
138

On Checkers, Self-Testers, and Self-Debuggers

東京工業大学総合理工学研究科 森啓悦 (Hiroyoshi Mori)
東京工業大学総合理工学研究科 伊東利哉 (Toshiya Itoh)

1 Introduction

1.1 Background and Motivation
When a programmer writes a program P_{f} that computes a function f , one of the main difficulties
is to mathematically prove that P_{f} is correct. Blum and Kannan [BK] first attempted to
overcome this problem and introduced a notion of “program checking” as an application of
interactive proofs [GMR], [BM]. Informally, a function f is said to have a (program) checker
C_{f} if (1) when P_{f} is correct, C_{f} making calls to P_{f} outputs with high probability “correct” on
any input $x\in\{0,1\}^{*}$; and (2) when P; is incorrect, C_{f} making calls to P_{f} outputs with high
probability “incorrect” on any input $x\in\{0,1\}^{*}$ such that $P_{f}(x)\neq f(x)$. Here we note that
the output of a checker C_{f} only verifies the correctness of the output of any program P_{f} on
specified input $x\in\{0,1\}^{*}$ but does not guarantees the correctness of the program P_{f} being
checked. Then as an extension of checkers, Blum, Luby, and Rubinfeld [BLR] introduced a
notion of self-tester/corrector, and self-tester/corrector pair,” which is a powerful tool in a
practical setting. Informally, a function f is said to have a self-tester ST_{f} if (1) when P_{f} is
tolerably faulty, ST_{f} making calls to P_{f} outputs “pass” with high probability; and (2) when
P_{f} is too faulty, ST_{f} making calls to P_{j} outputs “fail” with high probability, and a function
f is said to have a self-corrector SC_{j} if when P_{j} is not too faulty, SC_{f} making calls to P_{f}

outputs with high probability a correct answer for every input to f . In addition, Blum, Luby,
and Rubinfeld [BLR] introduced a notion of self-tester/corrector pair,” which is a powerful
tool in a practical setting.

Of course, we may expect that every function has a checker, a self-tester, and a self-corrector,
however, it is not the case. Indeed, there exists a function f : $\{0,1\}^{*}rightarrow\{0,1\}$ that does not have
a checker C_{f} under some complexity-theoretic assumption [Y], [BF], [BG]. As a relationship
among checkers, self-testers, and self-correctors, Blum, Luby, and Rubinfeld [BLR] showed that
if a function f has a checker C_{f} , then f has a self-tester ST_{f} (see Theorem 2.8). This implies
that the task of self-testers is not harder than that of checkers. On the contrary, it is not known
whether or not every function that has a checker has a self-corrector. Then. Question 1: Does every function f that has a checker have a self-corrector?
Intuitively, the task of self-correctors seems to be much harder than that of checkers. In section
3, we show that it is indeed the case assuming the existence of oneway permutations.

Blum, Luby, and Rubinfeld [BLR] also showed that if a function f has a self-tester/corrector
pair {$\overline{ST}_{f},\overline{SC}_{f}\rangle$, then f has a checker C_{f} . It follows from the result above (see Theorem 2.8)
that if a function f has a self-tester/corrector pair ($\overline{ST}_{f},\overline{SC}_{f}$ }, then f has a self-tester ST_{f} . It
should be noted that the resulting self-tester ST_{j} for f could be very reliable but it is somewhat
inflexible for a practical purpose, i.e., ST_{f} only passes completely correct programs P_{f} for f

but does not pass almost correct programs P_{f} for f . Then

数理解析研究所講究録
第 871巻 1994年 138-144

139

. Question 2: How can we make self-testers for a function f reliable and flexible?

To investigate this problem, we introduce in section 4 a novel notion of “self-debuggers” for f

and then present in subsection 5.1 a way to design a reliable and flexible self-tester for f from
any self-tester/corrector pair for f .

1.2 Results
In this paper, we first present a negative solution to Question 1, i.e., if oneway permutations
exist, then there exists a function f : $\{0,1\}^{*}rightarrow\{0,1\}$ that has a checker but does not have a
self-corrector (see Theorem 3.1). To demonstrate a positive solution to Question 2, we introduce
in section 4 a novel notion of “self-debuggers” and then show that if a function f has a self-
tester/corrector pair ($\overline{ST}_{j},\overline{SC}_{f}$ }, then f has a self-debugger SD_{f} (see Theorem 4.2). As the
applications of self-debuggers, we show in subsection 5.1 that for any $0<\epsilon_{1}’<\epsilon_{2}’\leq\epsilon’<1$, if
\overline{ST}_{f} is an $(\epsilon_{1}’, \epsilon_{2}’)$-self-tester for f and \overline{SC}_{f} is an $\epsilon’$-self-corrector for f , then for any $\epsilon_{1}<\epsilon_{2}$ such
that $\epsilon_{1}\leq\epsilon’$, there exists an $(\epsilon_{1}, \epsilon_{2})$-self-tester ST_{f} for f (see Theorem 5.1) and in subsection
5.2 that for any $0<\epsilon_{1}’<\epsilon_{2}’\leq\epsilon’<1$, if \overline{ST}_{j} is an $(\epsilon_{1}’, \epsilon_{2}’)$-self-tester for f and \overline{SC}_{j} is an
$\epsilon’$-self-corrector for f , then for any constant $\delta>0$ such that $\delta\leq\epsilon’$, there exists an $(\epsilon’, \delta)$ -self-
debugger SD_{f} for f (see Theorem 5.2). The result of Theorem 3.1 captures our intuition that
the task of self-correctors seems to be much harder than that of checkers and the results of
Theorems 5.1 and 5.2 provides us a powerful tool in a practical setting.

2 Preliminaries
In this section, we first present definitions and terminologies necessary to the subsequent tech-
nical discussions and then overview the results known so far.

2.1 Definitions and Terminologies
Let f : $\{0,1\}^{*}-\rangle$ $\{0,1\}^{*}$ be a function and let P_{f} be a program that purports to compute f . In
this paper, any program P_{f} is assumed to be static, i.e., $P_{j}(x)$ is completely determined by the
current input $x\in\{0,1\}^{*}$ and does not depend on any input previously asked of the program
P_{f} . We use $P_{j}(x)$ to denote the output of a program P_{j} on input $x\in\{0,1\}^{*}$. A program P_{j}

for f is said to be correct if $P_{J}(x)=f(x)$ for every $x\in\{0,1\}^{*}$ and a program P_{f} for f is said
to be incorrect if there exists $w\in\{0,1\}^{*}$ such that $P_{j}(w)\neq f(w)$.
Definition 2.1 [BLR]: A (probabilistic) program M is said to be an oracle program if it
is allowed to make $calls$ to another program that is specified at its run time. We use M^{A} to
denote an oracle program M that makes calls to another program A .

Definition 2.2 [BK]: A probabilistic polynomial time oracle program C_{f} is said to be a
checker for a function f : $\{0,1\}^{*}\mapsto\{0,1\}^{*}if$ for every program P_{j} that purports to compute
$f,$ C_{f} on in$putx\in\{0,1\}^{*}$ satisfies the following conditions :

(1) If P_{f} is correct, then Pr { $C_{f}^{P_{f}}(x)=$ ”correct”} $\geq 2/3$ for $anyx\in\{0,1\}^{*}$;

(2) For any $x\in\{0,1\}^{*}such$ that $P_{f}(x)\neq f(x),$ $Pr\{C_{f}^{P_{f}}(x)=c_{1ncorrect’\}}\geq 2/3$,

where the probabilities are taken over all possibk coin tosses of C_{j} .

140

Note that in Definition 2.2, the output of $C_{f}^{P_{f}}$ on any input $x\in\{0,1\}^{*}$ such that $P_{f}(x)=f(x)$

is not specified when P_{f} is incorrect.
We say that a function f is checkable (or f has a checker) if there exists a checker C_{f} for f

and also that a languageL is checkable (or L has a checker) if there exists a checker C_{L} for its
characteristic function λ_{L} . A function f (or a language L) is uncheckable if it is not checkable.

Let N be a set of positive integers and let $I\subseteq\{0,1\}^{*}$. Let $I_{1},$ $I_{2},$ $\cdots\subseteq I$ be a sequence of
subsets of I that satisfies $I_{1}\cup I_{2}\cup\cdots=I$. Note that each $n\in N$ indicates the “size” of each
$x\in I_{n}$. We use $D=\{D_{n}|n\in N\}$ to denote an ensemble of probability distributions such that
D_{n} is a distribution on I_{n} for each $n\in N$. Let P_{j} be a program that purports to compute a
function f . We use Err(P_{f}, f, D_{n}) to denote the error probability that $P_{f}(x)\neq f(x)$ when x is
randomly chosen in I_{n} according to D_{n} for $n\in N$. Let $0<\beta<1/2$ be a confidence parameter.

Definition 2.3 [BLR]: A probabilistic polynomial time oracle program ST_{f} is said to be
an $(\epsilon_{1}, \epsilon_{2})$ -self-tester for a function f with respect to $\mathcal{D}=\{D_{n}|n\in N\}$ if for some constants
$0\leq\epsilon_{1}<\epsilon_{2}\leq 1$ and any program P_{f} that purports to compute $f,$ ST_{f} on input 1 $n0<\beta<1/2$
satisfies the following conditions:

(1) If Err$(P_{f}, f, D_{n})\leq\epsilon_{1}$, then Pr { $ST_{f}^{P_{f}}(\langle 1^{n},$ $\beta\rangle)=$ “pass”} $\geq 1-\beta$;

(2) If Err $(P_{f}, f, D_{n})\geq\epsilon_{2}$, then Pr { $ST_{f}^{P_{f}}(\langle 1^{n},$ $\beta\rangle)=$ “fail”} $\geq 1-\beta$,

where the probabilities are t aken over all possible coin tosses of ST_{f} .

Note that in Definition 2.3, the output of ST_{f} is not specified when $\epsilon_{1}<Err(P_{f}, f, D_{n})<\epsilon_{2}$.
Thus the value $\delta=\epsilon_{2}-\epsilon_{J}$ should be as close as possible to 0 so that ST_{f} is reliable.

We say that a function f is weakly/strongly self-testable (or f has a $weak/strong$ self-tester)
if for some/any ensemble of distributions D , there exist some constants $0\leq\epsilon_{1}<\epsilon_{2}\leq 1$ such
that f has an $(\epsilon_{1}, \epsilon_{2})$ -self-tester ST_{f} with respect to \mathcal{D} and we also say that a language L

is weakly/strongly self-testable (or L has a weak/strong self-tester) if for some/any ensemble
of distributions \mathcal{D} , there exists some constants $0\leq\epsilon_{1}<\epsilon_{2}\leq 1$ such that its characteristic
function λ_{L} has an $(\epsilon_{1},\epsilon_{2})$-self-tester ST_{L} with respect to D . A function f (or a language L) is
said to be strongly/weakly self-untestable if it is not weakly/strongly self-testable.

Definition 2.4 [BLR]: A probabilistic polynomial time $oracle$ program SC_{f} is said to be an

ϵ -self-corrector for a function f with respect to $D=\{D_{n}|n\in N\}$ if for $somecon$stant $0<\epsilon<1$

and any program P_{j} that purports to compute $f,$ SC_{f} on input $1^{n},$ $x\in I_{n},$ $0<\beta<1/2$ satisfies
the following condition: If Err $(P_{f}, f, D_{n})\leq\epsilon$, then $Pr\{SC_{f}^{P_{j}}(\langle 1^{n}, x, \beta\rangle)=f(x)\}\geq 1-\beta$.

We also say that a function f is weakly/strongly correctable (or f has a $weak/strong$ self-
tester), that a language L is weakly/storngly correctable (or L has a weak/storng self-tester),
and that a function f (resp. a language L) is strongly/weakly self-uncorrectable in a way similar
to the case of self-testers.

Definition 2.5 [BLR]: A pair of probabilistic polynonial time oracle programs $\langle ST_{f}, SC_{f}\rangle$

is said to be a self-tester/corrector pair for a function f if for some constants $0\leq\epsilon_{1}<\epsilon_{2}\leq\epsilon<1$

and an ensemble of distributions $D,$ ST_{f} is an $(\epsilon_{1}, \epsilon_{2})$ -self-tester for fwith respect to D and
SC_{f} is an e-self-corrector for f with respect to D .

We say that a function f (resp. a language L) has a self-tester/corrector pair if there exists
a self-tester/corrector pair for f (resp. the characteristic function λ_{L} of L).

For each $n\geq 0$, let $S_{n}=\{0,1\}^{n}$ and let R_{n} be a set of all possible sequences of coin tosses
of a probabilistic polynomial (in n) time algorithm on input of length n .

141

Definition 2.6 (Oneway Permutation): If a function $g:\{0,1\}^{*}\mapsto\{0,1\}^{*}$ satisfies that

(1) For any $x\in\{0,1\}^{*},$ $|g(x)|=|x|$ and g is 1-1 and onto;

(2) For any $x\in\{0,1\}^{*},$ $g(x)$ can be evaluated in polynomial (in $|x|$) time;

(3) For any probabilistic polynomial (in n) time algorithm A and each constant $c>0$, there
exists a constan$tN_{c}\geq 0$ such that $Pr\{g(A(y))=y\}<n^{-c}$ for every $n>N_{c}$ and every
$y\in\{0,1\}^{n}$, where the probabilities are taken over $\langle y,r$ } $\in S_{n}\cross R_{n}$,

then we say that the fun ction $g:\{0,1\}^{*}arrow\rangle$ $\{0,1\}^{*}$ is a oneway permutation.

In the rest of this paper, we sometimes use g_{n} : $\{0,1\}^{n}\mapsto\{0,1\}^{n}$ for each $n\in N$ to denote the
restriction of a oneway permutation g : $\{0,1\}^{*}arrow\rangle$ $\{0,1\}^{*}$.

The following inequality is useful in section 5.1 to approximate the error probability (with
respect to D) of a program P_{f} that purports to compute f .
Definition 2.7 [S]: Let $X_{1},$ $X_{2},$

$\ldots,$
X_{n} be independent identically distributed 0-1 random

variables and let $Pr(X;=1)=p$ for each $i(1\leq i\leq n)$. Then

(1) $Pr\{\frac{1}{n}\sum_{=:1}^{n}X_{i}-p\leq\delta\}\geq 1-\exp\{-\frac{\delta^{2}n}{2}\}$;

(2) $Pr\{\frac{1}{n}\sum_{\mathfrak{i}=1}^{n}X;-p\geq-\delta\}\geq 1-\exp\{-\frac{\delta^{2}n}{2}\}$,

for any integer $n\geq 1$ and any constant $\delta>0$.

2.2 Known Results
Here we overview the known results on checkers, self-testers, and self-correctors. The following
theorems are the relationships among checkers, self-testers, and self-correctors.

Theorem 2.8 [BLR], [R]: If a function f : $\{0,1\}^{*}rightarrow\{0,1\}^{*}has$ a checker C_{f} , then for any
constan$t0<\epsilon_{2}\leq 1$, the function f has a $(0, e_{2})$ -self-tester ST_{f} with respect to any polynomial
time samplable ensemble of distributionsD .
Theorem 2.9 [BLR]: If a function f : $\{0,1\}^{*}rightarrow\{0,1\}^{*}h$as a self-tester/corrector pair
\langle $ST_{f},$ SC_{f}), then the function f has a checker C_{f} .

3 Checkable But Self-Uncorrectable Languages
In this section, we give a solution to Question 1 in subsection 1.1, i.e., there exists a weakly
self-uncorrectable language L that is checkable under a complexity-theoretic assumption.

Theorem 3.1: If oneway permutations exist, then there exists a weakly self-uncorrectable
language $L\not\in \mathcal{B}PP$ that Aas a checker.

Proof: Let $I=\{\{0,1\}^{n}\cross\{0,1\}^{n}\cross\{0,1\}^{n}|n\in N\}$ and let $I_{n}=\{0,1\}^{n}\cross\{0,1\}^{n}\cross\{0,1\}^{n}$

for each $n\in N$. We use $\mathcal{U}=\{U_{n}|n\in N\}$ to denote an ensemble of uniform distributions, i.e.,
for each $n\in N,$ U_{n} is a uniform distribution on I_{n} , and use $a\cdot b$ to denote the inner product of
$a,$ $b\in\{0,1\}^{n}$ modulo 2. Let g : $\{0,1\}^{*}rightarrow\{0,1\}^{*}$ be a oneway permutation. Define a language
$L_{g}\subseteq I$ to be $L_{g}=\{\langle y,p,0^{|y|})\in I|g^{-1}(y)\cdot p=1\}$. It is obvious that $L_{g}\in \mathcal{N}P$. Note that the
definition of L_{g} is inspired by the hard-core predicate due to Goldreich and Levin [GL].

142

We first show that L_{g} has a checker C_{g} . But there isn’t enough space to show that. So we
obmit the proof.

Next, we show that L_{g} is weakly self-uncorrectable. Indeed, we show that for some ensemble
of distributions $\mathcal{D}=\{D_{n}|.n\in N\}$ and for any constant $0<\epsilon<1$, the characteristic function
λ_{g} of L_{g} does not have an ϵ-self-corrector with respect to $\mathcal{D}=\{D_{n}|n\in N\}$.

Assume that L_{g} is strongly self-correctable, i.e., for any ensemble of distributions \mathcal{D} and some
constant $0<\epsilon<1,$ L_{g} has an e-self-corrector with respect to D . Then this means that for
some constant $0<\epsilon<1,$ L_{g} has an e-self-corrector SC_{g}^{e} with respect to $\mathcal{U}=\{U_{n}|n\in N\}$,
where U_{n} is a uniform distribution on I_{n} for each $n\in N$. Define a program \tilde{P}_{g} that purports
to cumpute λ_{g} in a way that on input $\langle y,p, z\rangle\in I_{n}$,

$\tilde{P}_{g}(\langle y,p, z\rangle)=\{01$ $z\neq 0_{n};z=0^{n}$

.

Here we note that \tilde{P}_{9} errs only for ($y,p,$ $0^{n}\rangle$ $\not\in L_{g}\cap I_{n}$. From the assumption that g_{n} is a
(oneway) permutation, it follows that for each $n\in N,$ $Err(\tilde{P}_{g}, \lambda_{g}, U_{n})$ is given by

Err$(\tilde{P}_{g}, \lambda_{g}, U_{n})=\frac{\Vert\{\langle y,p,0^{n}\}\in I_{n}|g^{-1}(y)\cdot p=0\}\Vert}{\Vert I_{n}||}=\frac{2^{2n-1}+2^{n-1}}{2^{3n}}=\frac{2^{n}+1}{2^{2n+1}}<\frac{1}{2^{n}}$,

where $\Vert A\Vert$ denotes the cardinality of a finite set A .
Then for every $n\geq\lceil\log\epsilon^{-1}\rceil,$ $Err(\tilde{P}_{g}, \lambda_{g}, U_{n})\leq\epsilon$. This implies that for every $n\geq\lceil\log e^{-1}\rceil$,

$SC_{g^{\zeta}}$ making calls to the program \tilde{P}_{g} outputs 1 with probability at least $1-\beta$ if $\langle y,p, z\rangle\in L_{g}$

and outputs 0 with probability at least $1-\beta$ if $\langle y,p, z\rangle\not\in L_{9}$. Thus we can make probabilistic
polynomial (in n) time program \hat{P}_{g} such that $\hat{P}_{g}(\langle y,p, z\rangle)=\lambda_{g}(\langle y,p, z\rangle)$ with probability at
least $1-\beta$ from C_{g} and \tilde{P}_{g} . Since $0<\beta<1/2$ is a constant (see Definition 2.4), $L_{g}\in \mathcal{B}\mathcal{P}P$

[BDG]. By a standard technique (see [BDG]), we assume without loss of generality that there
exists a probabilistic polynomial (in n) time algorithm G such that $G(\{y,p, z\rangle)=\lambda_{9}(\{y,p, z\rangle)$

with probability at least $1-2^{-n}$. Then let us consider the following probabilistic algorithm
Inv_{g} :

Inverting Algorithm Inv_{g} :
Input: $y\in\{0,1\}^{n}$.

I-O: $x:=\epsilon$ (null string); $j:=1$.
I-l: Choose randomly $p\in\{0,1\}^{n}$.
I-2: Run G on input $\langle y,p, 0^{n}\rangle$ to get $b=G((y,p, 0^{n}\rangle)$.
I-3: Run G on input $\langle y,p\oplus e_{i}^{n}, 0^{n}\rangle$ to get $b_{j}=G(\langle y,p\oplus e_{j}^{n}, 0^{n}\rangle)$.
I-4: If $b=b_{j}$, then $x:=x\Vert 0$ and $j:=j+1$; otherwise $x:=x\Vert 1$ and $j:=j+1$.
I-5: If $j\leq n$, then go to step I-3; otherwise continue.
I-6: If $y=g(x)$, then halt and output $x\in\{0,1\}^{n}$; otherwise halt and output $”\perp$.

It is obvious that if G correctly returns b and b_{j} for each $j(1\leq j\leq n)$, then Inv_{g} successfully
finds in polynomial time $x\in\{0,1\}^{n}$ such that $y=g(x)$ (see [GL]). Thus the probability P_{succ}

that on input $y\in\{0,1\}^{n},$ Inv_{g} outputs $x\in\{0,1\}^{n}$ such that $y=g(x)$ is bounded by

$P_{succ}\geq(1-2^{-n})^{n+1}\geq 1-(n+1)\cdot 2^{-n}$.
This contradicts the assumption that g is a oneway permutation (see Definition 2.6). Then it
follows that $L_{g}\not\in \mathcal{B}\mathcal{P}\mathcal{P}$ and this implies that L_{g} must be weakly self-uncorrectable.

Thus if oneway permutations exist, then there exists a weakly self-uncorrectable language
$L\not\in \mathcal{B}\mathcal{P}P$ that has a different checker. \blacksquare

143

4 Self-Debuggers
In this section, we present a new notion of “self-debuggers.” Informally, a function f is said to
have a self-debugger SD_{f} with respect to D if SD_{f} transforms a faulty program P_{f} for f with
respect to D to a less faulty (deterministic) program Q_{f} for f with respect to D .
Definition 4.1: A probabilistic polynomial time oracle program SD_{f} is said to be a $(\delta,\gamma)-$

self-debugger for a function f with respect to $D=\{D_{n}|n\in N\}$ if for some constants $0\leq\gamma\leq$

$\delta\leq 1,$ SD_{j} on input $1^{n},$ $0<\beta<1/2$ transforms any program P_{f} that purports to compute f

to a (deterministic) program Q_{f}^{n} for f and it satisfies the following conditions:

(1) If Err $(P_{j}, f, D_{n})\leq\delta$, then $Pr\{Err(Q_{f}^{n}, f, D_{n})\leq\gamma\}\geq 1-\beta$;

(2) If Err$(P_{j}, f, D_{n})>\delta$, then $Pr\{SD_{f}^{P_{f}}(\langle 1^{n}, \beta\})=‘$ fail“VErr$(Q_{f}^{n}, f,D_{n})\leq\gamma$ } $\geq 1-\beta$,

where the probabilities are taken over all possible coin tosses of SD_{f}

The following theorem shows that if a function f has a self-tester/corrector pair, then there
exists a self-debugger for f .

Theorem 4.2: For some constan$ts0<\epsilon_{1}’<\epsilon_{2}’\leq e’<1$ and a polynomial time samplable
ensemble of distributions \mathcal{D} , let { $\overline{ST}_{f},\overline{SC}_{f}\rangle$ is a self-tester/corrector pair for a function $f,$ $i.e.$,

\overline{ST}_{f} is an $(\epsilon_{1}’,\epsilon_{2}’)$ -self-tester for f with respect to D an $d\overline{SC}_{f}$ is an $\epsilon’$-self-corrector for f with
respect to D. Then there exists an $(\epsilon’,\epsilon_{2}’)- se|f$-debugger SD_{f} for f with respect to D .

5 Applications of Self-Debuggers
In this section, we present two applications of self-debuggers by using Theorem 4.2. The first
application is to design a reliable and flexible self-tester from any self-tester/corrector pair and
the second application is to design strong self-debugger from any self-tester/corrector pair.

5.1 Making Self-Testers Reliable and Flexible
Assume that a self-tester/corrector pair \langle $\overline{ST}_{f},\overline{SC}_{f}$ } for a function f : $\{0,1\}^{*}rightarrow\{0,1\}^{*}$ is
given. Then it follows from Theorem 2.9 that f has a checker C_{f} and it follows from Theorem
2.8 that for any constant $0<\epsilon_{2}\leq 1,$ f has a $(0,\epsilon_{2})$-self-tester $ST_{f^{2}}^{e}$ with respect to any
polynomial time samplable ensemble of distributions \mathcal{D} . The resulting self-tester $ST_{f^{2}}^{e}$ can be
highly reliable when ϵ_{2} is taken to be very small. On the other hand, $ST_{j^{\epsilon_{2}}}$ is somewhat of
limited use, because it only passes completely correct programs P_{f} for f . We often wish to
design a flexible self-tester ST_{j} for f in such a way that ST_{f} passes almost correct programs
\tilde{P}_{f} for f . In this section, we give (as a solution to Question 2) a way to design a reliable and
flexible self-tester for f from any self-tester/corrector pair for f .
Theorem 5.1: For some constants $0<\epsilon_{1}’<\epsilon_{2}’\leq e’<1$ an d a polynomial time samplable

ensemble of dis tributionsD , let $\langle\overline{ST}_{f},\overline{ST}_{j}\rangle$ is a $self- teste\acute{r}/corrector$ pair for a function f , i.e.,
\overline{ST}_{f} is an $(\epsilon_{1}’,\epsilon_{2}’)$ -self-tester for f with respect to D and \overline{SC}_{f} is an $e’- self$-corrector for f with
respect to \mathcal{D} . Then for any constants $e_{1}<\epsilon_{2}$ such that $\epsilon_{1}\leq\epsilon’$, there exists an $(\epsilon_{1}, \epsilon_{2})$ -self-tester
ST_{f} for f with respect to D .

144

5.2 Amplffication of Self-Debuggers
From Theorems 4.2 and 5.1, we can show the following theorem:

Theorem 5.2:
For some constants $0<\epsilon_{1}’<e_{2}’\leq\epsilon’<1$ and a polynomial time samplable ensemble of

distributions D , let Let $0<\epsilon_{1}’<\epsilon_{2}’\leq n\epsilon’<1$ be constants and let \mathcal{D} be a polynomial time
samplable ensemble of distributions. $\{\overline{ST}_{f},\overline{ST}_{j}\}$ is a self-tester/corrector pair for a fun ction f ,
$i.e.,$ \overline{ST}_{f} is an $(\epsilon_{1}’, e_{2}’)$ -self-tester for f with respect to D an $d\overline{SC}_{f}$ is an $\epsilon’$ -self-corrector for f with
respect to \mathcal{D} . Then for any constan $t\delta>0$ such that $\delta\leq\epsilon’$, there exists an $(e’, \delta)$ -self-debugger
SD_{f} for f with respect to \mathcal{D} .

Proof: This can be led from Theorem 5.1 and Theorem 4.2 easily.

Acknowledgments
The authors wish to thank Ronitt Rubinfeld for her helpful discussion on the relation between
checkers and self-testers [R].

References
[BDG] Balc\’azar, J.L., D\’iaz, J., and Gabarr6, J., “Structural Complexity I,” EATCS Mono-

graphs on Theoretical Computer Science, Springer-Verlag, Berlin (1988).

[BF] Beigel, R. and Feigenbaum, J., “On Being Coherent Without Being Very Hard,” Com-
putational Complexity, Vol.2, No.1, pp.1-17 (1992).

[BG] Bellare, M. and Goldwasser, S., “The Complexity of Decision versus Search,” to appear
in SIAM Journal on Computing.

[BK] Blum, M. and Kannan, S., “Designing Programs That Check Their Work,” Proceedings
of $STOC’ 89$, pp.86-97 (1989).

[BLR] Blum, M., Luby, M., and Rubinfeld, R., Self-Testing/Correcting with Applications
to Numerical Problems,” Journal of Computer and Systems Sciences, Vol.47, No.3,
pp.549-595 (1993).

[BM] Babai, L. and Moran, S., “Arthur-Merlin Games: A Randomized Proof Systems and a
Hierarchy of Complexity Classes,” Journal of Computer and System Sciences, Vol.36,
pp.254-276 (1988).

[GL] Goldreich, 0 . and Levin, L.A., “A Hard-Core Predicate for All One-Way Functions,”
Proceedings of $STOC’ 89$, pp.25-32 (1989).

[GMR] Goldwasser, S., Micali, S., and Rackoff, C., “The Knowledge Complexity of Interactive
Proof Systems,” SIAM Journal on Computing, Vol.18, No.1, pp.186-208 (1989).

[R] Rubinfeld, R., private communication (1993).

[S] Spencer, J., “Ten lectures on the Probabilistic Method,” CBMS-NSF Regional Confer-
ence Series in Applied Mathematics 52, SIAM (1987).

[Y] Yao, A., “Coherent Functions and Program Checkers,” Proceedings of $STOC’ 90$, pp.84-
$94_{1\backslash }(1990)$.

