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On Checkers, Self-Testers, and Self-Debuggers

東京工業大学総合理工学研究科 森啓悦 (Hiroyoshi Mori)
東京工業大学総合理工学研究科 伊東利哉 (Toshiya Itoh)

1 Introduction

1.1 Background and Motivation
When a programmer writes a program $P_{f}$ that computes a function $f$ , one of the main difficulties
is to mathematically prove that $P_{f}$ is correct. Blum and Kannan [BK] first attempted to
overcome this problem and introduced a notion of “program checking” as an application of
interactive proofs [GMR], [BM]. Informally, a function $f$ is said to have a (program) checker
$C_{f}$ if (1) when $P_{f}$ is correct, $C_{f}$ making calls to $P_{f}$ outputs with high probability “correct” on
any input $x\in\{0,1\}^{*}$ ; and (2) when $P$; is incorrect, $C_{f}$ making calls to $P_{f}$ outputs with high
probability “incorrect” on any input $x\in\{0,1\}^{*}$ such that $P_{f}(x)\neq f(x)$ . Here we note that
the output of a checker $C_{f}$ only verifies the correctness of the output of any program $P_{f}$ on
specified input $x\in\{0,1\}^{*}$ but does not guarantees the correctness of the program $P_{f}$ being
checked. Then as an extension of checkers, Blum, Luby, and Rubinfeld [BLR] introduced a
notion of self-tester/corrector, and self-tester/corrector pair,” which is a powerful tool in a
practical setting. Informally, a function $f$ is said to have a self-tester $ST_{f}$ if (1) when $P_{f}$ is
tolerably faulty, $ST_{f}$ making calls to $P_{f}$ outputs “pass” with high probability; and (2) when
$P_{f}$ is too faulty, $ST_{f}$ making calls to $P_{j}$ outputs “fail” with high probability, and a function
$f$ is said to have a self-corrector $SC_{j}$ if when $P_{j}$ is not too faulty, $SC_{f}$ making calls to $P_{f}$

outputs with high probability a correct answer for every input to $f$ . In addition, Blum, Luby,
and Rubinfeld [BLR] introduced a notion of self-tester/corrector pair,” which is a powerful
tool in a practical setting.

Of course, we may expect that every function has a checker, a self-tester, and a self-corrector,
however, it is not the case. Indeed, there exists a function $f$ : $\{0,1\}^{*}rightarrow\{0,1\}$ that does not have
a checker $C_{f}$ under some complexity-theoretic assumption [Y], [BF], [BG]. As a relationship
among checkers, self-testers, and self-correctors, Blum, Luby, and Rubinfeld [BLR] showed that
if a function $f$ has a checker $C_{f}$ , then $f$ has a self-tester $ST_{f}$ (see Theorem 2.8). This implies
that the task of self-testers is not harder than that of checkers. On the contrary, it is not known
whether or not every function that has a checker has a self-corrector. Then. Question 1: Does every function $f$ that has a checker have a self-corrector?
Intuitively, the task of self-correctors seems to be much harder than that of checkers. In section
3, we show that it is indeed the case assuming the existence of oneway permutations.

Blum, Luby, and Rubinfeld [BLR] also showed that if a function $f$ has a self-tester/corrector
pair {$\overline{ST}_{f},\overline{SC}_{f}\rangle$ , then $f$ has a checker $C_{f}$ . It follows from the result above (see Theorem 2.8)
that if a function $f$ has a self-tester/corrector pair ($\overline{ST}_{f},\overline{SC}_{f}$ }, then $f$ has a self-tester $ST_{f}$ . It
should be noted that the resulting self-tester $ST_{j}$ for $f$ could be very reliable but it is somewhat
inflexible for a practical purpose, i.e., $ST_{f}$ only passes completely correct programs $P_{f}$ for $f$

but does not pass almost correct programs $P_{f}$ for $f$ . Then
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. Question 2: How can we make self-testers for a function $f$ reliable and flexible?

To investigate this problem, we introduce in section 4 a novel notion of “self-debuggers” for $f$

and then present in subsection 5.1 a way to design a reliable and flexible self-tester for $f$ from
any self-tester/corrector pair for $f$ .

1.2 Results
In this paper, we first present a negative solution to Question 1, i.e., if oneway permutations
exist, then there exists a function $f$ : $\{0,1\}^{*}rightarrow\{0,1\}$ that has a checker but does not have a
self-corrector (see Theorem 3.1). To demonstrate a positive solution to Question 2, we introduce
in section 4 a novel notion of “self-debuggers” and then show that if a function $f$ has a self-
tester/corrector pair ($\overline{ST}_{j},\overline{SC}_{f}$ }, then $f$ has a self-debugger $SD_{f}$ (see Theorem 4.2). As the
applications of self-debuggers, we show in subsection 5.1 that for any $0<\epsilon_{1}’<\epsilon_{2}’\leq\epsilon’<1$ , if
$\overline{ST}_{f}$ is an $(\epsilon_{1}’, \epsilon_{2}’)$-self-tester for $f$ and $\overline{SC}_{f}$ is an $\epsilon’$-self-corrector for $f$ , then for any $\epsilon_{1}<\epsilon_{2}$ such
that $\epsilon_{1}\leq\epsilon’$ , there exists an $(\epsilon_{1}, \epsilon_{2})$-self-tester $ST_{f}$ for $f$ (see Theorem 5.1) and in subsection
5.2 that for any $0<\epsilon_{1}’<\epsilon_{2}’\leq\epsilon’<1$ , if $\overline{ST}_{j}$ is an $(\epsilon_{1}’, \epsilon_{2}’)$-self-tester for $f$ and $\overline{SC}_{j}$ is an
$\epsilon’$-self-corrector for $f$ , then for any constant $\delta>0$ such that $\delta\leq\epsilon’$ , there exists an $(\epsilon’, \delta)$ -self-
debugger $SD_{f}$ for $f$ (see Theorem 5.2). The result of Theorem 3.1 captures our intuition that
the task of self-correctors seems to be much harder than that of checkers and the results of
Theorems 5.1 and 5.2 provides us a powerful tool in a practical setting.

2 Preliminaries
In this section, we first present definitions and terminologies necessary to the subsequent tech-
nical discussions and then overview the results known so far.

2.1 Definitions and Terminologies
Let $f$ : $\{0,1\}^{*}-\rangle$ $\{0,1\}^{*}$ be a function and let $P_{f}$ be a program that purports to compute $f$ . In
this paper, any program $P_{f}$ is assumed to be static, i.e., $P_{j}(x)$ is completely determined by the
current input $x\in\{0,1\}^{*}$ and does not depend on any input previously asked of the program
$P_{f}$ . We use $P_{j}(x)$ to denote the output of a program $P_{j}$ on input $x\in\{0,1\}^{*}$ . A program $P_{j}$

for $f$ is said to be correct if $P_{J}(x)=f(x)$ for every $x\in\{0,1\}^{*}$ and a program $P_{f}$ for $f$ is said
to be incorrect if there exists $w\in\{0,1\}^{*}$ such that $P_{j}(w)\neq f(w)$ .
Definition 2.1 [BLR]: $A$ (probabilistic) $p$rogram $M$ is said to be an oracle program if it
is allowed to make $calls$ to another program that is specified at its run time. $We$ use $M^{A}$ to
denote an oracle program $M$ that makes $c$alls to another $p$rogram $A$ .

Definition 2.2 [BK]: A probabilistic polynomial time oracle program $C_{f}$ is $s$aid to be a
checker for a function $f$ : $\{0,1\}^{*}\mapsto\{0,1\}^{*}if$ for every program $P_{j}$ that purports to compute
$f,$ $C_{f}$ on in$putx\in\{0,1\}^{*}$ satisfies the following condition$s$ :

(1) If $P_{f}$ is correct, then $Pr$ { $C_{f}^{P_{f}}(x)=$ ”correct”} $\geq 2/3$ for $anyx\in\{0,1\}^{*}$ ;

(2) For any $x\in\{0,1\}^{*}such$ that $P_{f}(x)\neq f(x),$ $Pr\{C_{f}^{P_{f}}(x)=c_{1ncorrect’\}}\geq 2/3$ ,

where the $p$robabilities are $t$aken over all possibk coin tosses of $C_{j}$ .
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Note that in Definition 2.2, the output of $C_{f}^{P_{f}}$ on any input $x\in\{0,1\}^{*}$ such that $P_{f}(x)=f(x)$

is not specified when $P_{f}$ is incorrect.
We say that a function $f$ is checkable (or $f$ has a checker) if there exists a checker $C_{f}$ for $f$

and also that a languag$eL$ is checkable (or $L$ has a checker) if there exists a checker $C_{L}$ for its
characteristic function $\lambda_{L}$ . A function $f$ (or a language $L$ ) is uncheckable if it is not checkable.

Let $N$ be a set of positive integers and let $I\subseteq\{0,1\}^{*}$ . Let $I_{1},$ $I_{2},$ $\cdots\subseteq I$ be a sequence of
subsets of $I$ that satisfies $I_{1}\cup I_{2}\cup\cdots=I$ . Note that each $n\in N$ indicates the “size” of each
$x\in I_{n}$ . We use $D=\{D_{n}|n\in N\}$ to denote an ensemble of probability distributions such that
$D_{n}$ is a distribution on $I_{n}$ for each $n\in N$ . Let $P_{j}$ be a program that purports to compute a
function $f$ . We use Err$(P_{f}, f, D_{n})$ to denote the error probability that $P_{f}(x)\neq f(x)$ when $x$ is
randomly chosen in $I_{n}$ according to $D_{n}$ for $n\in N$ . Let $0<\beta<1/2$ be a confidence parameter.

Definition 2.3 [BLR]: A probabilistic polynomial time oracle program $ST_{f}$ is said to be
an $(\epsilon_{1}, \epsilon_{2})$ -self-tester for $a$ function $f$ with respect to $\mathcal{D}=\{D_{n}|n\in N\}$ if for some constants
$0\leq\epsilon_{1}<\epsilon_{2}\leq 1$ and any program $P_{f}$ that purports to $com$pute $f,$ $ST_{f}$ on input 1 $n0<\beta<1/2$
satisfies the following conditions:

(1) If Err$(P_{f}, f, D_{n})\leq\epsilon_{1}$ , then $Pr$ { $ST_{f}^{P_{f}}(\langle 1^{n},$ $\beta\rangle)=$ “pass”} $\geq 1-\beta$ ;

(2) If Err $(P_{f}, f, D_{n})\geq\epsilon_{2}$ , then $Pr$ { $ST_{f}^{P_{f}}(\langle 1^{n},$ $\beta\rangle)=$ “fail”} $\geq 1-\beta$ ,

where the probabilities are $t$ aken over all possible $c$oi$n$ tosses of $ST_{f}$ .

Note that in Definition 2.3, the output of $ST_{f}$ is not specified when $\epsilon_{1}<Err(P_{f}, f, D_{n})<\epsilon_{2}$.
Thus the value $\delta=\epsilon_{2}-\epsilon_{J}$ should be as close as possible to $0$ so that $ST_{f}$ is reliable.

We say that a function $f$ is weakly/strongly self-testable (or $f$ has a $weak/strong$ self-tester)
if for some/any ensemble of distributions $D$ , there exist some constants $0\leq\epsilon_{1}<\epsilon_{2}\leq 1$ such
that $f$ has an $(\epsilon_{1}, \epsilon_{2})$ -self-tester $ST_{f}$ with respect to $\mathcal{D}$ and we also say that a language $L$

is weakly/strongly self-testable (or $L$ has a weak/strong self-tester) if for some/any ensemble
of distributions $\mathcal{D}$ , there exists some constants $0\leq\epsilon_{1}<\epsilon_{2}\leq 1$ such that its characteristic
function $\lambda_{L}$ has an $(\epsilon_{1},\epsilon_{2})$-self-tester $ST_{L}$ with respect to $D$ . A function $f$ (or a language $L$ ) is
said to be strongly/weakly self-untestable if it is not weakly/strongly self-testable.

Definition 2.4 [BLR]: A probabilistic polynomi$al$ time $oracle$ program $SC_{f}$ is said to be $an$

$\epsilon$ -self-corrector for a function $f$ with respect to $D=\{D_{n}|n\in N\}$ if for $somecon$stant $0<\epsilon<1$

and any program $P_{j}$ that purports to compute $f,$ $SC_{f}$ on input $1^{n},$ $x\in I_{n},$ $0<\beta<1/2$ satisfies
the following condition: If Err $(P_{f}, f, D_{n})\leq\epsilon$ , then $Pr\{SC_{f}^{P_{j}}(\langle 1^{n}, x, \beta\rangle)=f(x)\}\geq 1-\beta$ .

We also say that a function $f$ is weakly/strongly correctable (or $f$ has a $weak/strong$ self-
tester), that a language $L$ is weakly/storngly correctable (or $L$ has a weak/storng self-tester),
and that a function $f$ (resp. a language $L$ ) is strongly/weakly self-uncorrectable in a way similar
to the case of self-testers.

Definition 2.5 [BLR]: A pair of probabilistic polynonial time oracle programs $\langle ST_{f}, SC_{f}\rangle$

is $s$aid to $be$ a self-tester/corrector pair for $a$ function $f$ if for some constants $0\leq\epsilon_{1}<\epsilon_{2}\leq\epsilon<1$

and an ensemble of distributions $D,$ $ST_{f}$ is an $(\epsilon_{1}, \epsilon_{2})$ -self-tester for $fwi$th respect to $D$ and
$SC_{f}$ is an e-self-corrector for $f$ with respect to $D$ .

We say that a function $f$ (resp. a language $L$ ) has a self-tester/corrector pair if there exists
a self-tester/corrector pair for $f$ (resp. the characteristic function $\lambda_{L}$ of $L$ ).

For each $n\geq 0$ , let $S_{n}=\{0,1\}^{n}$ and let $R_{n}$ be a set of all possible sequences of coin tosses
of a probabilistic polynomial (in n) time algorithm on input of length $n$ .
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Definition 2.6 (Oneway Permutation): If a function $g:\{0,1\}^{*}\mapsto\{0,1\}^{*}$ satisfies that

(1) For any $x\in\{0,1\}^{*},$ $|g(x)|=|x|$ and $g$ is 1-1 and onto;

(2) For any $x\in\{0,1\}^{*},$ $g(x)$ can be evaluated in polynomial (in $|x|$ ) time;

(3) For any probabilis$tic$ polynomial (in n) time algorithm $A$ and each $con$stant $c>0$ , there
exi$sts$ a $con$stan$tN_{c}\geq 0$ such that $Pr\{g(A(y))=y\}<n^{-c}$ for every $n>N_{c}$ and every
$y\in\{0,1\}^{n}$ , where the probabilities are taken over $\langle y,r$ } $\in S_{n}\cross R_{n}$ ,

then we say that the fun $cti$on $g:\{0,1\}^{*}arrow\rangle$ $\{0,1\}^{*}$ is a oneway permutation.

In the rest of this paper, we sometimes use $g_{n}$ : $\{0,1\}^{n}\mapsto\{0,1\}^{n}$ for each $n\in N$ to denote the
restriction of a oneway permutation $g$ : $\{0,1\}^{*}arrow\rangle$ $\{0,1\}^{*}$ .

The following inequality is useful in section 5.1 to approximate the error probability (with
respect to $D$ ) of a program $P_{f}$ that purports to compute $f$ .
Definition 2.7 [S]: Let $X_{1},$ $X_{2},$

$\ldots,$
$X_{n}$ be independent identically distributed 0-1 random

variables and let $Pr(X;=1)=p$ for each $i(1\leq i\leq n)$ . Then

(1) $Pr\{\frac{1}{n}\sum_{=:1}^{n}X_{i}-p\leq\delta\}\geq 1-\exp\{-\frac{\delta^{2}n}{2}\}$ ;

(2) $Pr\{\frac{1}{n}\sum_{\mathfrak{i}=1}^{n}X;-p\geq-\delta\}\geq 1-\exp\{-\frac{\delta^{2}n}{2}\}$,

for any integer $n\geq 1$ and any constant $\delta>0$ .

2.2 Known Results
Here we overview the known results on checkers, self-testers, and self-correctors. The following
theorems are the relationships among checkers, self-testers, and self-correctors.

Theorem 2.8 [BLR], [R]: If a function $f$ : $\{0,1\}^{*}rightarrow\{0,1\}^{*}has$ a checker $C_{f}$ , then for any
constan$t0<\epsilon_{2}\leq 1$ , the function $f$ has a $(0, e_{2})$ -self-tester $ST_{f}$ with respect to any polynomial
time samplable ensemble of distribution$sD$ .
Theorem 2.9 [BLR]: If a function $f$ : $\{0,1\}^{*}rightarrow\{0,1\}^{*}h$as a self-tester/corrector pair
\langle $ST_{f},$ $SC_{f}$ ), then the function $f$ has a checker $C_{f}$ .

3 Checkable But Self-Uncorrectable Languages
In this section, we give a solution to Question 1 in subsection 1.1, i.e., there exists a weakly
self-uncorrectable language $L$ that is checkable under a complexity-theoretic assumption.

Theorem 3.1: If oneway permutation$s$ exist, then there exists a weakly self-uncorrectable
language $L\not\in \mathcal{B}PP$ that $Aas$ $a$ checker.

Proof: Let $I=\{\{0,1\}^{n}\cross\{0,1\}^{n}\cross\{0,1\}^{n}|n\in N\}$ and let $I_{n}=\{0,1\}^{n}\cross\{0,1\}^{n}\cross\{0,1\}^{n}$

for each $n\in N$ . We use $\mathcal{U}=\{U_{n}|n\in N\}$ to denote an ensemble of uniform distributions, i.e.,
for each $n\in N,$ $U_{n}$ is a uniform distribution on $I_{n}$ , and use $a\cdot b$ to denote the inner product of
$a,$ $b\in\{0,1\}^{n}$ modulo 2. Let $g$ : $\{0,1\}^{*}rightarrow\{0,1\}^{*}$ be a oneway permutation. Define a language
$L_{g}\subseteq I$ to be $L_{g}=\{\langle y,p,0^{|y|})\in I|g^{-1}(y)\cdot p=1\}$ . It is obvious that $L_{g}\in \mathcal{N}P$ . Note that the
definition of $L_{g}$ is inspired by the hard-core predicate due to Goldreich and Levin [GL].
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We first show that $L_{g}$ has a checker $C_{g}$ . But there isn’t enough space to show that. So we
obmit the proof.

Next, we show that $L_{g}$ is weakly self-uncorrectable. Indeed, we show that for some ensemble
of distributions $\mathcal{D}=\{D_{n}|.n\in N\}$ and for any constant $0<\epsilon<1$ , the characteristic function
$\lambda_{g}$ of $L_{g}$ does not have an $\epsilon$-self-corrector with respect to $\mathcal{D}=\{D_{n}|n\in N\}$ .

Assume that $L_{g}$ is strongly self-correctable, i.e., for any ensemble of distributions $\mathcal{D}$ and some
constant $0<\epsilon<1,$ $L_{g}$ has an e-self-corrector with respect to $D$ . Then this means that for
some constant $0<\epsilon<1,$ $L_{g}$ has an e-self-corrector $SC_{g}^{e}$ with respect to $\mathcal{U}=\{U_{n}|n\in N\}$ ,
where $U_{n}$ is a uniform distribution on $I_{n}$ for each $n\in N$ . Define a program $\tilde{P}_{g}$ that purports
to cumpute $\lambda_{g}$ in a way that on input $\langle y,p, z\rangle\in I_{n}$ ,

$\tilde{P}_{g}(\langle y,p, z\rangle)=\{01$ $z\neq 0_{n};z=0^{n}$

.

Here we note that $\tilde{P}_{9}$ errs only for ( $y,p,$ $0^{n}\rangle$ $\not\in L_{g}\cap I_{n}$ . From the assumption that $g_{n}$ is a
(oneway) permutation, it follows that for each $n\in N,$ $Err(\tilde{P}_{g}, \lambda_{g}, U_{n})$ is given by

Err$( \tilde{P}_{g}, \lambda_{g}, U_{n})=\frac{\Vert\{\langle y,p,0^{n}\}\in I_{n}|g^{-1}(y)\cdot p=0\}\Vert}{\Vert I_{n}||}=\frac{2^{2n-1}+2^{n-1}}{2^{3n}}=\frac{2^{n}+1}{2^{2n+1}}<\frac{1}{2^{n}}$,

where $\Vert A\Vert$ denotes the cardinality of a finite set $A$ .
Then for every $n\geq\lceil\log\epsilon^{-1}\rceil,$ $Err(\tilde{P}_{g}, \lambda_{g}, U_{n})\leq\epsilon$ . This implies that for every $n\geq\lceil\log e^{-1}\rceil$ ,

$SC_{g^{\zeta}}$ making calls to the program $\tilde{P}_{g}$ outputs 1 with probability at least $1-\beta$ if $\langle y,p, z\rangle\in L_{g}$

and outputs $0$ with probability at least $1-\beta$ if $\langle y,p, z\rangle\not\in L_{9}$ . Thus we can make probabilistic
polynomial (in n) time program $\hat{P}_{g}$ such that $\hat{P}_{g}(\langle y,p, z\rangle)=\lambda_{g}(\langle y,p, z\rangle)$ with probability at
least $1-\beta$ from $C_{g}$ and $\tilde{P}_{g}$ . Since $0<\beta<1/2$ is a constant (see Definition 2.4), $L_{g}\in \mathcal{B}\mathcal{P}P$

[BDG]. By a standard technique (see [BDG]), we assume without loss of generality that there
exists a probabilistic polynomial (in n) time algorithm $G$ such that $G(\{y,p, z\rangle)=\lambda_{9}(\{y,p, z\rangle)$

with probability at least $1-2^{-n}$ . Then let us consider the following probabilistic algorithm
$Inv_{g}$ :

Inverting Algorithm $Inv_{g}$ :
Input: $y\in\{0,1\}^{n}$ .

I-O: $x:=\epsilon$ (null string); $j:=1$ .
I-l: Choose randomly $p\in\{0,1\}^{n}$ .
I-2: Run $G$ on input $\langle y,p, 0^{n}\rangle$ to get $b=G((y,p, 0^{n}\rangle)$ .
I-3: Run $G$ on input $\langle y,p\oplus e_{i}^{n}, 0^{n}\rangle$ to get $b_{j}=G(\langle y,p\oplus e_{j}^{n}, 0^{n}\rangle)$ .
I-4: If $b=b_{j}$ , then $x:=x\Vert 0$ and $j:=j+1$ ; otherwise $x:=x\Vert 1$ and $j:=j+1$ .
I-5: If $j\leq n$ , then go to step I-3; otherwise continue.
I-6: If $y=g(x)$ , then halt and output $x\in\{0,1\}^{n}$ ; otherwise halt and output $”\perp$ .

It is obvious that if $G$ correctly returns $b$ and $b_{j}$ for each $j(1\leq j\leq n)$ , then $Inv_{g}$ successfully
finds in polynomial time $x\in\{0,1\}^{n}$ such that $y=g(x)$ (see [GL]). Thus the probability $P_{succ}$

that on input $y\in\{0,1\}^{n},$ $Inv_{g}$ outputs $x\in\{0,1\}^{n}$ such that $y=g(x)$ is bounded by

$P_{succ}\geq(1-2^{-n})^{n+1}\geq 1-(n+1)\cdot 2^{-n}$ .
This contradicts the assumption that $g$ is a oneway permutation (see Definition 2.6). Then it
follows that $L_{g}\not\in \mathcal{B}\mathcal{P}\mathcal{P}$ and this implies that $L_{g}$ must be weakly self-uncorrectable.

Thus if oneway permutations exist, then there exists a weakly self-uncorrectable language
$L\not\in \mathcal{B}\mathcal{P}P$ that has a different checker. $\blacksquare$
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4 Self-Debuggers
In this section, we present a new notion of “self-debuggers.” Informally, a function $f$ is said to
have a self-debugger $SD_{f}$ with respect to $D$ if $SD_{f}$ transforms a faulty program $P_{f}$ for $f$ with
respect to $D$ to a less faulty (deterministic) program $Q_{f}$ for $f$ with respect to $D$ .
Definition 4.1: A probabilistic polynomial time oracle program $SD_{f}$ is said to be a $(\delta,\gamma)-$

self-debugger for a function $f$ with respect to $D=\{D_{n}|n\in N\}$ if for some $con$stants $0\leq\gamma\leq$

$\delta\leq 1,$ $SD_{j}$ on input $1^{n},$ $0<\beta<1/2$ transforms any program $P_{f}$ that purports to compute $f$

to a (deterministic) program $Q_{f}^{n}$ for $f$ and it satisfies the following $con$ditions:

(1) If Err $(P_{j}, f, D_{n})\leq\delta$ , then $Pr\{Err(Q_{f}^{n}, f, D_{n})\leq\gamma\}\geq 1-\beta$;

(2) If Err$(P_{j}, f, D_{n})>\delta$ , then $Pr\{SD_{f}^{P_{f}}(\langle 1^{n}, \beta\})=‘$ fail“VErr$(Q_{f}^{n}, f,D_{n})\leq\gamma$ } $\geq 1-\beta$ ,

where the probabilities are taken over all possible $c$oin tosses of $SD_{f}$

The following theorem shows that if a function $f$ has a self-tester/corrector pair, then there
exists a self-debugger for $f$ .

Theorem 4.2: For some constan$ts0<\epsilon_{1}’<\epsilon_{2}’\leq e’<1$ and a polynomial time $s$amplable
ensemble of distributions $\mathcal{D}$ , let { $\overline{ST}_{f},\overline{SC}_{f}\rangle$ is a self-tester/corrector pair for $a$ function $f,$ $i.e.$ ,

$\overline{ST}_{f}$ is an $(\epsilon_{1}’,\epsilon_{2}’)$ -self-tester for $f$ with respect to $D$ an $d\overline{SC}_{f}$ is an $\epsilon’$-self-corrector for $f$ with
resp$ect$ to D. Then there exists an $(\epsilon’,\epsilon_{2}’)- se|f$-debugger $SD_{f}$ for $f$ with resp$ect$ to $D$ .

5 Applications of Self-Debuggers
In this section, we present two applications of self-debuggers by using Theorem 4.2. The first
application is to design a reliable and flexible self-tester from any self-tester/corrector pair and
the second application is to design strong self-debugger from any self-tester/corrector pair.

5.1 Making Self-Testers Reliable and Flexible
Assume that a self-tester/corrector pair \langle $\overline{ST}_{f},\overline{SC}_{f}$ } for a function $f$ : $\{0,1\}^{*}rightarrow\{0,1\}^{*}$ is
given. Then it follows from Theorem 2.9 that $f$ has a checker $C_{f}$ and it follows from Theorem
2.8 that for any constant $0<\epsilon_{2}\leq 1,$ $f$ has a $(0,\epsilon_{2})$-self-tester $ST_{f^{2}}^{e}$ with respect to any
polynomial time samplable ensemble of distributions $\mathcal{D}$ . The resulting self-tester $ST_{f^{2}}^{e}$ can be
highly reliable when $\epsilon_{2}$ is taken to be very small. On the other hand, $ST_{j^{\epsilon_{2}}}$ is somewhat of
limited use, because it only passes completely correct programs $P_{f}$ for $f$ . We often wish to
design a flexible self-tester $ST_{j}$ for $f$ in such a way that $ST_{f}$ passes almost correct programs
$\tilde{P}_{f}$ for $f$ . In this section, we give (as a solution to Question 2) a way to design a reliable and
flexible self-tester for $f$ from any self-tester/corrector pair for $f$ .
Theorem 5.1: For some constants $0<\epsilon_{1}’<\epsilon_{2}’\leq e’<1$ an $d$ a $p$olynomial time sampla$ble$

ensemble of $dis$ tribution$sD$ , let $\langle\overline{ST}_{f},\overline{ST}_{j}\rangle$ is a $self- teste\acute{r}/corrector$ pair for a function $f$ , i.e.,
$\overline{ST}_{f}$ is an $(\epsilon_{1}’,\epsilon_{2}’)$ -self-tester for $f$ with respect to $D$ and $\overline{SC}_{f}$ is an $e’- self$-corrector for $f$ with
respect to $\mathcal{D}$ . Then for any $c$onstants $e_{1}<\epsilon_{2}$ such that $\epsilon_{1}\leq\epsilon’$ , there exists an $(\epsilon_{1}, \epsilon_{2})$ -self-tester
$ST_{f}$ for $f$ with respect to $D$ .
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5.2 Amplffication of Self-Debuggers
From Theorems 4.2 and 5.1, we can show the following theorem:

Theorem 5.2:
For some $con$stants $0<\epsilon_{1}’<e_{2}’\leq\epsilon’<1$ and a polynom$ial$ time samplable ensemble of

distributions $D$ , let Let $0<\epsilon_{1}’<\epsilon_{2}’\leq n\epsilon’<1$ be $con$stants and let $\mathcal{D}$ be a polynomial time
samplable ensemble of distributions. $\{\overline{ST}_{f},\overline{ST}_{j}\}$ is a self-tester/corrector pair for a $fun$ ction $f$ ,
$i.e.,$ $\overline{ST}_{f}$ is an $(\epsilon_{1}’, e_{2}’)$ -self-tester for $f$ with respect to $D$ an $d\overline{SC}_{f}$ is an $\epsilon’$ -self-corrector for $f$ with
resp$ect$ to $\mathcal{D}$ . Then for any constan $t\delta>0$ such that $\delta\leq\epsilon’$ , there exists an $(e’, \delta)$ -self-debugger
$SD_{f}$ for $f$ with respect to $\mathcal{D}$ .

Proof: This can be led from Theorem 5.1 and Theorem 4.2 easily.
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