A Mathematical Model for a New Kind of Drug Administration by using R．B．C．

E．BERETTA ${ }^{1} \quad$ F．SOLIMANO ${ }^{1}$ Y．TAKEUCHI ${ }^{2}$
${ }^{1}$ Istituto di Biomatematica，Università di Urbino，Italy
${ }^{2}$ Department of Applied Mathematics，Shizuoka University，Japan

Abstract

A mathematical model for the drug delivery to tissues by using a preassigned cohort of red blood cells（RBC）loaded with a drug is presented．The model has a discrete time delay in the interaction between RBC and macrophage cells in the various tissues．A control problem to maintain the longest duration of the therapeutic effect is considered．

1 Drug Administration by Using RBC

Human and murine red blood cells（RBC）treated with ZnCl_{2} and bis（sulfosuc－ cinimidyl）suberate（ $B S^{3}$ ）（a cross linking agent）undergo band 3 clustering and binding of hemoglobin to RBC membrane proteins．These clusters induce autologous $I g G$ binding and complement fixation，thus favoring the phagocytosis of $Z n C l_{2} / B S^{3}$ treated cells by macrophages．The extension of RBC opsonization can be easily mod－ ulated by changing the ZnCl_{2} concentration in the $0.1-1.0 \mathrm{mM}$ range thus providing a way to affect RBC recognition by macrophages．Since the $Z n C l_{2} / B S^{3}$ treatment can also be performed on RBC loadeded with drugs or other substances，this pro－ cedure is an effective drug－targeting system to be used for the delivery of molecules to peritoneal，liver and spleen macrophages（L．Chiarantini et al ：Modulated RBC survival by membrane protein clustering．Preprint．）

Macrophages phagocytate only RBC when they are recognized as senescent, i.e. with an age $a \geq \bar{a}, \bar{a} \simeq 120$ days, because the aging of RBC induce a progressive membrane clustering.

The RBC membrane clustering by $Z n C l_{2} / B S^{3}$ treatment enables to prepare a cohort of drug loaded RBC at time $t=0$:

$$
n(0, a)= \begin{cases}\varphi(a)>0 & \forall a \in \Re_{+0}=[0,+\infty) \tag{1}\\ 0 & \forall a<0\end{cases}
$$

such that RBC of age a at $t=0$ will be recognized as senescent after a time $t=\bar{a}-a$. The shape of the initial age distribution φ of the drug loaded RBC is experimentally controlled, so as the total amount of loaded RBC is :

$$
\begin{equation*}
n_{0}=\int_{0}^{+\infty} \varphi(a) d a(m l R B C) \quad n_{0} \in\left[n_{1}, n_{2}\right] \tag{2}
\end{equation*}
$$

and the fraction of senescent RBC is

$$
\begin{equation*}
\alpha n_{0}=\int_{\bar{a}}^{+\infty} \varphi(a) d a \quad \alpha \in[0,1] . \tag{3}
\end{equation*}
$$

The aim of the administration is to give a drug directly to the macrophages of various tissues : peritoneum, spleen, liver \cdots by injecting at $t=0$ in the blood circulation and to control the age distribution of RBC cohort, which is experimentally preassigned, in order to maintain the therapeutic effect for the longest time possible. Here only the RBC in the cohort with age $a \geq \bar{a}$ (i.e. senescent) are phagocytated by macrophages, releasing inside them the drug.

Other assumptions on the process are as follows :

1) The drug is not catabolized inside the RBC neither can diffuse through their membranes.
2) The drug is catabolized inside the macrophages.
3) The size of the macrophage population M_{0} is constant on the time scale \bar{a} of the drug administration.
4) Once phagocytated RBC a macrophage has an average digestion time $T(\simeq 4 / 5$ hours) during which it is inactive in the capture process of other RBC.
5) The average capture time is negligible with respect to the average digestion time T.

2 Formulation of The Model

At $t=0$ we have a cohort of drug loaded RBC $n(0, a)$ given by (1) with an age distribution $\varphi(a)$. Let \bar{a} be the age beyond which the RBC are recognized as senescent. The total number of loaded RBC is n_{0} given by (2), of which αn_{0} given by (3) is the senescent fraction at $t=0$. If q_{0} is the amount of drug ($\mu \mathrm{moli}$) loaded at $t=0$ into the RBC cohort, the average amount of drug in each RBC is :

$$
\begin{equation*}
\beta=q_{0} / n_{0} \tag{4}
\end{equation*}
$$

2.1 RBC Equations

Let us consider for $t>0$ the time evolution of the cohort of RBC $n(t, a)$.
If $a \leq \bar{a}$, then

$$
\begin{equation*}
\frac{\partial}{\partial t} n(t, a)+\frac{\partial}{\partial a} n(t, a)=0 \tag{5}
\end{equation*}
$$

with

$$
\begin{aligned}
& \text { i.c. } \quad n(0, a)=\varphi(a), \quad \forall a \in[0, \bar{a}] \\
& \text { b.c. } \quad n(t, 0)=0, \quad \forall t>0
\end{aligned}
$$

i.e. we have no newborns neither deaths. Then, the solution to (5) is expressed as

$$
n(t, a)= \begin{cases}\varphi(a-t) & \text { if } t \leq a \tag{6}\\ 0 & \text { if } t>a, \forall a \in[0, \bar{a}]\end{cases}
$$

If $a>\bar{a}$, then

$$
\begin{equation*}
\frac{\partial}{\partial t} n(t, a)+\frac{\partial}{\partial a} n(t, a)=-K(a) n(t, a) x_{3}(t) \tag{7}
\end{equation*}
$$

where $x_{3}(t)$ is the number of macrophages that at time t are free for the phagocytosis process. $K(a)$ is the average number of RBC with age a captured by a free macrophage per unit of time. We assume that $K(a)=K$ for $a>\bar{a}$.

Let us define by

$$
\begin{equation*}
x_{1}(t)=\int_{\bar{a}}^{+\infty} n(t, a) d a \tag{8}
\end{equation*}
$$

the number of senescent loaded RBC at time t. By integration of (7) between \bar{a} and $+\infty$ we obtain :

$$
\begin{equation*}
\frac{d}{d t} x_{1}(t)=-K x_{1}(t) x_{3}(t)+n(t, \bar{a}) \tag{9}
\end{equation*}
$$

with i.c.

$$
\begin{equation*}
x_{1}(0)=\int_{\bar{a}}^{+\infty} \varphi(a) d a=\alpha n_{0} \tag{10}
\end{equation*}
$$

and

$$
n(t, \bar{a})= \begin{cases}\varphi(\bar{a}-t) & \text { if } 0 \leq t \leq \bar{a} \tag{11}\\ 0 & \text { if } t>\bar{a}\end{cases}
$$

2.2 Macrophage Equations

Let M_{0} be the total number of macrophage cells. For $\forall t>0$ the macrophages belong to one of the two classes :
$x_{2}(t)$: macrophages which are digesting senescent RBC (either from the loaded cohort of RBC and from normal blood circulation),
$x_{3}(t)$: macrophages which are free for phagocytosis of senescent RBC.
Therefore

$$
\begin{equation*}
M_{0}=x_{2}(t)+x_{3}(t), \quad \forall t \geq 0 . \tag{12}
\end{equation*}
$$

Furthermore we assume that
a) If $x_{2}(t-T)$ are the macrophages which are digesting at $t-T$, the number of macrophages becoming free at t will be $\gamma x_{2}(t-T)$, where $[\gamma]=\left[d a y^{-1}\right]$ and $\gamma<1$. This takes account of the fact that among $x_{2}(t-T)$ there are macrophages that phagocytated RBC at previous times before $t-T$.
b) The number of non-loaded senescent RBC is assumed to be constant and will be denoted by \bar{E}.

Hence

$$
\begin{equation*}
\frac{d x_{3}}{d t}=-K x_{1}(t) x_{3}(t)-K \bar{E} x_{3}(t)+\gamma x_{2}(t-T), \quad \forall t \geq 0 \tag{13}
\end{equation*}
$$

We must specify the i.c. on $x_{3}(t)$ for $t \in[-T, 0]$. For $t \in[-T, 0), x_{1}(t)=0$ (no senescent loaded RBC are present before $t=0$). Therefore

$$
\begin{align*}
& \frac{d x_{3}}{d t}=-K \bar{E} x_{3}(t)+\gamma x_{2}(t-T) \tag{14}\\
& x_{2}(t)+x_{3}(t)=M_{0}, \quad t \in[-T, 0)
\end{align*}
$$

We assume that
c) Without loaded RBC the system composed of macrophages and senescent RBC is at a positive equilibrium state which is stable.

Accordingly, the equilibrium of (14) is

$$
\begin{equation*}
\bar{x}_{3}=\frac{\gamma M_{0}}{K \bar{E}+\gamma}, \quad \bar{x}_{2}=\frac{K \bar{E} M_{0}}{K \bar{E}+\gamma} \tag{15}
\end{equation*}
$$

and its stability is ensured provided that

$$
\begin{equation*}
K \bar{E}>\gamma \tag{16}
\end{equation*}
$$

At $t=0$ the amount of senescent loaded RBC injected is $x_{1}(0)=\alpha n_{0}$, and therefore at $t=0, x_{3}$ is shifted from its equilibrium \bar{x}_{3} to the value :

$$
\begin{equation*}
x_{3}^{0}=\frac{\gamma M_{0}}{K\left(\bar{E}+x_{1}(0)\right)+\gamma} . \tag{17}
\end{equation*}
$$

In conclusion, for the free macrophages we have

$$
\begin{equation*}
\frac{d x_{3}}{d t}=-K x_{1}(t) x_{3}(t)-K \bar{E} x_{3}(t)+\gamma\left(M_{0}-x_{3}(t-T)\right), \quad t>0 \tag{18}
\end{equation*}
$$

with i.c.

$$
\begin{equation*}
x_{3}(s)=\bar{x}_{3}, \quad s \in[-T, 0), \quad x_{3}(0)=x_{3}^{0} . \tag{19}
\end{equation*}
$$

2.3 Drug Equation

We denote the average drug concentration in the macrophages by $x_{4}(t)$. If V is the total volume of macrophage population and $\beta=q_{0} / n_{0}$ is the average drug amount for each loaded RBC, then the input for $x_{4}(t)$ is $\beta K x_{1}(t) x_{3}(t) / V$.

If the drug inside the macrophages is catabolized by an enzyme reaction we can assume the average concentration of the drug sufficiently small s.t. $V_{m} x_{4} /\left(K_{m}+x_{4}\right) \simeq$ $\eta x_{4}\left(i . e . x_{4} \ll K_{m}\right)$ where V_{m}, K_{m} respectively are the averages of maximum catabolic rate and affinity constant on the macrophage population, and $\eta=V_{m} / K_{m},[\eta]=$ [day ${ }^{-1}$]. Therefore

$$
\begin{equation*}
\frac{d x_{4}}{d t}=\frac{\beta}{V} K x_{1}(t) x_{3}(t)-\eta x_{4}(t), \quad \forall t>0 \tag{20}
\end{equation*}
$$

with $x_{4}(0)=0$.

2.4 Total Model Equations

In conclusion, the model equations are given (for $t>0$) by

$$
\begin{align*}
& \frac{d x_{1}}{d t}=-K x_{1}(t) x_{3}(t)+n(t, \bar{a}), \quad x_{1}(0)=\alpha n_{0} \\
& x_{2}(t)=M_{0}-x_{3}(t), \quad x_{2}(s)=\bar{x}_{2}, \quad s \in[-T, 0), \quad x_{2}(0)=x_{2}^{0} \\
& \frac{d x_{3}}{d t}=-K x_{1}(t) x_{3}(t)-K \bar{E} x_{3}(t)+\gamma x_{2}(t-T), \tag{21}\\
& x_{3}(s)=\bar{x}_{3}, s \in[-T, 0), \quad x_{3}(0)=x_{3}^{0} \\
& \frac{d x_{4}}{d t}=\frac{\beta}{V} K x_{1}(t) x_{3}(t)-\eta x_{4}(t), \quad x_{4}(0)=0
\end{align*}
$$

where

$$
n(t, \bar{a})= \begin{cases}\varphi(\bar{a}-t), & t \in[0, \bar{a}] \\ 0, & t>\bar{a}\end{cases}
$$

and the constraints on the parameters are

$$
\begin{equation*}
K \bar{E}>\gamma, \quad \gamma \bar{T}=1 \tag{22}
\end{equation*}
$$

3 Problems

We can prove easily the following basic properties of the solutions :
a) positivity ;
b) boundedness ;
c) asymptotic stability of ($x_{1}=0, x_{2}=\bar{x}_{2}, x_{3}=\bar{x}_{3}, x_{4}=0$).

Let m be the average drug concentration in the macrophages beyond which the drug has therapeutic effect, and let M be the average drug concentration in the macrophages beyond which the drug has cytotoxic effect, where

$$
\begin{equation*}
0<m<M . \tag{23}
\end{equation*}
$$

The control problem (C.P.) can be formulated as follows :
C.P. How to choose $\varphi:[0, \bar{a}] \rightarrow \Re_{+}, \varphi \in C^{1}([0, \bar{a}])$, and $\alpha \in[0,1]$ s.t.
i) $\exists t_{1}, t_{2} \in \Re_{+}\left(t_{1}<t_{2}\right)$ satisfying $m<x_{4}(t)<M$ for $\forall t \in\left(t_{1}, t_{2}\right)$ and $x_{4}\left(t_{1}\right)=$ $x_{4}\left(t_{2}\right)=m ;$
ii) $\Delta t=t_{2}-t_{1}$ be maximum ;
iii) $n_{0}=\int_{0}^{\bar{a}} \varphi(a) d a /(1-\alpha), n_{0} \in\left[n_{1}, n_{2}\right]$ be minimum .

4 Control Problem

Here we will consider the C.P. and give an estimate for the time duration Δt where drug administration is effective.

Let us consider (21) for $t \in[0, \bar{a}]$. Then

$$
\begin{equation*}
n(t, \bar{a})=\varphi(\bar{a}-t), \quad \forall t \in[0, \bar{a}] . \tag{24}
\end{equation*}
$$

Let σ be the average value of φ over $[0, \bar{a}]$:

$$
\begin{equation*}
\sigma=\frac{1}{\bar{a}} \int_{0}^{\bar{a}} \varphi(a) d a \tag{25}
\end{equation*}
$$

Since $\int_{0}^{\bar{a}} \varphi(a) d a=n_{0}(1-\alpha)$, we have

$$
\begin{equation*}
\sigma=\frac{n_{0}(1-\alpha)}{\bar{a}} \tag{26}
\end{equation*}
$$

Furthermore, we denote by

$$
\begin{equation*}
\rho=\max _{a \in[0, \bar{a}]} \varphi(a), \quad \mu=\min _{a \in[0, \bar{a}]} \varphi(a) \tag{27}
\end{equation*}
$$

Denoted by $u_{3}(t)=x_{3}(t)-\bar{x}_{3}, \bar{u}_{3}=x_{3}^{0}-\bar{x}_{3}$, it is easy to show that

$$
\begin{equation*}
\bar{x}_{3}-\delta<x_{3}(t)<\bar{x}_{3}+\delta, \quad \forall t \geq 0 \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta^{2}=\max \left\{\bar{u}_{3}^{2}, \frac{K L}{2(K \bar{E}-\gamma)} \bar{x}_{3}^{2}\right\} \tag{29}
\end{equation*}
$$

and L is a bound for x_{1}, that is,

$$
\begin{equation*}
0<x_{1}(t)<L, \quad \forall t>0 \tag{30}
\end{equation*}
$$

Of course $L_{0}=n_{0}$ is a bound for $x_{1}(t)$. Therefore

$$
\begin{equation*}
c_{0}^{-}=\bar{x}_{3}-\delta_{0}<x_{3}(t)<\bar{x}_{3}+\delta_{0}=c_{0}^{+} \tag{31}
\end{equation*}
$$

where δ_{0} is defined according to (29) with $L=L_{0}$. Provided that $c_{0}^{-}>0$, by using the $1^{\text {st }}$ equation in (21) with (31), for x_{1} we have the better estimate as

$$
\begin{equation*}
0<x_{1}(t)<L_{1}=\alpha n_{0}+\frac{\rho}{K c_{0}^{-}}, \quad \forall t>0 . \tag{32}
\end{equation*}
$$

By using this estimate in (28) we obtain

$$
\begin{equation*}
c_{1}^{-}=\bar{x}_{3}-\delta_{1}<x_{3}(t)<\bar{x}_{3}+\delta_{1}=c_{1}^{+} \tag{33}
\end{equation*}
$$

where δ_{1} is obtained from (29) with $L=L_{1}$. From the $1^{\text {st }}$ and $4^{\text {th }}$ equation in (21) we get

$$
\begin{array}{ll}
\frac{d x_{4}}{d t}=\frac{\beta}{V} \varphi(\bar{a}-t)-\eta x_{4}-\frac{\beta}{V} \frac{d x_{1}}{d t}, \quad \forall t \in[0, \bar{a}] \\
-K c_{1}^{+} x_{1}+\mu<\frac{d x_{1}}{d t}<-K c_{1}^{-} x_{1}+\rho, \quad \forall t \in[0, \bar{a}] . \tag{35}
\end{array}
$$

Thanks to (34),(35) and provided that

$$
\begin{equation*}
\frac{\mu}{K c_{1}^{+}}<x_{1}(0)=\alpha n_{0}<\frac{\rho}{K c_{1}^{-}} \tag{36}
\end{equation*}
$$

we finally obtain

$$
\begin{equation*}
-\eta x_{4}+\frac{\beta}{V} \sigma^{-}<\frac{d x_{4}}{d t}<-\eta x_{4}+\frac{\beta}{V} \sigma^{+}, \quad x_{4}(0)=0 \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma^{-}=\left(\frac{c_{1}^{-}}{c_{1}^{+}}\right) \mu-(\rho-\mu), \quad \sigma^{+}=\left(\frac{c_{1}^{+}}{c_{1}^{-}}\right) \rho+(\rho-\mu) \tag{38}
\end{equation*}
$$

Of course, we must choose $\varphi(a)$ with $\rho=\max \varphi, \mu=\min \varphi$ in order that $\sigma^{-}>0$. Then

$$
\begin{equation*}
x_{4}^{-}(t)=\frac{\beta}{V} \frac{\sigma^{-}}{\eta}\left(1-e^{-\eta t}\right)<x_{4}(t)<x_{4}^{+}(t)=\frac{\beta}{V} \frac{\sigma^{+}}{\eta}\left(1-e^{-\eta t}\right), \quad t \in[0, \bar{a}] \tag{39}
\end{equation*}
$$

and for $t>\bar{a}$

$$
\begin{equation*}
x_{4}^{-}(t)=\frac{\beta}{V} \frac{\sigma^{-}}{\eta} e^{-\eta(t-\bar{a})}<x_{4}(t) . \tag{40}
\end{equation*}
$$

The C.P. has a solution if

$$
\begin{equation*}
m<\frac{\beta}{V} \frac{\sigma^{-}}{\eta}, \quad \frac{\beta}{V} \frac{\sigma^{+}}{\eta}<M \tag{41}
\end{equation*}
$$

If we denote the time $\bar{t}_{i}(i=1,2)$ satisfying $x_{4}^{-}\left(t_{i}\right)=m, \bar{t}_{1}>t_{1}$ and $\bar{t}_{2}<t_{2}$, then duration of therapeutic effect is s.t.

$$
\begin{equation*}
\Delta t=t_{2}-t_{1}>\bar{t}_{2}-\bar{t}_{1}=\bar{a}+\frac{1}{\eta} \log \left(\frac{\beta}{V} \frac{\sigma^{-}}{\eta} \frac{1}{m}-1\right) \tag{42}
\end{equation*}
$$

In order to have $\Delta t>\bar{a}$ it is sufficient that

$$
\begin{equation*}
\sigma^{-}>2 m \eta \frac{V}{\beta}, \text { where } \sigma^{-}=\left(\frac{c_{1}^{-}}{c_{1}^{+}}\right) \mu-(\rho-\mu) \tag{43}
\end{equation*}
$$

Therefore

$$
\sigma=\frac{n_{0}(1-\alpha)}{\bar{a}}>\mu=\min \varphi(a)>\left(\frac{c_{1}^{+}}{c_{1}^{-}}\right)\left[2 m \eta \frac{V}{\beta}+(\rho-\mu)\right]
$$

If we assume a constant age distribution, i.e.

$$
n(t, \bar{a})= \begin{cases}\varphi(\bar{a}-t)=\sigma & t \in[0, \bar{a}] \tag{44}\\ 0 & t>\bar{a}\end{cases}
$$

then we have $\rho=\mu$. Hence in order to have $\Delta t>\bar{a}$, it is sufficient

$$
\sigma=\frac{n_{0}(1-\alpha)}{\bar{a}}>\left(\frac{c_{1}^{+}}{c_{1}^{-}}\right) 2 m \eta \frac{V}{\beta} .
$$

Therefore the above two inequalities suggest that a constant age distribution of the drug loaded RBC may be the best choice for the C.P. since, in agreement with the requirement iii) of C.P., the constant age distribution (44) requires a lower amount n_{0} of drug loaded RBC. A detailed analysis of the model and of the related C.P. will be presented in a future paper by the same authors.

REFERENCE

L.Chiarantini, L.Rossi, A.Fraternale and M.Magnani: Modulated Red Blood Cell Survival By Membrane Protein Clustering. Submitted, 1993.

