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Abstract: Recently, graph parameters such as the number of disjoint paths between a pair
of nodes (or between a node and a set of nodes and so on) and the length of these paths
have been studied extensively due to their relations to (applications in) fault tolerance and
transmission delay in communication networks. We give efficient algorithms for node disjoint
path problems in hypercubes, star graphs, and incomplete star graphs which are defined to
reduce the large gaps in the size of systems based on star graph topologies. Four disjoint
path paradigms are discussed: (1) disjoint paths between a pair of nodes $s$ and $t,$ (2) disjoint
paths from a node $s$ to a set $T$ of nodes, (3) disjoint paths from a set $S$ of nodes to a set $T$

of nodes, and (4) disjoint paths between node pairs $(s_{i}, t_{i}),$ $1\leq i\leq k$ . We give algorithms
for paradigms (3) and (4) in hypercubes and algorithms for all the paradigms in star graphs
and incomplete star graphs. Our algorithms can find the maximum number of disjoint paths
for these paradigms in optimal time. For an n-dimensional hypercube $H_{n}$ , the length of the
disjoint paths given by our algorithms is at most $2d(H.)-2=2n-2$ , where $d(G)$ is the
diameter of the graph $G$ . Fer an n-dimensional star graph $G_{n}$ and an incomplete star graph
$G_{n,m}$ , the length of the disjoint paths constructed by our algorithms is at most $d(G.)+c$
and $d(G_{n,m})+c$, respectively, where $c$ is a small constant.

Introduction
In the design and implementation of a large multiprocessor system, one of the key and most
fundamental issues is the design of the interconnection network through which the processors
can communicate efficiently. Taking the cost, reliability, fault tolerance, and transmission
delay into consideration, a good interconnection network should be a sparse and homogeneous
graph with connectivity as large as possible and diameter as small as possible. With the
development of VLSI and fiber optics technologies, the size of multiprocessor system is
increasing tremendously. The fault tolerance communication has become one of the central
issues in today’s multiprocessors system. Recently, some new parameters (will be given in
the next section) which concerns a collection of disjoint paths (in this paper, disjoint path
refers node disjoint path unless otherwisw mentioned) between a pair of nodes (or between
a node and a set of nodes, and so on) have been introduced to evaluate the fault tolerance
properties of interconnection networks $[10, 18]$ . Much work has been done on finding the
disjoint paths in general graphs as well as some special classes of interconnection networks
[10, 9, 18, 4, 13]. In this paper, disjoint paths problems in hypercube, star graph, and
incomplete star graph interconnection networks are considered.
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Hypercubes and star graphs are interesting interconnection topologies for multiprocessor
system [20, 2, 1, 19]. They possess rich recursive structure and symmetry properties as well
as many desirable fault tolerance characteristics. In addition, with regard to the important
properties of degree and diameter, the star graph is shown to be markedly superior. A
problem with the star graph topology is that the number of nodes in a system must be the
factorial of an integer. In practical terms, this is a severe restriction on the sizes of systems
that can be built; there is a large gap between the numbers $(n-1)!$ and $n!$ . This restriction
can be overcome partially by introducing incomplete star graph. An incomplete star graph
is a star graph missing certain of its substars. Since an n-dimensional star graph $G_{n}$ has
$n(n-1)$-dimensional substars, there are $n$ possible n-dimensional incomplete star graphs
$G_{n,m},$ $1\leq m\leq n$ , each of them is made of $m$ (n-l)-dimensional substars and has $m(n-1)!$
nodes. 1 In this paper, we present efficient algorithms for hypercubes, star graphs, and
incomplete star graphs for the following disjoint path paradigms:

1. Disjoint paths between a pair of distinct nodes $s$ and $t$ ;

2. Disjoint paths between a node $s$ and a set of distinct nodes $T=\{t_{1}, t_{2}, \ldots , t_{k}\}$ ;

3. Disjoint paths between a set of distinct nodes $S=\{s_{1}, s_{2}, \ldots, s_{k}\}$ and a set of distinct
nodes $T=\{t_{1}, t_{2}, \ldots, t_{k}\}$ ; and

4. Disjoint paths between mutually distinct node pairs $(s_{1}, t_{1}),$ $(s_{2}, t_{2})$ , ..., $(s_{k}, t_{k})$ .

The above paradigms have attracted much attentions in both mathematical terms and
interconnection network studies [4, 3, 10, 9, 18, 13]. By Menger’s theorem, there are $k$ disjoint
paths in paradigms (1), (2), and (3) in a k-connected graph [16]. $(2k-1)$ connectivity is
a necessary condition for a graph to have $k$ disjoint paths in paradigm (4) [21]. In network
studies, much effort has also been put on algorithms.for finding the disjoint paths and the
upper bound on the length of the paths [10, 9, 18, 4, 13]. It has been shown that finding
the disjoint paths with the optimal length in paradigms (1) or (2) is $NP$-hard in general
graphs [8, 11, 14]. For paradigm (4), even determining whether there exist $k$ disjoint paths
is an $NP$ -complete problem [12]. Polynomial time algorithms for paradigm (4) have been
found for very limited classes of graphs such as hypercubes [15] and star graphs [4]. To our
best knowledge, not much work has been done for paradigm (3), though it has practical
applications in random routing and so on. For n-dimensional hypercubes $H_{n}$ (which is n-
connected and has diameter $d(H_{n})=n)$ , it was proved that $n$ disjoint paths of length at
most $d(H_{n})+1=n+1$ for paradigm (1) [19], $n$ disjoint paths of length at most $n+1$ for
paradigm (2) [18], and $r\frac{n}{2}\rceil$ disjoint path of length at most $2n-2$ for paradigm (4) [15] can
be found in $O(n^{2}),$ $O(n^{2})$ , and $O(n^{3}\log n)$ time, respectively. For n-dimensional complete
star graphs, (which is $(n-1)$-connected and has diameter $d(G_{n})= L\frac{3(n-1)}{2}\rfloor$ ), it was shown
that $n-1$ disjoint paths of length at most $d(G_{n})+1$ for paradigm (1) can be found in $O(n^{2})$

time [13], $n-1$ disjoint paths of length at most $5n-2$ for paradigm (2) can be found in
$O(n^{2})$ time [4], and $k \leq r\frac{n-1}{2}\rceil$ disjoint paths of length at most $4(n-2)$ for paradigm (4) can
be found in $O(n^{4}\log n)$ time [4].

1An incomplete star graph of an arbitrary size can be defined by using incomplete substars. In this paper,
however, we only use complete substars to made an incomplete star graph.
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We give an algorithm which finds $n$ disjoint paths of length at most $2n-2$ for paradigm
(3) in n-dimensional hypercubes $H_{n}$ in $O(n^{2})$ optimal time. For paradigm (4) in $H_{n}$ , we give
an algorithm which finds $\lceil\frac{n}{2}\rceil$ disjoint paths of length at most $2n-2$ in $O(n^{2})$ time. Our
result improves significantly the previous result in time complexity. For n-dimensional star
graphs $G_{n}$ , we give four algorithms which find, in $O(n^{2})$ optimal time, $n-1$ disjoint paths of
length at most $d(G_{n})+4$ for paradigm (1), $n-1$ disjoint paths of length at most $d(G_{n})+4$ for
paradigm (2), $n-1$ disjoint paths of length at most $d(G_{n})+5$ for paradigm (3), and $\lceil\frac{n-1}{2}\rceil$

disjoint paths of length at most $d(G_{n})+5$ for paradigm (4). Our algorithm for paradigm (2)
in star graph $G_{n}$ improves previous result significantly in the length of the constructed paths
and our algorithm for paradigm (4) improves the previous result significantly in the length
of the found path as well as in the run time. For n-dimensional incomplete star graph $G_{n,m}$ ,
$1\leq m\leq n-1$ , we give four algorithms which find, in $O(n^{2})$ optimal time, $n-2$ disjoint
paths of length at most $d(G_{n,m})+4,$ $n-2$ disjoint paths of length at most $d(G_{n,m})+4$ ,
$n-2$ disjoint paths of length at most $d(G.,.)+5$ , and $f\frac{n-2}{2}1$ disjoint paths of length at
most $d(G_{n,m})+5$ , for paradigms (1), (2), (3),$and(4)$ , respectively. To our best knowledge,
our algorithms for paradigm (3) in hypercubes $H_{n}$ and star graphs $G_{n}$ and the algorithms
for incomplete star graphs $G_{n,m}$ are the first algorithms for these problems. Compared with
the result of [13], our algorithm for paradigm (1) in star graph $G_{n}$ has some advantages in
practical applications. Our algorithm can find a fault-free routing path of length at most
$d(G_{n})+4$ between $s$ and $t$ in linear time when at most $n-2$ arbitrary nodes (does not
include $s$ and t) failed in $G_{n}$ . While it takes $O(n^{2})$ time to solve the same problem by the
result in [13]. Our algorithm for paradigm (1) in incomplete star graph $G_{n,m}$ in fact finds
min{deg(s), $deg(t)$ } $\geq n-2$ disjoint paths. And thus it shows that $deg(s)=n-1$ and
$deg(t)=n-1$ is a sufficient condition of having $n-1$ disjoint paths between $s$ and $t$ in $G_{n,m}$

(which is $(n-2)$-connected). For paradigm (2) in $G_{n,m}$ , we give a necessary and sufficient
condition of having $n-1$ disjoint paths between $s$ and $n-1$ distinct nodes $\{t_{1}, t_{2}, \ldots, t_{n-1}\}$

in $G_{n,m}$ and give an algorithm which finds $n-l$ disjoint paths of length at most $d(G_{n,m})+6$

in $O(n^{2})$ optimal time.
In the next section, we introduce some new graph parameters, give the definition of

hypercubes, star graphs, and incomplete star graphs, and state our results.

Deflnitions and Results
The following two parameters for disjoint path paradigms (1) and (2) were defined to evaluate
the fault tolerance and transmission delay in interconnection networks.

$\bullet$ Given two positive integers, $w$ and $l$ , define $A(w, l)$ to be the class of graphs $G$ so that
for any distinct nodes $s$ and $t$ in $G$ , there exist $w$ node disjoint paths of length at most
$l$ between $s$ and $t$ . For a k-connected graph $G$ , the $k$ -diameter, $d_{k}(G)$ , is defined to
be the minimum $l$ so that $G\in A(k, l)[10]$ .

$\bullet$ Similarly, let $B(w, l)$ be the class of graphs $G$ so that for any $s$ and distinct $t_{1},$
$\ldots,$

$t_{w}$

in $G$ , there exist $w$ disjoint paths from $s$ to $t_{1},$
$\ldots,$

$t_{w}$ of length at most $l$ , and for a
k-connected graph $G$ , the Rabin number, $r_{k}(G)$ , is the minimum $l$ so that $G\in B(k, l)$

[18].

Similar to the k-diameter and Rabin number, we define other two parameters for the
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disjoint path paradigms (3) and (4) in this paper.

$\bullet$ Let $C(w, l)$ be the class of graphs $G$ so that for any distinct nodes $s_{1},$ $\ldots,$ $s_{w}$ and
$t_{1},$

$\ldots,$
$t_{w}$ in $G$ , there exist $w$ disjoint paths of length at most $l$ between the nodes of

$s_{i}’ s$ and the nodes of $t_{j}’ s,$ $1\leq i,j\leq w$ , and for a k-connected graph $G$ , the $k$ -set-
routing number, $s_{k}(G)$ , is the minimum $l$ so that G E $C(k, l)$ .

$\bullet$ Let $D(w, l)$ be the dass of graphs $G$ so that for $w$ distinct node pairs $(s_{1}, t_{1}),$
$\ldots$ , $(s_{w}, t_{w})$

in $G$ , there exist $w$ disjoint paths of length at most $l$ between $s_{i}$ and $t_{i},$ $1\leq i\leq w$ ,
and for a n-connected graph $(n\geq 2k-1)$ , the $k$ -pairwise-routing number $p_{k}(G)$ is
the minimum $l$ so that G E $D(k, l)$ .

An n-dimensional hypercube is a graph $H_{n}$ , where the nodes of $H_{n}$ are in 1-1 correspon-
dence with the n-bit binary sequences $(a_{1}\ldots a_{n})$ , and two nodes $(a_{1}\ldots a_{n})$ and $(a_{1}’\ldots a_{n}’)$

are connected by an edge if and only if these sequences differ in exactly one bit. There are
$2^{n}$ nodes and $n2^{n-1}$ edges in an n-dimensional hypercube $H_{n}$ . $H_{n}$ has uniform node degree
$n$ , diameter $d(H_{n})=n$ , and $H_{n}$ is n-connected. A hypercube is node and edge symmetric
and it has a recursive structure ( $H_{n}$ is made of two copies of $H_{n-1}$ ).

Let $<n>=\{1,2, \ldots , n\}$ . The nodes of an n-dimensional star graph $G_{n}$ are in a 1-1
correspondence with the permutations $(p_{1},p_{2}, \ldots,p_{n})$ of $<n>$ . Each node is identified by
a permutation of $<n>$ , Two nodes of $G_{n}$ are connected by an edge if and only if the
permutation of one node can be obtained from the other by interchanging the first symbol
$p_{1}$ with the ith symbol $p_{i},$ $2\leq i\leq n$ . There are $n!$ nodes and $n! \cross\frac{(n-1)}{2}$ edges in an n-
dimensional star graph $G_{n}$ . $G_{n}$ has uniform node degree $n-1$ , diameter $d(G_{n})= L\frac{3(n-1)}{2}\rfloor$ ,
and $G_{n}$ is $(n-1)$-connected. $G_{n}$ is node and edge symmetric. Star graphs have a highly
recursive structure. $G_{n}$ is made of $n$ copies of $G_{n-1}$ . Consider the partition of nodes of $G_{n}$

into $n$ mutually disjoint subsets $S_{n}(k),$ $1\leq k\leq n$ , where

$S_{n}(k)=$ { $(p_{1},p_{2},$
$\ldots$ , $p_{n-1},$ $k)|p_{j}\in<n>-\{k\}$ for $j\neq n,p_{j}\neq p_{l}$ for $j\neq l$ }.

In $G_{n}$ , the induced subgraphs of the set $S_{n}(k),$ $1\leq k\leq n$ , is each an (n–l)-dimensional
star graph denoted as $G_{n}(k)$ . Figure 1 gives $H_{4}$ and $G_{4}$ .

An incomplete n-dimensional star graph $G_{n,m}$ is a graph that is made of $m,$ $1\leq m\leq n$ ,
copies of $(n-1)$-dimensional star graphs. More precisely, for $1\leq m\leq n$ , the incomplete
star graph $G_{n,m}=(S_{n,m}, E_{n,m})$ is defined as,

$S_{n,m}=$ { $(p_{1},p_{2},$ $\ldots,p_{n})|p_{n}\in<m>,p_{i}\in<n>-\{p_{n}\}$ for $i\neq n,p_{i}\neq p_{j}$ for $i\neq j$ }

and

$E_{n,m}$ $=$ $\{((p_{1},p_{2}, \ldots,p_{n}), (p_{i},p_{2}, \ldots,p_{i-1},p_{1},p_{i+1}, \ldots,p_{n}))|$

$(p_{1},p_{2}, \ldots,p_{n})\in S_{n,m},$ $(p_{i},p_{2}, \ldots,p_{i-1},p_{1},p_{i+1}, \ldots ,p_{n})\in S_{n,m}$ , and $2\leq i\leq n$ }.

That is, $G_{n,m}$ is the graph which is made of the substars $G_{n}(1),$
$\ldots,$

$G_{n}(m)$ of $G_{n}$ and the
edges between every pair of these substars. $G_{n,1}=G_{n-1},$ $G_{n,n}=G_{n}$ , and $G_{n,m}$ is $(n-2)-$
connected for $1\leq m\leq n-1$ . There are $m(n-1)!$ nodes and $m(n-1)! \cross\frac{n-2}{2}+(n-2)!\cross\frac{m(m-1)}{2}$
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edges in $G_{n,m}$ . $G_{n,m}$ has diameter $d(G_{n,m})=d(G_{n})$ , for $2\leq m\leq n$ . For a node $s=$
$(p_{1},p_{2}, \ldots ,p_{n})\in G_{n,m},$ $1\leq m\leq n-1$ , either $deg(s)=n-2$ or $deg(s)=n-1$ .

Using the notations introduced at the beginning of this section, the previous results and
our results for paradigms (1)$-(4)$ are stated as follows.
Previous results:

$d_{n}(H_{n})=d(H_{n})+1$ (time $O(n^{2})$ ) $[19]$ ,
$r_{n}(H_{n})=d(H_{n})+1$ (time $O(n^{2})$ ) $[18]$ ,
$p_{n}(H_{n})\leq 2d(H_{n})-2$ (time $O(n^{3}\log n)$ ) $[15]$ ,
$d_{n-1}(G_{n})=d(G_{n})+1$ (time $O(n^{2})$ ) $[13]$ ,
$r_{n-1}(G_{n})\leq 5n-2$ (time $O(n^{2})$ ) $[4]$ , and
$p_{n-1}(G_{n})\leq 4(n-2)$ (time $O(n^{4}\log n)$ ) $[4]$ .

Results of this paper (details can be found in [5, 6, 17, 7]):
$s_{n}(H_{n})\leq 2n-2$ (time $O(n^{2})$ and no previous result known) [17],
$p_{n}(H_{n})\leq 2n-2$ (time $O(n^{2}\log n)$ ) $[7]$ ,
$d_{n-1}(G_{n})\leq d(G_{n})+4$ (time $O(n^{2})$ and advantages in practical applications) [5],
$r_{n-1}(G_{n})\leq d(G_{n})+4$ (time $O(n^{2})$ ) $[5]$ ,
$s_{n-1}(G_{n})\leq d(G_{n})+5$ (time $O(n^{2})$ and no previous result known) [17],
$p_{n-1}(G_{n})\leq d(G_{n})+5$ (time $O(n^{2}\})[5]$ ,
$d_{n-2}(G_{n,m})\leq d(G_{n,m})+4$ (time $O(n^{2})$ and no previous result known) [6],
$r_{n-2}(G_{n,m})\leq d(G_{n,m})+4$ (time $O(n^{2})$ and no previous result known) [6],
$s_{n-2}(G_{n,m})\leq d(G_{n,m})+$ ($timeO(n^{2})$ and no previous result known) [6], and
$p_{n-2}(G_{n,m})\leq d(G_{n,m})+5$ (time $O(n^{2})$ and no previous result known) [6].
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$H_{4}$

Figure 1: Hypercube $H_{4}$ and Star Graph $G_{4}$


