
80

On the Computational Power of Binary Decision Diagram with
Redundant Variables

Tetsuya YAMADA (山田哲也) Hiroto YASUURA (安浦寛人)

Department of Information Systems
Interdisciplinary Graduate School of Engineering Sciences

Kyushu University
Abstract
We introduce a BDD with redundant variables as an Indexed BDD(IBDD) and define PolyIBDD as the class of Boolean
functions represented by polynomial-sized IBDDs or the $\mathfrak{n}tltll$ ber of input variables. Assuming that the class of languages on
$\{0,1\}$ that are accepted by logarithmic space bounded DTMs is DLOG, \downarrow he f’ollowing relation holds. PolyIBDD $=DLOG$.
That is to say that languages which belong to DLOG also belong to PolyIBDD.

Keywords: Binary Decision Diagram, Indexed BDD, PolyI BDD, PolyIBDD, DLOG

1 Introduction
Due to the recent progress of VLSI technology, it is
desired to design large scaled and complicated logic
circuits. Computer-aided design for digital circuits
(CAD) is indispensable to design such a large scaled
integrated digital circuits. Representations of Boolean
functions affect area and computational time in syn-
thesis and simulation of the logic circuit. The impor-
tance of representations is increasing as the scale of
Boolean functions is becoming larger.

Binary Decision Diagram(BDD) is one of the data
structure to represent Boolean functions[l, 2]. A BDD
is a directed acyclic graph which is constructed from
successive Shannon expansionl of a Boolean function
according to a given input variable order. When iso-
morphic subgraphs and redundant nodes are reduced,
a Boolean function has a canonical form of BDDs given
an input variable order. That is two functions are
equivalent if and only if the reduced BDD for each
function is isomorphic given an input variable order.
The canonicity makes easy to check equivalence of
Boolean functions. Besides many practical Boolean
functions are representable in feasible memory space
using BDDs. Due to good properties above, BDD is
widely used in CAD, such as logic synthesis, test gen-
eration and verification.

The number of nodes of BDDs (it is also called “size
“) affects the processing speed of Boolean functions
and memory area. Tbus we can use BDD’s size as
complexity measure of Boolean functions. The largest
size of BDDs is at most polynomial to the number of
input variables to manipulate Boolean functions.

The term :‘Sequence of BDD^{\cdot}
’ can be defined as an

infinite set of BDDs which are characterized by a size
parameter i . A sequence of BDDs is an infinite set of
BDDs such that each BDD represents a Boolean func-
tion of i input variables for each positive n umber i .

1Shannon expansion of variable x ; means $F=\overline{x,}\cdot F_{x_{t}=0}+$

$x;\cdot\Gamma_{x.=1}$.

We will regard an on-set of a Boolean function which
is represented by a BDD in a sequence of BDDs as
a string on $\{0,1\}$. Now there is one-to-one corre-
spondence between a sequence of BDD and a formal
language on $\{0,1\}$, thus we can argue the sequence
of BDDs using results of formal language theory.

Ishiura et a1.[4] defined the class of Boolean func-
tions which are represented by a sequence of polynomial-
sized BDDs of the n umber of input variables as PolyBDD.
They have showed relations between PolyBDD and
Turing machines as follows: Regular $Set\subseteq PolyBDD\subseteq$

DLOG, where DLOG is the class of languages that are
accepted by logarithmic space-bounded deterministic
Turing machines.

Jain et a1.[5] proposed an Indexed BDD(IBDD) as
a rnore compact and generalized form of BDDs. An
IBDD is a BDD with redundant input variables. Al-
though IBDD has no canonical form for any Boolean
function and a construction of IBDD is a complicated
task, an integer multiplier and an HWB(Hidden Weighted
Bit) function [3] can be represented by polynomial-
sized IBDDs of the number of input variables. It is
k nown that BDD requires at least exponential to rep-
resen t the same functions[3].

We will define the class of Boolean functions which
are represented by a sequence of polynomial-sized IB-
DDs of the number of input variables as PolyIBDD.
The purpose of this paper is to clarify the relation
between PolyIBDD and well-known classes of formal
languages.

In this paper, we present relations between IBDDs
and Turing machines. The following relation holds.

PolyIBDD $=DLOG$

In Section 2, we define a sequence of IBDDs, Poly-
IBDD, and these related terms. In Section 3, we show
that PolyIBDD$=DLOG$. In Section 4, we give conclud-
i ng remarks.

数理解析研究所講究録
第 871巻 1994年 80-86

81

2 Definitions

2.1 BDD and Indexed BDD
Deflnition 1 (Indexed $BDD:IBDD$)
An IBDD is an 8-tuple $IB=(N_{v},$ N_{c} , init, in$dex,$ $k(n)$,
$e_{0},$ e_{1} , level)
$gVen_{N:asetofvaria}-t^{x_{1e^{1}’ n}x_{o^{2}des}.,x_{n}\}}$, where. N_{c} : a set of constant nodes. $N_{v}\cup N_{c}$: a set of nodes. $init\in N_{v}$: an initial node. index : $(N_{v}\cup N_{c})arrow(\pi\cup\{0,1\})$ the index of a

node
$-index(v)\in\pi$,
-index(v) $\in\{0,1\}$,

$ifv\in Nifv\in N_{c^{v}}$. $k(n)$: the number of layers. $e_{0}(v)$: $N_{v}arrow(N_{v}\cup N_{c})$ the 0
’ edge directed

from a node v. $e_{1}(v)$: $N_{v}arrow(N_{v}\cup N_{c})$ tbe 1’ edge directed
from a node v. A level expressing a tuple (L, l) .
L : a layer number $(1\leq L\leq k(’\iota)+1)$,
l : a level in a layer $(1\leq l\leq|\pi|)$

$-\varphi:(Lxl)arrow\pi\cup\{0,1\}$

$-\varphi.$: $larrow\pi\cup\{0,1\}$

$-\varphi(i,j)=\varphi.(j)$

-index(init) $=\varphi(1,1)=\varphi_{1}(1)$

$-\varphi_{1}^{-1}(index(v))=\varphi_{i}^{-1}(index(v’))$,
if$findex(v)=index(v’)$, where $v,$ $v’\in$

N_{v}

$-index(v)=\varphi(k(n)+1,1)=\varphi_{k(\mathfrak{n})+1}(1)$.
$iffv\in N_{c}$

$-e_{0}(v)$ satisfies any of the followings.
index $(v)=\varphi(i,j)$, $ijv\in 4V_{v}$

$1\leq i\leq k(n),$ $1\leq j\leq|\pi|$

1. index $(e_{0}(v))=\varphi(i,j’)$ $1\leq j<j’\leq$

$|\pi|$

2. index $(e_{0}(v))=\varphi(i’,j’)$ $1\leq i<i’\leq$

$k(n)$

3. index $(eo(v))=\varphi(k(\mathfrak{n})+1,1)$

$e_{1}(v)$ is defined similarly.
Each node $v,$ $(v\in N_{v}\cup N_{c})$ represents a Boolean

function f_{v} : $\{0,1\}^{|\pi|}arrow\{0,1\}$.

$f_{v}=\{\begin{array}{l}0ifv\in N_{c},index(v)=0\frac{l}{index(v)}\cdot f_{e_{O}}(v)+ifv\in N_{c},index(v)=1index(v)\cdot f_{e_{1}}(v)ifv\in N_{v}\end{array}$

An IBDD IB represents a Boolean function f_{B} as
$f_{B}=f_{1n\cdot t}$, where $x_{1}^{i}=x^{2}=\cdots=x_{1}^{j}(1\leq i\leq\square$

$|\pi|,$ $1\leq j\leq k(n))$

IBDD differs from BDD in the following points.. A variable order is free on each layer.

IBDD

Figure 1: IBDD IB_{3}^{2}

. Variables at different level on a layer are differ-
ent.. Different graphs which represent the same Boolean
function are obtained iflayer number $k(n)$ varies.
i.e. there is no canonical form.. An IBDD equals a BDD when a layer number
$k=1$.

We define a sequence of IBDDs following the definition
of a sequence of Boolean functions2 in [7]. A sequence
of IBDDs is an infinite set of IBDDs which are char-
acterized by a size parameter n .
Definition 2 (Sequence of IBDDs)
A sequence of IBDDs $\{IB_{\mathfrak{n}}^{k(n)}\}$ is an infinite set of
IBDDs $IB_{1}^{k(1)},$ $IB_{2}^{k(2)},$

\ldots , where $IB_{n}^{k(n)}$ is an IBDD
which represents a Boolean function of n variables.
$k(i)$ is a function which is related to i . \square

We define a formal language $L_{\{JB_{\mathfrak{n}}^{k(n)}\}}$ for a sequence

of IBDDs $\{IB_{n}^{k(n)}\}$ following the definition of a formal
language for a sequence of Boolean functions in [7].

Deflnition 3 $(L_{\{JB_{n}^{k(\mathfrak{n})}\}})$

A formal language $L_{\{JB_{n}^{k(n)}\}}$ for a sequence of IBDDs
is

$\{L_{\{IB_{n}^{k\{n)}\}}=f_{JB_{n}^{k\{n)}}^{-1}(1)|n=1,2, \ldots\}$,

where $f_{JB_{\pi}^{k(n)}}$ denotes a Boolean function represented

by an IBDD $IB_{n}^{k(n)}$, and $f_{JB_{n}^{k(n)}}^{-1}(1)$ means the set of n-
length sequence

$\{b_{1}, \ldots, b_{n}\}\in\{0,1\}^{n}$
which

$satisfie_{\square ^{S}}$

$f_{B_{\mathfrak{n}}^{k(n)}}(b_{1}, b_{2}, \ldots, b_{n})=1$.

We can connect IBDDs with formal languages from
the definition above. However, we need to define uni-
formity of a sequence of IBDDs as a family of logic

$2A$ se uence ofof Boolean functions is often called a family of
Boolean functions.

82

circuits as defined in [6] in order to discuss the rela-
tion between IBDDs and Turing machines. 1Ve define
an encoding of an IBDD according to an encoding of
logic circuits[6]. First of all, we begin with a descri $I\succ$

tion of each node of an IBDD D_{v} .
Definition 4 (node description of IBDD D_{v})
Each node v , $(v\in N. \cup N_{c})$ of an IBDD is described
a 4-tuple $D_{v}=(index(v),level, e_{0}(v), e_{1}(v))$. We can
describe an entire IBDD when we gather descriptions
of all nodes of an IBDD. We call the entire

$BDD\square$

$D_{B}(D_{JB})$.
Deflnition 5 (standard encoding of IBDD)
Let C be a constant, and size $(IB_{\mathfrak{n}}^{k})$ size of an IBDD
$IB_{n}^{k(n)}$. Assuming that each node description of an
IBDD D_{v} is encoded in a sequence of $\{0,1\}^{*}$ with
Clog (size $(IB_{n}^{k(n)})$) length and encoded descriptions
of D_{v} differs from each other, we define this encoding
as standard encoding of the IBDD $IB_{\mathfrak{n}}^{k(\mathfrak{n})}$ and denote
$\overline{IB_{n}^{k(\mathfrak{n})}}$. \square

A Node description D_{v} of a polynomial-sized IBDD
$IB_{\mathfrak{n}}^{k(n)}$ consists of index, level $(L, l),$ $e_{0}(v)$ and $\epsilon_{1}(v)$.
The number of them are $n,$ $poly(n)^{3},$ $poly(n)$, and
poly (n) respectively. Then D_{v} is encoded in $O(logn)$
space. We can define a uniformity of a sequence of
IBDDs $\{IB_{\mathfrak{n}}^{k(n)}\}$.
Definition 6 (uniformity of IBDD)

Let $\overline{IB_{\mathfrak{n}}^{k(n)}}$ be a standard encoding of n-th IBDD $IB_{n}^{k\cdot(\mathfrak{n})}$

of a sequence of IBDDs $\{IB_{n}^{k(n)}\}$.
Assuming that the function which generates $\overline{IB_{n}^{k(n)}}$

from a binary description of n is computable with a
logarithmic space bounded deterministic Turing ma-
chine, we define a sequence of IBDDs $\{IB_{n}^{k(n)}\}$ as
logarithmic uniform. \square

Definition 7 (PolyI BDD)
Assuming that each IBDD $IB^{k(i)}|$ of a sequence of IB-
DDs $\{IB_{n}^{k(n)}\}$ satisfies size $(lB_{j}^{k(\cdot)})\leq poly(i)$, a loga-
rithmic uniform sequence of IBDD $\{IB_{\mathfrak{n}}^{k(\mathfrak{n})}\}$ shall be
denoted as PolyI BDD. \square

Definition 8 (PolyIBDD)
PolyIBDD is the class of languages that represented
by IBDDs and each IBDD’s size is polynomial to the
number of input variables: i.e.

\cup $L_{PolyJ^{k(\mathfrak{n})}BDD}=PolyIBDD$.
$k(\mathfrak{n})=n^{\circ(1)}$

\square

$\overline{\epsilon_{poly(n)}}$isafunction of $n\alpha\iota$) i.e. poly (n) follows a polyno-
mial growth of n .

2.2 DLOG and Logarithmic Space Bounded
Deterministic Turing Machine

We define $l|$; as a deterministic Turing machine with
a two-way read-only input tape, two-way log-space
bounded worktape. An input head is reversed at will.
The worktape is written blank symbols in advance.

Deflnition 9 (DTM)

A deterministic Turing machine is 7-tuple $M=(Q,$ $\Sigma,$ Γ ,
$\delta,$

$q_{0},$ B,Γ), where. Q : a finite set of states. Σ : a finite set of input symbols. Γ : a finite set of worktape symbols. q_{0} : the start state $(q_{0}\in Q)$. B : the blank symbol $(B\in\Gamma)$. F : a set of final states $(F\subseteq Q)$. δ : a transition function $(Qx\Sigma x\Gamma)arrow(Qx\Gamma\cross$

$D_{1}\cdot xD_{w})$,
where D. is the set of possible input head moves,
D_{u}, is the set of possible worktape head moves,
$D_{i}(D_{w})=\{-1,0,1\}$, where-l, 1, 0 denotes head
moves Left, Right and No moves respectively.

Suppose both sides of the input tape are enclosed by
end markers ($,#).

The configuration of M denotes C_{M} and is 4-tuple
(q , P., $P_{t},$ τ), where. q : a state of the finite control. P_{i} : a position of the input head. P_{I} : a posi tion of the worktape head. τ : contents of the worktape
An initial configuration is $C_{1nitM}=(q_{0},0,0,$ $BB\ldots$

$B)$, where 0 denotes that the input head and tbe work-
tape head are both on left end markers$. If q is a final
state $(q\in F)$, the configuration is called an accepted
collfiguration C_{acptM} .

We define a function f which computes the next
configuration $C_{M}’$ from a configuration C_{M} .

$f(C_{M},x)=C_{k}’,$ $=(q’, P_{1}+d:, P_{w}+d_{w}, \tau’)$,

where x is a symbol under the input head, $d_{1},$ $d_{w}\in$

$\{-1,0,1\}$ denotes a direction of a head movement.
C_{1} has two next configurations because the input

symbol x under the input head of C_{1} is 0 or 1. Let us
consider next configurations $C_{2},$ C_{3} of a configuration
C_{1} . Let the state be q , a symbol on the input head
$a(\in\Sigma)$, and a symbol on the worktape head $b(\in\Gamma)$

of the configuration C_{1} . A transitive function δ is
expressed as follows:

$\delta(q, a, b)=(q’, b’, d_{1}, d_{w})$

Using a function f , we can compute $f(C_{1},O)=C_{2}$ and
$f(C_{1},1)=C_{3}$ according to the transitive function δ .
The symbol $C_{2}(resp. C_{3})$ denotes the next configura-
tion of the configuration C_{1} when the input symbol of
C_{1} is 0 (resp. 1) of M . \square

83

1. (Condition 1) Let C_{M}^{j} be a j-th step’s configu-
ration of Af and C_{M}^{j+1} a $(j+1)$-th step’s config-
uration of M . If $C_{kl}^{j}\vdash_{M}C_{M}^{j+1}$ according to the
transitive function $\delta_{j}\nu$; then there is a succession
of transitions $C_{h}^{j},,$ $\vdash_{\dot{M}},$ C_{M}^{j+1} . The configuration
C_{M}^{j} , that corresponds to C_{M}^{j} is a j step’s con-
figuration of $M’$ and C_{M}^{j+1} that corresponds to
C_{h}^{j+1} is a $(j+1)$-th step’s configuration of $M’$.
$(c_{h}^{i,}’rightarrow C_{J}^{i,}" C_{M}^{i+1}\iotarightarrow C_{M}^{j+1})$

2. (Condition 2) There is a configuration graph of
$\lambda I’(G\}")$ which corresponds to G_{M} of M .

lVe show $llt’$ in Figure 2. $M’$ is a deterministic Tur-
ing machine with a one-way read-only input tape and
a two-way log-space bounded worktape. Let the con-
tents of the input tape of M be $(b_{1}, b_{2}, \ldots \dagger b_{n})$ and the

Figure 2: Log-Space Bounded DTM $4lI’$ reversal of l)[$k(n)-1^{5}$ times. $M’$ has the following
properties.

Deflnition 10 (DLOG) . An input tape of $M’$ is written such that $(b_{1},b_{2},\ldots$,
DLOG is the class of languages on $\{0,1\}$ that are b_{n}), $(b_{n},b_{\mathfrak{n}-\iota},\ldots,b_{1}),$ $(b_{1},b_{2},\ldots,b_{n}),(b_{n},b_{n-1},\ldots, b_{1})$

accepted by logarithmic space bounded DTMs. \square A string of input symbols, which has the
length n , is written $k(n)$ times repeatedly and

3 Computational Power of PolyI versed order.
even turns of input strings are written in the re-

BDD . The input head position of $M’$ denotes $P_{M}^{;},$. P_{M} ,
shows a distance from the left end of a input

In this section, we prove that PolyI BDD and $O(logn)$ string. $(1\leq P_{kl’}^{;}\leq n)$

space bounded deterministic Turing machines (DTMs) . The input head of $M’$ moves right, or halts.
are of the same computational power. We also mention . The length of the worktape has $O(logn)$. The
relations between PolyIBDD and formal languages. head of the worktape of $M’$ moves right, left, and

halts.
3.1 PolyI BDD and Log-Space Bounded . The worktape of $M’$ has three tracks. Two tracks

DTM are used to record the symbols such as the work-
tape of Λf and to record the head position. The

3.1.1 DLOG C PolyIBDD other track is used to count the number of proper
Definition 11 (even turns reverse order expansion movements of $M” s$ input head.
of an input tape) The numbers $-1,0,$ $+1$ denote input head movements
Let the contents of an input tape be $(b_{1},b_{2},\ldots,b_{n})$. An of $41f$: left, no moves, and right respectively. The posi-
even turns reverse order expansion of the input tape is tive(or negative) number denotes quantities of right(or
such that $(b_{1},b_{2},\ldots,b_{n}),$ $(b_{\mathfrak{n}},b_{n-1},\ldots,b_{1}),$ $(b_{1},b_{2},\ldots,b_{l})$, left) movements. In order for $M’$ to read the same in-
$(b_{n},b_{n-1},\ldots,b_{1})\ldots$. That is, a string of input sym- put symbol as M , the $(j+1)$-th steps of $M” s$ input
bols4, which has the length n , is written $k(n)$ times head should be as follows.
repeatedly and even turns of input strings are written . $2(n-P_{M}^{j},(j))+2$, (if $M’ s$ input head reverses)
in the reversed order. . $0,$ $+1$, (if $M’ s$ input head does not reverse)
Lemma 1 For a given $O(logn)$ space bounded DTM $P_{Yl}^{j}(j)(1<P_{k}^{1},,\circ)<n)$ is the input head position of

$-$
M with a two-way input tape, there exists an $O(logn)$ 11 $f’$ at j-th step. If the input head of M reverses, the
space bounded DTM $M’$ with a one-way input tape, input head of $\lambda f’$ moves to the right string of inputs.
which is the even turns reverse order expansion of $1II’ s$

P $(j)(1<P_{\dot{h}i},(j)<n)$ is determined below. Wehl $-$input tape, that simulates plf . \square

make a counter in the worktape of $M’$. Whenever
Proof. $l1f” s$ input head moves right, the counter is increased

in
$Itisnecessarytosatisfythefo11owi_{1l}gtwoordertoprovethatMsimu1atesM$.

conditions
$\frac{O11eby\circ 1\tau e.Ifthe}{s_{4Vese1ectk(n)-1be}}co_{causeoftheconvenienceofthediscus-}unterequa1sn+1,thecounter$

$\overline{4}$astring of input symbols is $(b_{1},b_{2},\ldots,b_{\mathfrak{n}})$ in this case. si on below.

84

is initialized to 1. $P_{A^{1}J},(j)$ is determined using this
counter.

Let the j-th step’s configuration of M be $C_{l}^{i_{\backslash /}}=$

$(q, P_{M}^{;}(j),$ $P_{M}^{w}(j),$ τ). The $(j+1)$-th step’s configura-
tion C_{M}^{j+1} becomes
$f(C_{M}^{j},x)=C_{M}^{j+1}=(q’, P_{\dot{M}}(j)+d_{M}^{\mathfrak{i}}(j+1),$ $P_{\lambda^{w}},\{j$) $+$

$d_{AJ}^{w}(j+1),$ $\tau’$).
Suppose the corresponding configuration of $41I’$ is $C^{\prime j_{\dagger J}},$ $=$

$(q, P_{M}^{3},(j), P_{M}^{w},(j), ar)$ ($c\iota$ is a counter part), $C_{l}^{j_{\}}+1}\iota v1_{1}ic1$)

satisfies the Condition 1 is determined as follows.. If $M’ s$ input head is reversed
$-d_{\dot{M}’}(j+1)=2(n-P_{M’}^{i}(j))+2$

when $d_{M}(j)=1$ and $d_{M}’(j+1)=-1$, or
$d_{A}:,,(j)=-1$ and $d_{\dot{M}}(j+1)=1$.
$C_{M}^{j+1}=(q’, P_{M}^{1},\langle j)+2(n-P_{\dot{M}},(j))+2_{1}P_{t\backslash }^{u}j,(j)$

$+d_{M’}^{w}(j+1),$ $\alpha’\tau’$)
$P_{M}^{i},(j+1)$, the input position of C_{A}^{j+1} , is
determined that the input head moves right
$2(n-P_{A^{i}},,(j))+2$ times from the position
$P_{M}^{i},(j)$. If a counter for head movement
equals $n+1$, then the counter is initial-
ized to 1. The range of $P_{M}|(j+1)$ is $(1\leq$

$P_{M}^{l},(j+1)\leq n)$. The transition from C_{hi}^{i} ,

to C_{j1f}^{j+1} is expressed by a succession of tran-
sitions using the reflexive and transitive clo-
sure.
$c^{j},\vdash c^{j+1}Al’\dot{M}’M$. If $\Lambda f’ s$ input head is not reversed

$-d_{M}^{i},(j+1)=1$ when $d^{:_{\backslash i}}(j+1)=1$

$C_{M}^{j+1}=(q’, P_{kJ’}^{i}(j)+1,$ $P_{M}^{w},(j)+d_{t}^{u_{\}^{1}\mathfrak{l}’}}(j+$

1), $a\tau’$)
$c_{M’}^{J}\vdash JM^{J}c_{M}^{j+1}$

$-d_{A\int},(j+1)=0$ when $d_{M}^{;}(j+1)=0$

$C_{AJ}^{J+1}=(q’, P_{kJ’}^{i}(j)+0,$ $P_{M}^{w},(j)+d_{M’}^{w}\langle j+$

1), $\alpha\tau’$)
$c^{j}\vdash c_{M}^{j+1}M^{\prime M’}$

$-d_{j11}^{l},(j+1)=1$ when $d_{M}^{1}(j+1)=-1$

$C_{Af}^{J+1}=(q’, P_{M’}^{j}(j)+1,$ $P_{M}^{w},(j)+d_{Ai’}^{w}(j+$

1), $\alpha\tau’$)
$c_{h}j_{\prime M’},\vdash c_{M}^{j+1}$

We can make a configuration graph $G_{l}M$ using the
function $f(C_{M}, x)$ defined in Section 2.2. The initial
configuration of M is an initial node of G_{M} . The graph
is a directed graph. Each node is a configuration of
M . If a j-th configuration C_{rVJ}^{J} moves to a $(j+1)-$
th configuration $C_{M}^{j+1},$ C_{M}^{j} is connected with $C_{\backslash }^{j+i}bv$

an arc whose value is a symbol on the input head. A
(non)accepting configuration is a terminal node. The
space of the worktape of j} ζ is bounded by $O(logn)$ for
input size n , and thus the number of configurations of
Λf is limited by a polynomial of n at most. The num-
ber of nodes in the graph is bounded by a polynomial
of n because the graph size equals the number of con-
figurations of M .

The configuration graph of $M(G_{M})$ is a graph which
connects from a initial configuration to a (non)accepting
configuration. We replace configuration nodes of M

with configuration nodes of $M’$ such that $C_{1njtM}rightarrow$

$C_{1nil_{l\backslash \prime}},,$ $C_{acptM}rightarrow C_{acptM^{l}}$, and $C_{nacptM}rightarrow C_{nacptM’}$.
We replace successions of configurations of M with
successions of configuration of $M’$ such that $C_{M}^{\forall j}\in$

$G_{f\}/},$ $C_{A}^{j},$ $\vdash_{M}C_{M}^{j+1}\mapsto C_{M}^{j},$ $\vdash_{M}^{r},$ C_{M}^{j+1} . The resultant
one is a configuration graph of $M’(G_{M’})$. The num-
ber of configurations of $M’$ is restricted to polynomial
of n because the replacement of successions of configu-
rations is added to polynomial configurations at most.
The number of nodes in the graph is polynomial of n

at most.
If the input tape of M has length n and the rever-

sal of Λf is $k(n)-1$ times, the length of $M” s$ input
tape is enough for $k(n)xn$. There is a succession
of configurations of λf‘ $(C_{n\cdot IM’}\vdash_{M}^{*}, C_{acptM’})$ that
corresponds to a succession of configurations of M

$(C_{lnitM}\vdash_{\dot{M}}C_{acptM})$ Thus, the Condition 2 is satis-
fied.

Therefore, $Af’$ simulates M . \square

In Figure 2, the length of the input tape shown is
$4\cross n$, and a string of input symbols is written 4 times.
The reversal of input heads of M occurs three. Notice
that the reversal of input heads of M occurs $k(n)-1$
times though the number of string of input symbols is
$k(n)$.
Lemma 2 An IBDD of size polynomial to the in-
put size can be constructed from an $O(logn)$ space
bounded DTM $Af’$ with a one-way input tape, which
is the even turns reverse order expansion of $M’ s$ input
tape. \square

Proof.
By virtue of Lemma 1, we can construct a configu-

ration graph of $Af’(G_{M’})$ that corresponds to GM of
Λf and successions of configurations of M‘ that corre-
sponds to successions of configurations of M.

Suppose that an input tape of $M’$ is the even turns
reverse order expansion of the input tape of M. $IG_{M^{J}}$

is a configuration graph and each node of $IG_{M’}$ is the
configuration when an input symbol is first read in
all of the $iIf” s$ configurations. Each node of $IG_{M’}$ is
expressed by $J^{X_{i}}$ which is i-th input string $x.(1\leq i\leq$

n) il) $j(1\leq j\leq k)$ turns of input strings. There is no
loop in $IG_{h}’$.

It is easy to transform a graph $IG_{M’}$ into an IBDD.
We replace each node jXi of $IG_{M^{t}}$ with i-th input
string x_{1} in the j-th layer, 0(or 1) arc with 0(or 1)
edge, and an accepting(or nonaccepting) configuration
with a constant node 1 (or 0). The resultant graph is an
IBDD. Since nodes ofconfigurations have a polynomial
bound of input size n at most, the size of IBDD is
polynomial of n at most. In the above

$construction_{\square }$

the $I13DD$ has $k(n)$ layers.

85

Figure 3: IBDD Cbnstruction from a Conflguration
Graph of $M’$

We delete nodes v that satisfy $e_{0}(v)=e_{1}(v)\langle v\in$

$N_{v})$ in IBDD after we construct an IBDD from a con-
figuration graph of $M’(IG_{M’})$. The Boolean function
which is represented by the IBDD is not changed if
applicable nodes are all deleted. We show an example
that an IBDD constructed from a configuration graph
$IG_{M’}$ in Figure 3.

Theorem 1 For a given $O(logn)$ space bounded
DTM M with $k(n)-1$ times reversal of the input
tape, there exists a logarithmic uniform sequence of
polynomial-sized IBDD with $k(n)$ layers (PolyI BDD)
which accepts the language accepted by Λf , where $k(n)$

is polynomial to the input length n . \square

Proof.
Let L be the language that is accepted by $O(logn)$

space bounded DTM M . For a given $O(logn)$ space
bounded DTM M with $k(n)-1$ times reversal of the
input tape, there is an $O(logn)$ space bounded DThl
$M’$ with a one-way input tape, which is even turns
reverse order expansion of $M’ s$ input tape, that sim-
ulates M by Lemma 1. Thus, L is also accepted by
$M’$. We construct a polynomial-sized IBDD $IB_{n}^{k(n)}$

from the configuration graph of $41f$ ‘ by Lemma 2. An
IBDD $IB_{n}^{k(n)}$ represents a Boolean function $f_{/B_{\hslash}^{k(n)}}$

and $f_{IB_{n}^{k\langle n)}}(b_{1}, b_{2}, \ldots, b_{n})$ equals 1 if and only if $(b_{1},$ b_{2} ,

... , $b_{\mathfrak{n}}$) belongs to L. $IB_{1}^{k(1)},IB_{2}^{k(2)},\ldots,IB_{\mathfrak{n}-1}^{k(n-1)},\ldots$

are similarly constructed by Lemma 2. Then we obtain
a sequence of IBDDs $\{IB_{n}^{k(\mathfrak{n})}\}$ which accepts L . That
is, the sequence of IBDDs $\{IB_{n}^{k(n)}\}$ is constructed by
an $O(logn)$ space bounded DTM $4tf’$ with a one-
way input tape which is the even turns reverse or-
der expansion of $M’ s$ input tape. The sequence is
logarithmic uniform by Definition 6. Thus, a loga-
rithmic uniform sequence of polynomial-sized IBDDs
(Polyl BDD) of the number of input variables is
obtained from $O(logn)$ space bounded DTM $A\backslash f$. \square

The following Corollary 1 and Corollary 2 are de-
rived from Theorem 1.

Corollary 1 $DLOG\subseteq PoiyIBDD$ \square

Proof.
Let L; be an arbitrary language which belongs to

DLOG. There exists an $O(logn)s$pace bounded DTM
$p|I$ which accepts L_{i} . For a given $O(logn)$ space
bounded DTM M with $k(n)-1$ times reversal of the
input tape, we can generate PolyI BDD which ac-
cepts the language accepted by M , by Theoreml. The
number oflayers $(k(n))$ of PolyI BDD is restricted
to $k\{n$) $\leq poly(n)$ at most. PolylBDD can be ex-
pressed as $\bigcup_{k(n)=n^{O\langle 1)}}L_{PolyJ^{k(n)}BDD}=$ PolyIBDD
by Definition 8. Hence, PolyIBDD includes L: which
belongs to DLOG, and thus DLOG C PolylBDD

$\square is$

obtained.

3.1.2 $PolyIBDD\subseteq DLOG$

Theorem 2 For a logarithmic uniform sequence of
polynomial size IBDD with $k(n)$ layers (PolyI BDD),
there exists a $O(logn)$ space bounded DTM M with
$k(n)-1$ times reversal of the input tape which accepts
the language accepted by PolyI BDD , where $k(n)$

is polynomial to the input length n . \square

Proof.
Let $L_{\{JB_{\mathfrak{n}}^{k\langle n)}\}}$ be an arbitrary language accepted by

PolyI BDD. We wish to show that we can con-
struct alogarithmic space bounded DTM M with $k(n)-$
1 times reversal of the input tape which accepts $L_{\{JB_{n}^{k\langle n)}\}}$.

Suppose that $\{b_{1}, b_{2}, \ldots, b_{n}\}\in L_{\{IB_{n}^{k(\mathfrak{n})}\}}$ is the con-
tents of the input tape of M . Blank symbols are writ-
ten on the worktape of M .

First, the input tape scans once to measure its length
n and the length is encoded by $O(logn)$ bits on the
worktape. A node description D_{v} of the n-th IBDD
$ID_{n}^{k(n)}$ of PolyI BDD is written on the worktape
based on binary encoding of n . Assume that the vari-
able order of odd layers are $(x_{1}, x_{2}, \ldots, x_{n})$ and that of
even layers are $(x_{n}, x_{n-1}, \ldots , x_{1})$ in the IBDD $IB_{n}^{k(\mathfrak{n})}$.

Suppose that a node description $D_{v}(v\in N_{c}\cup N_{v})$

is written on the worktape. D_{v} is described a 4-tuple
$(ind\epsilon x\langle v),level,$ $e_{0}(v),$ $e_{1}(v))$ by Definition 4. A vari-
able x :(1 $\leq i\leq$ n) of the node v is obtained by
index(v). The value $b_{i’}$ ($1\leq i’\leq$ n) of the vari-
able x ; determines an edge of the node v . If $b_{i’}=$

0 (or $b,’=1$), then the node $v’$ which enters from
$\epsilon_{0}(v)\langle ore_{1}(v))$ is $se|ected$ as the next one. If nodes
are in odd(or even) layers of an IBDD, $M’ s$ input head
moves right(or left). If $e_{0}(v)(ore_{1}(v))$ is a terminal
node and the index of $e_{0}(v)(ore_{1}(v))$ is 1, then the
input $(b_{1}, b_{2}, \ldots, b_{n})$ is accepted. If $e_{0}(v)(ore_{1}(v))$ is
a terminal node and the index of $e_{0}(v)(ore_{1}(v))$ is 0 ,

86

NC^{2}

NLOG
1

/
NC^{1} PolyBDD$=L_{PolyI^{1}BDD}$

$\backslash |Regular$

Set

Figure 4: Classes of Formal Languages and $Polyl13DD$

then the input $(b_{1}, b_{2}, \ldots, b_{\mathfrak{n}})$ is not accepted. The log-
arithmic space bounded DTM $\dot{r}1f$ scans the input tape
along a path from the root node to a terminal node
of IBDD. The input head reverses when two nodes are
in different layers. Therefore, we can construct a log-
arithmic space bounded DTM M which accepts the
language accepted by PolyI BDD. O

Corollary 2 is derived from Theorem 2.

Corollary 2 $PolyIBDD\subseteq$ DLOG 口

Proof.
Let $L_{\{JB_{\hslash}^{k(\mathfrak{n})}\}}$ be an arbitrary language accepted by

PolyI BDD . We wish to show that $L_{\{’ B_{n}^{k(n)}\}}$ be-
longs to DLOG. By Theorem2, we can construct a
$O(logn)$ space bounded DTM M with $k(n)-1$ times
r,eversal of the input tape which accepts the language
accepted by PolyI BDD, where $k\backslash (n)$ is a polyno-
mial of the input length n . PolyIBDD is expressed
as $\bigcup_{k(n)=n^{O(1)}}L_{PolyJ^{k\{\mathfrak{n})}BDD}=PolyIBDD$ by Defni-
tion 8. Therefore, a logarithmic space bounded DTM
M with input size n accepts languages that belong to
PolylBDD 口

Theorem 3 is derived from Corollary 1 and Corollary
2.

Theorem 3 PoiyIBDD $=DLOG$ 口

3.2 Classes of Formal Languages and
PolyIBDD

We show the proved relations between classes of formal
languages and PolyIBDD in Figure 4. PolyBDD[4] is
the class oflanguages that are accepted by logarithmic
uniform sequences of polynomial-sized BDD’s of input
size n . PolyBDD is equivalent to PolyI BDD.

4 Conclusion,

In this paper, we introduced a BDD with redundant
variables as an Indexed BDD(IBDD) and defined Poly-
IBDD as the class of Boolean functions represented by

polynomial-sized IBDDs of the number of input vari-
ables. We have discussed the relation between Poly-
IBDD and the class of languages accepted by Turing
machines. Results which are obtained in this paper
are summarized below.. For a given $O(logn)$ space bounded DTM M

with $k(n)-1$ times reversal of the input tape,
there is a uniform sequence of polynomial size
IBDD with $k(n)$ layers which accepts the lan-
guage accepted by M , where $k(n)$ is polynomial
to the input length n , and vice versa.. The following relation also holds.

PolyIBDD $=DLOG$

The result mentioned above states that we can con-
struct polynomial-sized IBDD for languages accepted
by logarithmic space bounded DTM. The property
of PolyBDD, which is the class of Boolean functions
which are represented by polynomial-sized BDDs of
the number of input variables n , are equal to that of
$L_{Poly\prime^{1}BDD}$. That is, $L_{PolyJ^{k\{\hslash)}BDD}$ is a generaliza-
tion of PolyBDD.

Acknowledgments
We wish to express our gratitude to the following people:
Dr. Nagisa Ishiura of Osaka Univ., Dr. Masahiro Fujita
of’ Fujitsu Lab. of America, Dr. Kiyoharu Hamaguchi
of Kyoto Un $iv.$, Dr. Hiroyuki Ochi of Kyoto Univ., Ya-
suhiko Takenaga of Kyoto Univ., Mr. Hiroshi Sawada of
NTT, Shin-ichi Minato of NTT, Dr. Kazuaki Murakami of
Kyushu Univ. an d Dr. Mizuho Iwaihara of Kyushu Univ..

References
[1] Sheldon B. Akers. “Binary Decision Diagrams”. IEEE

Trans. Comput., Vol. C-27, No. 6, pp. 509-516, Jun. 1978.
[2] Randal E. Bryant. “Graph-Based Algorithms for Boolean

Function Manipulation“. IEEE Trans. Comput., Vol. C-35,
No. 8, pp. 677-691, Aug. 1986.

[3] Randal E. Bryant. “On the Complexity of VLSI Implemen-
tations and Graph Representations of Boolean Functions
with Application to Integer Multiplication“. IEEE Trans.
Comput., Vol. 40, No. 2, pp. 205-213, Feb. 1991.

[4] Nagisa Ishiura and Shuzo Yajima. “A Class of Logic Func-
tions Expressible by Polynomial-Size Binary Decision Dia-
grams“. Technical Report of IPSJ $AL8\theta\cdot 5$, pp. 1-7, Mar.
1991. (in Japanese).

[5] Jawahar Jain, Magdy Abadir, James Bitner, Donald S.
Fussel, Jacob A. Abraham. “IBDDs: An Bfficent Functional
Representation for Digital Circuits“. Proc. European Design
Automation Conference, pp. $440-44\hat{\text{\^{o}}}$, Mar. 1992.

[6] Satoru Miyano. ”Parallel Algorithms“. kindai-kagakusya,
1993, (in J apanese).

[7] Hiroto Yasuura. ”Theory of the Complexity of Logic Func-
tions and its Application to Logic Design of High-Speed
Logic Circuits“. Trans. IPSJ, Vol. 21, No. 4, pp. 268-278,
Jul. 1980. (in Japanese).

