2), we separate $(\phi, (-\triangle)\phi)=\Sigma(\phi(x)-\phi(y))^{2},$ $(|x-y|=1)$
from $v_{0}=v_{0}^{(N)}$ and represent it as

$\Pi_{n}[\exp[-(\xi_{n}, \Gamma_{n}^{-1}\xi_{n})/2]\Pi d\xi_{n}(x)]\equiv\Pi_{n}d\mu_{\Gamma_{n}}(\xi)$
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or as $\Pi_{n}d\mu_{1}(z_{n})$ , where $d\mu_{1}$ is the gaussian measure of zero mean and $covari\angle$

ance 1 (see $eq.(15)$ ). Therefore our recursion formulae are

$\exp[-v_{n+1}(\psi(.))]=N^{-1}\int\exp[-v_{n}(\psi(./L)/L+z_{n}(.))]d\mu_{1}(z_{n})$ . (18)

3. Renormalization Group Trajectory

We decompose the configurations of $\psi(x)$ into the set of small and smooth
fields $\mathcal{K}_{n}(D)=\{\psi_{n}(x);|\psi_{n}(x)|<B|\lambda_{n}|^{-1/4}$, Holder type continuity of $\psi_{n},$ $x\in$

$D\}$ , and the set of complex large fields $D_{n}(D)=\{\psi_{n}(x);|{\rm Im} e^{i\alpha}\psi_{n}(x)|<$

$C|\lambda_{n}|^{-1/4},$ $x\in D$ }. In the region $\mathcal{K}_{n},$ $v_{n}$ is obtained in a closed form by a
perturbation theory (the convergent polymer expansion), while in the region
$\mathcal{D}_{n}(D)$ , we cannot use the perturbation and we use a probabilistic bound to
show the contribution is very small.

Theorem Let the bare lattice action on $\Lambda=\Lambda^{(K)}$ be given by eq.(l)
with the coupling constant $\lambda_{0}<0$ satifying

$\frac{1}{\lambda_{0}}=\frac{1}{\lambda_{phys}}-\beta_{2}N+c_{3}\log(1-\beta_{2}\lambda_{phys}N)$, (19)

where $\lambda_{phys}<0$ is the physical coupling constant, and $\beta_{2}(>0)$ and $c_{3}$ are con-
stants specified later. Assume $|\lambda_{phys}|<<1$ . Then there exists $m_{0}^{2}\in[-|\lambda_{0}|^{3/2}$ ,
$|\lambda_{0}|^{3/2}]$ such that $\exp[-v_{n}(\psi)]$ exists for all $n<N$ and $\lim\exp[-v_{N-1}^{(N)}]$ exists.
The series $\{v_{n}=v_{n}^{(N)}\}$ satisfy the following (i) and (ii):

(i) Analyticity in the small field region
There exist co’nstants $m_{n}^{2}$ $\lambda_{n},$

$\gamma_{n}$ and $\eta_{n}$ such that

$\lambda_{n}\in[-c_{-}/(N+n_{0}-n), -c+/(N+n_{0}-n)]$ , $(20a)$

$m_{n}^{2}\in[-c_{1}|\lambda_{n}|^{3/2}, c_{1}|\lambda_{n}|^{3/2}]$ , $(20b)$

$\gamma_{n}\in[8\lambda_{n}^{2}-O(\lambda_{n}^{2+\epsilon}),8\lambda_{n}^{2}+O(\lambda_{n}^{2+\epsilon})]$ , $(20c)$

$\eta_{n}\in[96\lambda_{n}^{3}-O(\lambda_{n}^{3+\epsilon}), 96\lambda_{n}^{3}+O(\lambda_{n}^{3+\epsilon})]$ . $(20d)$

where $c_{\pm}$ and $n_{0}$ are positive constants. Then $v_{n}$ is analytic in $\mathcal{K}_{n}$ and admits
the following expansion there:
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$v_{n}= \frac{1}{2}m_{n}^{2}\int dx\psi_{n}^{2}(x)-6\lambda_{n}\int dx\mathcal{G}_{n}(x, x)\psi_{n}^{2}(x)$

$+ \lambda_{n}\int dx\psi_{n}^{4}(x)+\gamma_{n}\int dxdy\mathcal{Q}_{n}(x, y)\psi_{n}^{3}(x)\psi_{n}^{3}(y)$

$+ \eta_{n}\int dx_{1}dx_{2}dx_{3}S_{n}(x_{1}, x_{2}, x_{3})\psi_{n}^{3}(x_{1})\psi_{n}^{2}(x_{2})\psi_{n}^{3}(x_{3})$

$+(irrelevantterms)+\tilde{v}_{n}(\psi)$ , (21)

where $\partial^{k}\tilde{v}_{n}/\partial\psi_{n}^{k}|_{\psi=0}=0$ for $k=1,$
$\ldots,$

$8,$ $|\tilde{v}_{n}|\leq const|\lambda_{n}|^{3/2}$

(ii) Uniform Boundedness of the Gibbs Factor
The Gibbs factor $\exp[-v_{n}(\psi)]$ is anlytic in $\mathcal{D}$ , and satisfies

$|\exp[-v_{n}]|<\exp[-|\lambda_{n}|^{1/2}|\psi_{n}|^{2}+|\lambda_{n}||Im\psi_{n}|^{4}+D]$ (22)

with a uniform constant D.

The non-triviality of the model follows from this. Some remarks: (1) For
simplicity we neglected the wave function renormalization which comes from
the quadratic terms in $v_{n}$ . (2) Since $\{\psi_{n}(x)\}$ are extended to $L^{-n}\Lambda$ and are
related to each other, one cannot pick out $\psi_{n}(x)$ and discuss $\psi_{n}(x)$ only. One
would rather defines $\mathcal{K}_{n}$ and $\mathcal{D}_{n}$ in a much refined way so that the cluster
expansion can be inductively used [5, 6, 7, 8].

4. Proof of the Theorem

We here discuss small field region only and show how the renormalization
group flow is determined.

If $|\psi_{n}(x)|<B|\lambda_{n}|^{-1/4}$ , we have the expansion (21). So set $\psi_{n}(x)=$

$\psi_{n+1}(x/L)/L+z_{n}(x)$ , and substitute it into the right hand side of eq.(21):
$v_{n}=v_{n}^{0}+\delta v_{n}$ , where $v_{n}^{0}$ is the 0th term which does not contain $z$ at all and
$\delta v_{n}$ is the remainder $(\delta v_{n}(z=0)=0)$ .

We use
$v_{n+1}=v_{n}^{(0)}- \log[\int\exp[-\delta v_{n}]d\mu_{1}(z_{n})]$

$=v_{n}^{(0)}+\{<\delta v_{n}>-(2!)^{-1}<\delta v_{n},$ $\delta v_{n}>+(3!)^{-1}<\delta v_{n},$ $\delta v_{n},$ $\delta v_{n}>$

$+remainder\}$ , (23)
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where

$<$ . $> \equiv\int_{e^{i\alpha}R}(.)d\mu_{1}(z),$ $<\delta v,$ $\delta v>\equiv<\delta v\delta v>-<\delta v>^{2}$ , (24)

and so on. Even if $|\psi_{n+1}|$ are small, $\psi_{n+1}/L+z_{n}$ can be large and thus the
expansion (21) fails there. In this case we use the bound (22). For simplicity
we skip all these difficulties. After some calculation, we see that the following
recursion relations control the flow: $v_{n}arrow v_{n+1}$ , except for the minor terms
which are very small or have kernels which decrease fast.

(R.1) $m_{n+1}^{2}=L^{2}m_{n}^{2}-\alpha_{1}\lambda_{n}^{2}+O(\lambda_{n}^{3},m_{n}^{2}\lambda_{n})$,
(R.2) $\lambda_{n+1}=\lambda_{n}-\beta_{2}\lambda_{n}^{2}-\beta_{3}\lambda_{n}^{3}-\beta_{4}m_{n}^{2}\lambda_{n}+O(\lambda_{n}^{4}, m_{n}^{2}\lambda_{n}^{2})$

(R.3) $\gamma_{n+1}=8\lambda_{n+1}^{2}+O(\lambda_{n+1}^{3}, m_{n}^{2}\lambda_{n})$ ,
(R.4) $\eta_{n+1}=96\lambda_{n+1}^{3}+O(\lambda_{n+1}^{4}, m_{n}^{2}\lambda_{n+1}^{2})$ ,
(R.5) $\tilde{v}_{n+1}=O((|\lambda_{n}|+|m_{n}^{2}|)^{4})$ .

Here $\beta_{2}>0$ comes from the one-loop diagram which is very important feature
of the present system. (R.2 implies $\lambda_{n}arrow 0$ if $\lambda_{0}>0$ and the other way
around if $\lambda_{0}<0.$ )

The parameters $\gamma_{n}$ and $\eta_{n}$ are completely determined. [ $\lambda_{n+1}$ and $m_{n+1}^{2}$ of
course have feedback from $\gamma_{n}$ and $\eta_{n}$ which appear in R.1 and R.2 as $O(\lambda_{n}^{3})$ .
Thus as will be seen, their effects are well controlled.]

Consider the flow of $\zeta_{n}=^{t}(m_{n}^{2}, \lambda_{n})$ defined by R.1 and R.2 or by

$\zeta_{n+1}=(\begin{array}{ll}L^{2} -\alpha_{1}\lambda-\beta_{4}\lambda \beta_{2}1-\lambda-\beta_{3}\lambda^{2}\end{array})(n$

$\lambda=\lambda_{n}$ ( or $=\lambda_{n_{0}}$ for some $n_{0}\leq n$ )

and insist that $\{|\zeta_{n}|\}$ stay as $O(1)$ for $n<N$ Then we find that $m_{n}^{2}=$

$[\alpha_{1}/(L^{2}-1)]\lambda_{n}^{2}+O(\lambda_{n}^{3})$ . Thus the third and fourth terms in the $right\triangleleft hand$

side of R.2 are replaced $by-\tilde{\beta}_{3}\lambda_{n}^{3}$ . Deviding both sides of R.2 by $\lambda_{n}\lambda_{n+1}$ ,
we get:

$\frac{1}{\lambda_{n}}-\frac{1}{\lambda_{n+1}}=-\beta_{2}\frac{\lambda_{n}}{\lambda_{n+1}}-\tilde{\beta}_{3}\frac{\lambda_{n}^{2}}{\lambda_{n+1}}+O(\lambda_{n}^{2})$

$=-\beta_{2}-(\beta_{2}^{2}+\tilde{\beta}_{3})\lambda_{n}+O(\lambda_{n}^{2})$ .
Assume that $\lambda_{N}$ is the observed physical coupling constant $\lambda_{phys}<0,$ $(|\lambda_{phys}|<<$

1). Thus $\lambda_{0}=\lambda_{0}^{(N)}$ should satisfy
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$\frac{1}{\lambda_{0}}-\frac{1}{\lambda_{phys}}=-\beta_{2}N-\{\beta_{2}^{2}+\tilde{\beta}_{3})\sum_{k=0}^{N-1}[\frac{1}{\lambda_{phys}}-k\beta_{2}]^{-1}+O(1)$

$=- \beta_{2}N+\frac{\beta_{2}^{2}+\tilde{\beta}_{3}}{\beta_{2}}\log[1-\lambda_{phys}\beta_{2}N]+O(1)$ .

This is the relation (20).
A remaining delicate problem is how to choose the mass counter term,

since a tiny change in the mas counter term yields a large deviation in the
renormalized mass. See R.1. The reader will also see that R.1 implies that
the self-energy diverges like $a^{-2}$ . The Sinai-Bleher method [5, 6, 7, 8] is used
to consider this problem. Assume $m_{n}^{2}$ changes in $I_{n}$ containing $\cdot$ the origin.
Then as a function of $m_{n}^{2},$ $m_{n+1}^{2}$ is continuous and $I_{n+1}\equiv Range(m_{n+1}^{2})$

contains $I_{n}$ . Thus we can choose $m_{0}^{2}$ as our requirements hold.

5. Discussions

In the final part of this note, we argue how to obtain the renormalized
divergence free n-point functions [8]. Let $x,$ $y\in aZ^{4}$ . We have replaced $a\hat{\phi}(x)$

by the field $\phi(x/a)$ on $Z^{4}$ . Therefore changing the theory on $aZ^{4}$ to that on
$Z^{4}$ , we have:

$G_{a}(x,y)=L^{2N}G_{1}(L^{N}x,L^{N}y)= \tilde{\mathcal{G}}_{1<}(x, y)+\sum_{n=1}^{N}L^{2n}\tilde{\mathcal{T}}_{n}(L_{A}^{n}x, L^{n}y)$ (25)

where $\tilde{\mathcal{G}}_{1<}$ is the two point function of $\psi_{n}$ with the Gibbs measure given by
$e^{-\prime\kappa_{N}}$ , living on the unit lattice space, and thus is free from any diveregnces.

$\tilde{\mathcal{T}}_{n}$ is the two-point correlation function of the $z_{n}$ variables with small cor-
rections from the interaction, and decays exponentially in $|x-y|$ uniformly
in $n$ . This is in fact approximately equal to the original $\mathcal{T}_{n}$ , see eq.(16) and
$eq.(17b,c)$ . Then this converges absolutely, and we have renormalized and fi-
nite Schwinger (Green’s) functions. It is justified to say that the divergences
in the theory are cancelled by the asymptotic freedom of the theory and yield
a non-trivial field theory.
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