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Abstract

Computational geometry has developed many efficient algorithms for geometric problems in
low dimensions by considering the problems from the unified viewpoint of geometric algorithms.
It is often the case that such geometric problems may be regarded as special cases of mathemat-
ical programming problems in high dimensions. Of course, computational-geometric algorithms
are much more efficient than general algorithms for mathematical programming when applied
to the problems in low dimensions. For example, a linear programming problem in a fixed
dimension can be solved in linear time, while, for a general linear programming problem, only
weakly polynomial time algorithms are known. Although not so much attention has been paid
to combine techniques in computational geometry and those in mathematical programming,
both of them should be investigated more from each side in future.

In this paper, we first survey many useful results for linear programming in computational
geometry such as the prune-and-search paradigm and randomization and those in mathematical
$])rogralnIni_{I}\downarrow gsuc]_{l}$ as the interior-point metbod. We also demonstrate bow computational ge-
ometry and mathematical programming may be combined for several geometric problems in low
and high dimensions. Efficient sequential as well as parallel geometric algorithms are touched
upon.

1 Introduction

Linear programming is an optimization problem which minimizes a linear objective function under
linear inequality constraints:

$\min c^{T}x$

$s.t$ . $Ax\geq b$

where $c,$ $x\in R^{d},$ $b\in R^{n},$ $A\in R^{nxd},$ $A,$ $b,$ $c$ are given and elements $x_{I},$ $\ldots$ , $x_{d}$ of $x$ are $d$ variables.
Linear programming would be the best optimization paradigm that is utilized in real applications,
since it can be used as a powerful model of various discrete as well as continuous systems and even a
large-scale linear programming problem with thousands of variables or more may be solved within
a reasonable time.

Wide applicability of linear programming makes it very interesting to investigate algorithms for
linear programming in the field of computer science. From the viewpoint of theory of algorithms,
linear programuning has many fertile aspects as follows.

First, linear programming can be viewed as both of discrete optimization and continuous op-
timization. In its original formulation, the problem is a continuous optimization problem. On the
other hand, by investigating the feasible region $\{x Ax\geq b\}$ , which is a convex polyhedron, it
is seen that there exists an optimum solution which is an extreme point of the convex polyhedron
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if rank $A=d$, and, since the nuunber of extreme points of $A$ is bounded by $(_{d}^{n})$ (or $O(n^{L^{d/2\rfloor}})$ by
the upper bound theorem of the polytope), the problem can in principle be solved by checking all
the extreme points in a discrete manner. Basically using this discrete property, an algorithm for
linear programming, called simplex method, was developed by Dantzig [5], which traverses a path
of adjacent extreme points of the polyhedron to an optimum point. The simplex algorithni has
been used as a useful tool in the commercial world.

Second, the time complexity of linear programming is very close to a threshold between tractable
problems and intractable problems. In a famous book on NP-completeness by Garey and Johnson
[6], linear programming is listed as one of a few big problems that have not been known to fall
in which of tractable or intractable class at that time. In fact, the simplex method may traverse
all the extreme points of the convex polyhedron in the worst case. Since the number of extreme
points may be exponential, the simplex method is regarded as a non-polynomial method in general.
However, in 1979, Khachian [18] showed that linear programming is polynomial-time solvable by
using an ellipsoid method. Furthermore, in mid $1980’ s$ , Karmarkar [16] proposed an interior-point
method for linear programming, which has better polynomial-time complexity in the worst case and
may run faster on the average. Unlike the simplex method which traverses a path on the boundary
of the convex polyhedron, the interior-point method works in the interior of the polyhedron. Since
the interior of the polyhedron has continuous structure in itself, the interior-point method may be
said to be an algorithm based on the continuous structure of linear programming.

Third, linear programming is still not known to admit any strongly polynomial-time algo-
rithm. Khachian’s ellipsoid method as well as Karmarkar’s interior-point method yields weakly
polynomial-time algorithms by nature since both are based on Khachian’s ingenious approximation
idea of solving a discrete problem by a continuous approach. For network flow problems, which
form a useful subclass of linear programming, strongly polynomial-time algorithms are already de-
veloped (e.g., [25]), and this issue has been a big open problem conceming the complexity of linear
programming.

Fourth, in some applications such as computer graphics, there arise linear programniing prob-
lems such that $d$ is much smaller than $n$ or $d$ is a constant, say three. This type of linear program-
ming problems may be treated in computational geometry. Computational geometry, whose name
was christened by Shamos in mid $1970’ s[27]$ , is a field in computer science which treats geometric
problems in a unified way from the viewpoint of algorithms. Efficient $algorith_{1}us$ to construct the
convex hull, Voronoi diagram, arrangement, etc., have been developed as huitful results of the field.
Until now, computational geometry has laid emphasis on low-dimensional geometric problems, es-
pecially problems in the two- or three-dimensional space. Also, most of computational geometric
algorithms are discrete ones. Computational geometry from now should tackle higher dimensional
problems and adopt more continuous approaches. One of useful techniques which computational
geometry is now using and somehow has connection continuous structure is randomization. This in-
troduces probabilistic behavior in algorithms, and to analyze such randomized algorithms we need
to treat geometric problems in a more general setting. For linear programming, computational
geometry yields a linear-time algorithm when the dimension is regarded as a constant. To derive
such an algorithm, the prune-and-search paradigm is used. This paradigm was originally used in
obtaining a linear-time algorithm for selection. Through computational geometry, the prune-and-
search paradigm is generalized to higher dimensional problems, and, besides linear programming,
produces many useful algorithms.

In this paper, we discuss some of the above-mentioned results concerning linear programming.
This is done from the viewpoint of the author, and hence topics treated here might be biased
compared with the too general title of this paper. Through highlighting such results, which would
be of practical importance by themselves, we try to give some idea on future research directions
in the related fields. Although, up to here in this introduction, linear programming is emphasized
from the viewpoint of mathematical programming, computational geometry will also be treated as
a big subject of this paper. We first describe the prune-and-search paradigm and its applications
for linear programming in computational geometry in section 2 and then describe the interior-point
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method for linear programming in mathematical programming in section 3. In section 4, combining
two paradigms in computational geometry and mathematical programming to obtain an efficient
linear programming algorithm is discussed. In fact, it is definitely useless to distinguish linear
programming in computational geometry and linear programming in mathematical programming,
and we may treat and understand these problems in a more unified manner.

2 Linear Programming in Computational Geometry

In this section we first explain the prune-and-search paradigm, and its application to the two-
dimensional linear programming problem in detail. Then two applications of the prune-and-search
technique to some special linear programming problems are mentioned. We also describe random-
ized algorithms for linear programming.

2.1 Prune-and-search paradigm and its application to two-dimensional linear
programming

In many of algorithmic paradigms, given a problem, its subproblems of smaller size are solved to
obtain a solution to the whole problem. This is because the smaller the problem size is the more
easily the problem may be solved. The prune-and-search paradigm tries to reduce the problem
size by a constant factor by removing redundant elements at each stage, whose application to the
two-dimensional linear programming problem is described below.

The prune-and-search paradigm is one of useful paradigms in the design and analysis of algo-
rithms. It was used in linear-time selection algorithms [2]. As mentioned above, a key idea of this
paradigm is to remove redundant elements by a constant factor at each iteration. In the case of
selecting the $k(=k_{0})th$ element $x$ among $n$ elements, at the ith iteration, the algorithun finds a
subset of $s_{i}$ elements which are either all less than $x$ or all greater than $x$ . Then, we may remove
all the elements in the subset and, for $k_{i}=k_{i-1}-s_{i}$ and $k_{i-1}$ according as these elements in the
subset are less or greater than $x$ , respectively, find $k$;th element among the remaining elements in
the next step. Roughly speaking, finding the subset of elements whose size is guaranteed to be at
least a constant factor $\alpha<1$ of the current size can be done in time linear to the current size.
Then, the total time complexity is bounded in magnitude by

$n+(1- \alpha)n+(1-\alpha)^{2}n+\cdots\leq\frac{1}{\alpha}n$ .

A linear-time algorithm is thus obtained.
Let us see how this prune-and-search paradigm may be used to develop a linear-time algorithm

for the two-dimensional linear programming problem, as shown by Megiddo [22] et al. Since this
is simple enough to describe compared with the other methods in this paper, we here try to give
a rather complete description of this algoritlm]. A general two-dimensional linear programming
problem with $n$ inequality constraints can be described as follows:

$\min c_{I}x_{1}+c_{2}x_{2}$

s.t. $a_{iI}x_{1}+a_{i2}x_{2}\geq a_{i0}$ $(i=1, \ldots,n)$

lf one can illustrate the feasible region $satis\mathfrak{g}_{r}$ing the inequality constraints in the $(x_{1}, x_{2})$-plane,
which is simply a convex polygon if bounded, the problem would be very easy to solve illustratively
(see Figure 2.1). Here, instead of considering the problem in this general form, we restrict our
attention to the following problem.

$\min y$

s.t. $y\geq a;x+b_{i}$ $(i=1, \ldots , n)$
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Figure 2.1. A two-dimensional linear programming problem

This is because this special problem is almost sufficient to devise a linear-time algorithm for the
general two-dimensional problem, and its simpler structure is better in order to exhibit the essence
of the prune-and-search technique. Figure 2.1 depicts this restricted problem of $n=7$ .

We consider the problem as defined above. Define a function $f(x)$ by

$f(x)= \max\{a_{i}x+b;|i=1, \ldots,n\}$ .

Then, the problem is equivalent to minimizing $f(x)$ . The graph of $y=f(x)$ is drawn in bold lines
in Figure 2.1. $f(x)$ has a nice property as follows. First we review the convexity of a function. A
function $g:Rarrow R$ is convex if

$g(\lambda x_{1}+(1-\lambda)x_{2})\leq\lambda g(x_{1})+(1-\lambda)g(x_{2})$

for any $x_{1},$ $x_{2},$ $\lambda\in R$ with $0<\lambda<1$ . If the above inequality always holds strictly, $g(x)$ is called
strictly convex. Consider the problem of minimizing a convex function $g(x)$ . $x’$ is called a local
minimum solution if, for any sufficiently small $\epsilon>0$ ,

$g(x’)\leq g(x’+\epsilon)$ and $g(x’)\leq g(x’-\epsilon)$ .

$x’$ is a global minimum solution if the above inequality holds for arbitrary $\epsilon$ . Due to the convexity,
any local minimum solution is a global minimum solution. Also, if $g(x)$ is strictly convex, there is
at most one global minimum solution. Suppose there is a global minimum $x$

‘ of $g(x)$ . Given $x$ , we
can determine, without knowing the specific value of $x^{*}$ , which of $x<x^{*},$ $x=x^{*},$ $x>x^{*}$ holds by
checking the following conditions locally for sufficiently small $\epsilon>0$ :

(g1) if $g(x+\epsilon)<g(x),$ $x\leq x^{*}$ ;

(g2) if $g(x-\epsilon)<g(x),$ $x\geq x^{*}$ ;

(g3) if $g(x+\epsilon),g(x-\epsilon)\geq g(x),$ $x$ is a global minimum solution.

Finally, for $k$ convex functions $g_{i}(x)(i=1, \ldots , k)$ , a function $g(x)$ defined by

$g(x)= \max\{g_{i}(x)|i=1, \ldots , k\}$

is again convex.
Now, retum to our problem of minimizing $f(x)= \max\{a_{i}x+b_{i}|i=1, \ldots, n\}$ . $f(x)$ is a

continuous piecewise linear function. From the above discussions, we have the following.

(f1) $f(x)$ is convex (since $a_{i}x+b_{i}$ is trivially convex).
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(f2) Given $x$ , we can determine in which side of $x$ an optimum solution $x$ “, if it exists, lies in $O(n)$

time (first, compute $I=\{i|a_{i}x+b_{i}=f(x)\},$ $a^{+}= \max\{a_{i}|i\in I\}$ and $a^{-}= \min\{a_{i}|$

$i\in I\}$ , which can be done in $O(n)$ time; if $a^{+}>0,$ $x^{*}\leq x$ ; if $a‘<0,$ $x^{*}\geq x$ ; if $a^{+}\geq 0$ and
$a^{-}\leq 0,$ $x$ is an optimum solution; cf. (g1\sim 3)).

Note that this property (f2) is obtained mostly from the convexity of $f$ . This property is a key in
search steps in the prune-and-search technique.

For simplicity, we assume there is a unique solution $x$
“ minimizing $f(x)$ (that is, we omit the

cases where $\min f(x)$ is $-\infty$ or $\min f(x)$ is attained on some interval; both cases can be handled
easily by slightly changing the following algorithm). In the following, we show that

(f3) we can find an $x$ in $O(n)$ time such that, by determining in which side of $x$ the minimum $x$
“

lies (this can be done in $O(n)$ time from $(f2)$ ), we can find at least $n/4$ constraints such that
a linear programming obtained by removing these constraints still has the same optimum
solution with the original problem (we call these constraints redundant).

As mentioned above, the prune-and-search techmique thus finds a constant factor of redundant
constraints, to be pruned, with respect to the current nunber of constraints for the two-dimensional
linear programming. Then, applying this recursively, we can finally remove all the redundant
constraints and get an optimum solution in time proportional to

$n+ \frac{3}{4}n+(\frac{3}{4})^{2}n+(\frac{3}{4})^{3}n+\cdots$

which is less than $4n$ . That is, if (f3) is true, we obtain a linear-time algorithm for this linear
programming problem.

To show (f3), first consider two distinct constraints $y\geq a_{i}x+b_{i}$ and $y\geq a_{j}x+b_{j}$ . If $a_{i}=a_{j}$ ,
according as $b_{i}<b_{j}$ or $b_{i}\geq b_{j}$ , we can discard the ith or $j$ th, respectively, constraint immediately,
because, then, $a_{i}x+b_{i}$ is smaller or not smaller, respectively, than $a_{j}x+b_{j}$ for any $x$ . If $a_{\mathfrak{i}}\neq a_{j}$

(suppose without loss of generality $a_{i}>a_{j}$ ), there exists $x_{ij}$ satisfying $a_{l}x_{ij}+b_{i}=a_{j}x_{ij}+b_{j}$ .
When $x_{ij}>x^{*}$ (resp. $x_{tj}<x^{*}$ ), we see the ith (resp. $jth$) constraint is redundant, since $a_{i}x^{*}+b_{i}$

is smaller (resp. greater) than $a_{j}x^{*}+b_{j}$ .
Based on this observation, match $n$ constraints into $n/2$ disjoint pairs $\{(i,j)\}$ , For matched pairs

with $a_{i}=a_{j}$ , discard one of the two constraints according to the above procedure. For the other
pairs, compute $x_{ij}$ , and find the median $x’$ among those $x_{ij}$ (recall that we can find the median of
$n’$ numbers in $O(n’)$ time as mentioned above) and test on which side of $x’$ the $minim\iota unx^{*}$ lies.
If $x’$ is an optimum solution, we have done. Otherwise, since $x’$ is the median, a half of $x_{ij}’ s$ lies in
the opposite side of $x’$ with $x^{*}$ . For a pair $(i,j)$ with $(x’-x^{*})(x’-x_{ij})\leq 0$ , we can determine on
which side of $x_{\mathfrak{i}j}$ the $x$

“ lies, and hence discard one of them as above. Thus, in $O(n)$ time, we can
discard at least $n/4$ constraints, and have shown (f3).

As noted in the discussion, even if $\min f(x)$ is $-\infty$ or is attained on some interval, we can
detect it very easily in $O(n)$ time bound. Thus, we have shown that the special linear programming
problem of the above-mentioned form with two variables and $n$ constraints can be solved in $O(n)$

time. The general linear programming problem can be solved in linear time in an analogous way.
Still, this application of the prune-and-search paradigm to the two-dimensional linear program-

ming is quite similar to the case for linear-time selection. The prune-and-search technique can be
generalized to higher dimensions, and then algorithms obtained through it are really computational-
geometric ones. The higher-dimensional prune-and-search technique works as follows. An under-
lying assumption of the general technique is that an optimum solution is determined by at most a
constant number of the objects, which is $d$ in the nondegenerate case for linear progranuning. In
general terms, the algorithm searches relative to $n$ objects in the d-dimensional space by recursively
solving a constant number of sub-problems in the $(d-1)$-dimensional space recursively, thus reduc-
ing the size of the problem by a constant factor in the d-dimensional space. Roughly speaking, the
following characteristics of the pruning technique allow a linear-time algorithm to be devised for
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Figure 2.2. Linear $L_{1}$ approximation of points

a search relative to $n$ objects in the d-dimensional space. At each iteration, the algorithm prunes
the remaining objects by a constant factor, $\alpha$ , by applying a test a constant number of times. The
test in the d-dimensional space is an essential feature of the algorithm since the complexity of the
algorithm depends on the test being able to report the relative position of an optimum solution in
linear time with respect to the number of remaining objects. The test in the d-dimensional space
is performed by solving the $(d-1)$-dimensional subproblems as mentioned above. Hence, there are
a total of $O(\log n)$ steps, with the amount of time spent at each step geometrically decreasing as
noted above, taking linear time in total.

This approach was first adopted by Megiddo [22] et al. By this approach, linear programming in
a fixed dimension can be solved in $o(2^{2^{d}})$ time, which is linear in $n$ . However, this time complexity
is doubly exponential in $d$ , and the $algorit!un$ may be practical only for small $d$ . This complexity has
been improved in several ways (e.g., see [3]), but is still exponential with respect to $d$ . We will return
to this issue in the next section. Before it, we mention two applications of the prune-and-search
technique to larger special linear programming problems.

2.2 Applications of the prune-and-search paradigm to special linear program-
ming problems

Here, we mention two applications of the prune-and-search paradigm to special linear programming
problems which are not a two-dimensional linear programming problem. One is on linear $L_{1}$

approximation of $n$ points in the plane by Imai, Kato and Yamamoto [12] and the other is on the
assignment problem with much fewer demand points than supply points by Tokuyama and Nakano
[29].

(1) Linear $L_{1}$ approximation of points
Approximating a set of $n$ points by a linear function, or a line in the plane, called the line-

fitting problem, is of fundamental importance in numerical computation and statistics. The most
frequently used method is the least-squares method, but there are alternatives such as the $L_{1}$ and
the $L_{\infty}$ (or Chebyshev) approximation methods. Especially, the $L_{1}$ approximation is more robust
against outliers than the least-squares method, and is preferable for noisy data.

Let $S$ be a set of $n$ points $p_{i}$ in the plane and denote the $(x, y)$-coordinate of point $p_{i}$ by
$(x_{i}, y;)(i=1, \ldots,n)$ . For an approximate line defined by $y=ax+b$ with parameters $a$ and $b$ ,
the following error criterion, minimizing the $L_{1}$ norm, of the approximate line to the point set $S$

defines the $L_{1}$ approximation:

$\min_{a,b}\sum_{i=1}^{n}|y_{i}-(ax_{i}+b)|$

Figure 2.2 depicts the case of $n=10$ with an outlier.
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This problem can be formulated as the following linear programming problem with $n+2$ variables
$a,$ $b,$ $c_{i}(i=1, \ldots, n)$ :

$\min$ $\sum_{i=1}^{n}c_{i}$

s.t. $y_{i}-(ax_{i}+b)\leq c_{i}$

$-y_{i}+(ax_{i}+b)\leq c_{i}$

Here, $x,,$ $y_{i}$ $(i=1, \ldots , n)$ are given constants. This linear programming problem has $n+2$
variables and more inequalities, and hence the linear-time algorithm for linear programming in a
fixed dimension cannot be applied. However, the problem is essentially a two-dimensional problem.
By using the point-line duality transformation, which is one of the best tools used in computational
geometry, we can transform this problem so that the two-diinensional prune-and-search technique
may be applied. In the $L_{1}$ approximation problem, however, any infinitesimal movement of any
point in $S$ changes the norm (and possibly the solution), and, in that sense, redundant points with
respect to an optimum solution do not exist. Hence, direct application of the pruning technique
does not produce a linear-time algorithm.

Imai, Kato and Yamamoto [12] give a method of overcoming this difficulty by making full
use of the piecewise linearity of the $L_{1}$ norm to obtain a linear-time algorithm. Furthennore, in
his master’s thesis, Kato generalizes this result to higher dimensional $L_{I}$ approximation problem.
Although these algorithms are a little complicated, they reveal how powerful the prune-and-search
teclmique is in purely computational-geometric settings.

(2) Assignment problem
The assignment problem is a typical problem in network flow. The assignment problem with $n$

supply vertices and fewer $k$ demand vertices is formulated as follows:

$\min$ $\sum_{i=1j}^{n}\sum_{=1}^{k}w_{ij^{X}ij}$

$s.t$ . $\sum_{i=1}^{n}x_{ij}=n_{j}$ $(j=1, \ldots, k)$ , $\sum_{i=1}^{k}x_{ij}=1$ $(i=1, \ldots, r\iota)$

$0\leq x_{ij}\leq 1$

where $x_{ij}$ are variables and $\sum_{j=1}^{k}n_{j}=n$ for positive integers $n_{j}$ . Since this is an assignment
problem, $x_{1i}$ should be an integer, but all the extreme points of the polytope of this problem are
integer-valued and hence this problem can be formulated as a simple linear programnuing problem
of $kn$ variables.

For this assignment problem, Tokuyama and Nakano [29] give the following nice geometric
characterization. For this assignment problem, consider a set $S$ of $n$ points $p$; in the k-dimensional
space whose coordinates are defined by

$p:=(w_{i1}, w_{i2}, \ldots,w_{ik})-\frac{1}{k}\sum_{j=1}^{k}w_{ij}(1,1, \ldots, 1)$ .

Each point in $S$ is on the hyperplane $H:x_{1}+x_{2}+\cdots+x_{k}=0$ . For a point $g=(g_{1},g_{2}, \ldots, g_{k})$ on
the hyperplane $H$ , define

$T(g;j)= \bigcap_{h=I}^{k}$ { $(x_{1},$
$\ldots,$

$x_{k})$ on the hyperplane $H|x_{j}-x_{h}\leq g_{j}-g_{h}$ }

$T(g;j)(j=1, \ldots, k)$ partition the hyperplane $H$ . This partition is called an optimal splitting if
each $T(g;j)$ contains $n_{j}$ points from $S$ . In the case of $k=3$ , the hyperplane is just a plane, and we
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Figure 2.3. An optinal splitting for $n=15,$ $k=3$ and $n_{1}=n_{2}=n_{3}=5$

can depict an example. Figure 2.3 gives such an example with $k=3$ and $n_{1}=n_{2}=n_{3}=5$ . Then,
a theorem in [29] states that there exists an optimal splitting for any $n_{j}$ satisfying the condition,
and, for the optimal splitting by $g,$ $x_{ij}$ defined by $x_{ij}=1$ if $p_{i}$ is in $T(g;j)$ and $x_{ij}=0$ otherwise
is an optimum solution to the assignment problem.

Thus, the assignment problem is reduced to a geometric problem of finding an optimal splitting.
Again, as in $L_{I}$ linear approximation, this problem has $kn$ variables and more inequality constraints,
and the linear-time algorithm for linear programming in a fixed dimension cannot be applied.
Numata and Tokuyama [24] apply the $(k-1)$-dimensional prune-and-search technique to this
geometrically interpreted problem and obtained an $O(((k+1)!)^{2}n)$-time algorithm. This is linear if
$k$ is regarded as a constant, although even for $k$ of moderate size the complexity becomes too big.
For $k=2,3$ , this algoritin may work well in practice. A linear-time algorithm for the assignment
problem with a constant $k$ has not been known before, and such an algorithm becomes available
through the geometric interpretation explained above.

Besides this algorithm, Tokuyama and Nakano [29] give a randomized algorithm to solve this
problem. We will return to this problem at the end of the next subsection.

2.3 Randomized algorithm for linear programming

The prune-and-search technique thus produces linear-time algorithms for linear programming in
a fixed dimension, which is theoretically best possible. However, the time complexity depends
upon the dimension $d$ exponentially, and hence, even for $d$ of moderate size, the algorit!uns become
inefficient in practice. One of ways to overcome this difficulty is to use randomization, which has
been recognized as a powerful tool in computational geometry. Here, randomization does not mean
to assume any probabilistic distribution on the problem, say on the inequality constraints in this
case. Instead, randomization introduces probabilistic behavior in the process of algorithms. By
randomization, it becomes possible somehow to investigate the average case complexity of problems
besides the worst case complexity, which is quite nice from the practical point of view. Also, it is
often the case that randomized algorithms are rather simple and easy to implement.

Here, we first explain a randomized algorithm for linear programming proposed by Clarkson [3]
briefly. Consider a two-dimensional linear programming problem treated in section 2.1. Recall that
the problem can be regarded as finding two active inequality constraints at an optimum solution
and removing all the other redundant constraints.

Take a subset $S_{0}$ of $\sqrt{n}$ constraints among $n$ constraints randomly and independently. Solve a
linear programming problem with this subset $S_{0}$ of constraints using the same objective function
to obtain an optimum solution $(x_{0},y_{0})$ for this subproblem. In case the other $n-\sqrt{n}$ constraints
are satisfied at this optimum solution (i.e., there is no $i$ with $y_{0}<a_{i}x_{0}+b_{\mathfrak{i}}$ ), this optimum solution
for the subset of constraints is an optimum solution for all the constraints, and we are done.

Otherwise, we compute a set $S_{1}$ of constraints $i$ which violate the computed solution: $y_{0}<$

$a_{i}x_{0}+b_{i}$ . Figure 2.4 illustrates the case of $n=9$ where $\sqrt{n}=3$ constraints are randomly sampled
(denoted by bold lines) and there are constraints (denoted by dotted lines) violating the optimuun
for the sampled constraints. This set $S_{I}$ necessarily has at least one of two active constraint at the
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Figure 2.4. A randomized algorithm for linear programming

global optimuun solution, which may be observed by overlaying the two active constraints forming
the optimum with the current subset of constraints. In Figure 2.4, exactly one constraint active
at the global optimum is included in $S_{1}$ . The size of $S_{1}$ depends on the subset of $\sqrt{n}$ constraints
chosen through randomization. It can be shown that the expected size of $S_{1}$ is $o(\Gamma^{n})$ , which is a
key of this randomized algorithm. That is, by randomly sampling a subset $S_{0}$ of $\sqrt{n}$ constraints,
we can find a set $S_{1}$ of constraints of expected size $O(\Gamma n)$ which contains at least one of active
constraints at the global optimum solution.

We again sample another set $S_{2}$ of $\sqrt{n}$ constraints, and this time solve a linear programming
problem with constraints in $S_{1}\cup S_{2}$ . Let $S_{3}$ be a set of constraints violating the optimuin solution
to the subproblem for $S_{1}\cup S_{2}$ . Again, it can be seen that the expected size of $S_{3}$ is $O(\sqrt{n})$

and that $S_{1}\cup S_{3}$ contains at least two among two active constraints (hence, exactly two in this
two-dimensional case) at the global optimum solution. Since $S_{1}\cup S_{3}$ contains those two active
constraints at the optimum solution and its size is $O(\sqrt{}\overline{n})$ on the average, the original problem
for $n$ constraints is now reduced to that for $o(\Gamma^{n})$ constraints. Then, recursively applying this
procedure solves the problem efficiently.

Based on the idea outlined above, Clarkson [3] $gives\ovalbox{\tt\small REJECT}$ Las Vegas algorithm which solves the
linear programuning problem in a fixed dimension $d$ rigorously in $O(d^{2}n+t(d)\log n)$ running time
with high probability close to 1, where $t(d)$ is a function of $d$ and is exponential in $d$ . By random-
ization, the constant factor of $n$ becomes dependent on $d$ only polynomially, unlike the linear-time
algorithm based on the prune-and-search paradigm. This is achieved by using random sampling in
the algorithm. However, still there is a term in the complexity function which is exponential in $d$ ,
and the algorithm is not a strongly polynomial algorithm.

A main issue in the design and analysis of this randomized algorithm is to evaluate the expected
number of violating constraints to the optimum for the sampled set $S_{0}$ . In this case, this evaluation
can be performed completely in a discrete way. However, in more general case, the continuous
model of probability may be used as in $[9, 31]$ , and, in this sense, introducing randomization in
geometric algorithms may lead to investigating continuous structures of geometric problems more.

Now, return to the assigmnent problem with $k$ demand vertices and $n$ supply vertices mentioned
in the previous subsection. The prune-and-search paradigm yields the $O((k+1)!)^{2}n)$-time algorithm
for it as mentioned above. Tokuyama and Nakano [29] propose a randomized algorithm, making
use of random sampling, with randomized time complexity $O(kn+k^{3.5}n^{0.5}\log n)$ . This algorithm
is optimum for $k\ll n$ , since the complexity becomes simply $O(kn)$ then. Thus, for the assignment
problem with $k\ll n$ , randomization gives a drastic result. lt should be emphasized again that this
becomes possible by establishing a nice bridge between geometry and combinatorial optimization,
and by applying the randomization paradigm suitable for geometric problems.

These randomized algorithms are regarded as fruitful results by combining computational geo-
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metric results with linear progranuning and its special case. We will return to this issue in section 4
after explaining a continuous approach.

3 Linear Programming in Mathematical Programming

For linear programming, a nonlinear approach has recently been shown to be efficient for large-
scale linear programming problems in mathematical programming, and the so-called interior-point
method is now recognized as a powerful method for linear programming. In this section, among
many interior-point algorithms, we explain the multiplicative penalty function method proposed
by Iri and Imai [15]. $Tl_{1}en$ , we show that, by applying the general interior-point method, an
improved algoritin may be obtained for the planar minimum-cost flow problem, which is $a\dot{s}pecial$

case of linear programming. This is another kind of merit of the interior-point method for linear
programming. Applying the interior-point method to constructing parallel algorithms for linear
programming is also discussed.

3.1 Multiplicative penalty function method for linear programming

The multiplicative penalty fumction method, proposed by Iri and Imai [15], is an interior method
which minimizes the convex multiplicative penalty function defined for a given linear programming
problem with inequality constraints by the Newton method. In this sense, the multiplicative penalty
function method can be said to be the simplest and most natural method among interior-point
methods using penalty functions. The multiplicative penalty function may be viewed as a affine
variant of the potential function of Karmarkar [16]. $\ln[15]$ , the local quadratic convergence of
the method was shown, while the global convergence property was left open. Zhang and Shi [32]
prove the global linear convergence of the method under an assumption that the line search can
be performed rigorously. Imai [11] shows that the number of main iterations in the multiplicative
penalty function method is $O(n^{2}L)$ , where at each iteration a main task is to solve a linear system
of equations of $d$ variables to find the Newton direction. Iri [14] further shows that the original
version of the multiplicative penalty function method runs in $O(n^{1.5}L)$ main iterations and that
an algorithm with an increased penalty parameter runs in $O(nL)$ iterations. In that paper [14], it
is also shown that the convex quadratic programnung problem can be solved by the multiplicative
penalty function method within the same complexity.

There are now many interior-point algorithms for linear programming. For those algorithms,
the interested readers may refer to [16, 19, 23].

We consider the following linear programming problem in the form mentioned in the introduc-
tion. In the sequel, we further assume the following (cf. [15]):
(1) The feasible region $X=\{x|Ax\geq b\}$ is bounded.
(2) The interior Int $X$ of the feasible region $X$ is not empty.
(3) The minimum value of $c^{T}x$ is zero.
The assumption (3) might seem to be a strong one, but there are several techniques to make this
assumption hold for a given problem. Then the multiplicative penalty function for this linear
programmming problem is defined as follows:

$F(x)=( c^{T}x)^{n+\delta}/\prod_{i=1}^{n}(a_{i}^{T}x-b_{i})$ $(x\in IntX)$

where $a_{1}^{T}\in R^{d}$ is the i-th row vector of $A$ and $\delta$ is a constant greater than or equal to 1. This
function is introduced in [15], and there $\delta$ is set to one. In [14], $\delta$ is set to approximately $n$ . In
Figure 3.1, contours of $F(x)$ in the two-dimensional case with $n=4$ are shown. Under these
assumptions, when $F(x)arrow 0$, the distance between $x$ and the set of optimum solutions converges
to zero. The multiplicative penalty function method directly minimizes the penalty function $F(x)$

by the Newton method, starting from some initial interior point.
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Figure 3.1. An example of the multiplicative penalty function $F(x)$ (from [15]): $\min\{x+y|x\geq$
$0,$ $y\geq 0,2-2x-y\geq 0,3+2x-4y\geq 0$ } $;F(x)=(x+y)^{5}/[xy(2-2x-y)(3+2x-4y)]$ ;
contours for function values $4^{i}$ for $i=-4,$ $\ldots,$

$5$

Specifically, define $\eta=\eta(x)$ and $H=H(x)$ for $x\in IntX$ by

$\eta(x)\equiv\frac{\nabla F(x)}{F(x)}=\nabla(\log F(x))=(m+1)\frac{c}{c^{T_{X}}}-\sum_{i=1}^{m}\frac{a_{i}}{a_{i}^{T}x-b_{i}}$

$H(x) \equiv\frac{\nabla^{2}F(x)}{F(x)}=\nabla^{2}(\log F(x))+\eta(x)\eta(x)^{T}$

$\eta(x)$ is the gradient divided by $F(x)$ and $H(x)$ is the Hessian divided by $F(x)$ . Then, the Newton
direction $\xi$ at $x$ is defined as follows:

$H(x)\xi=-\eta(x)$

It can be seen from simple calculation that $H(x)$ is positive definite under the assumptions, and
hence $F(x)$ is a strictly convex function. Therefore, in Figure 3.1, all the contours (or level sets) are
convex. Although $F(x)$ is highly nonlinear, it still retains a very good property on the convexity.
Then a main$\cdot$ iteration of the algoritIun consists of computing the gradient, Hessian and Newton
direction at the current solution, then performing line search along the Newton direction, and
updating the current solution to a solution of the line search. The algorithm repeats this procedure
until the current solution becomes close enough to the optimum solution. In Figure 3.1, three series
of iterations are depicted.

One of main points in the analysis of the multiplicative penalty function method is to give an
estimate on the value of the quadratic form $H\equiv\xi^{T}H(x)\xi$ for the Newton direction. In general,
$H>1/2$ . For $\delta>1,$ $H<\delta/(\delta-1)$ . Making use of this estimate, Iri [14] deriyed the bound $O(nL)$

on main iterations. This complexity is the same with that of Karmarkar [16]. Now, interior-point
algorithms having $O(\sqrt{n}L)$ bound on main iterations are also known (e.g., [28, 19, 23, 30]). Using
fast matrix multiplication partly, Vaidya [30] gives an algorithm which requires $O((n+d)^{1.5}dL)$

arithmetic operations on L-bit numbers.

3.2 Implication of the interior-point method to parallel algorithms

In general, linear programmuing is shown to be P-complete, and hence it would be difficult to
design a parallel algorithm for linear programming whose parallel time is polylogarithmic in $d$
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and $n$ . However, the interior-point method may be used to devise parallel algorithms whose time
complexity is sublinear in $d$ and $n$ . This is also the case for linear programming problems arising
in geometric situations.

In the interior-point method, each iteration itself can be highly parallelized. In fact, as men-
tioned repeatedly, a main step of the iteration is to solve the linear system of equations, which can
be parallelized very efficiently in polylogarithmic time in theory (e.g., see [26]).

This implies that, applying interior-point algorithms requiring $O(\sqrt{n}L)$ main iterations to a
linear programming problem, a parallel algorithm for the problem with $O$ ( $\sqrt{n}L$ polylog n) parallel
time complexity can be obtained. This parallel time is sublinear in $n$ , although it is linear in $L$ .
For some network flow problem whose constraint matrix is totally unimodular and whose costs and
capacities are constants, $L$ can be considered to be a constant, and hence this approach gives a
totally sublinear parallel $algorit!un$ for it. Even if $L$ is not a constant, parallel algorithms whose
complexity is sublinear in $n$ are of great interest. This approach is adopted in [8].

Considering the application of the interior-point method to planar network flow, which will
be explained in the next subsection, the nested dissection technique can also be parallelized [26],
and a parallel algorithm with $O(\sqrt{n}\log^{3}n\log(n\gamma))$ parallel time using $O(n^{I.094})$ processors can be
obtained [13], where $\gamma$ is the largest absolute value among edges costs and capacities represented by
integers. Also, this parallel algorithm is best possible with respect to the sequential algorithm, to
be mentioned in the next subsection, that is, the parallel time complexity multiplied by the number
of processors is within a polylog factor of the sequential time complexity. This result roughly says
that the planar minimuun cost flow problem can be solved in parallel in $O(n^{0.5+\epsilon})$ time with almost
linear number of processors, which is currently best possible.

Thus, treating a special linear programming problem in a more general setting, better parallel
algorithms may be obtained. Here, it may be said that the continuous approach makes this possible.

3.3 Applying the interior-point method for planar minimum cost flow

The interior-point method can be used to derive a new algorithm having the best time $(()111\})lcxity$

to some special linear progranuning problems $[13, 30]$ . In $t1_{1}is$ section we describe all applicatiou of
the interior-point method to the planar minimum cost flow problem given by Imai and Iwano [13].
Also, some results of preliminary computational experiments are shown.

In these years, much research has been done on the minimum cost flow problem on networks.
The minimum cost flow problem is the most general problem in network flow theory that admits
strongly polynomial algorithms. Recently, the interior point method for linear programming has
been applied to the minimum cost flow problem, which is a very special case of linear programming,
by Vaidya [30] from the viewpoint of sequential algorithms and by Goldberg, Plotkin, Shmoys
and Tardos [8] from the viewpoint of parallel algorithms. For the planar minimum cost flow
problem, the best strongly polynomial time algorithm is given by Orlin [25], and has complexity of
$O(m(m+n\log n)\log n)$ for networks with $m$ edges and $n$ vertices.

If we restrict networks, the efficiency of the interior-point method may be further enhanced.
Here, we consider the minimum cost flow problem on networks having good separators, that is,
s(n)-separable networks. Roughly, an s(n)-separable graph of $n$ vertices can be divided into two
subgraphs by removing $s(n)$ vertices such that there is no edge between the two subgraphs and the
number of vertices in each subgraph is at most $\alpha n$ for a fixed constant $\alpha<1$ . A planar grid graph
is easily seen to be $\sqrt{n}$-separable [7]. General planar graphs are $O(\sqrt n\urcorner$-separable, which is well
known as the planar separator theorem by Lipton and Tarjan [21].

For a system of linear equations $\tilde{A}\tilde{x}=\sim b$ with $n\cross n$ symmetric matrix $\tilde{A}$ , if the nonzero pattern
of $\tilde{A}$ corresponds to that of the adjacency matrix of an s(n)-separable graph, the system $A\tilde{x}=\sim b$

can be solved more efficiently than general linear systems. This is originally shown for planar grid
graphs by George [7], and the technique is called nested dissection. The technique is generalized
to s(n)-separable graphs by Lipton, Rose and Tarjan [20]. For $A$ corresponding to a planar graph,
the system can be solved in $O(n^{1.I88})$ time and $O(n\log n)$ space by further making use of the fast
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Table 3.1. Preliminary computational results for the minimum cost flow problem on $k\cross k$ grid
network

matrix multiplication by Coppersmith and Winograd [4].
When applying the interior method, a main step is to solve a linear system of equation to

compute a search direction such as the Newton direction as mentioned above. In solving the linear
system $\tilde{A}\tilde{x}=b\sim$ for the linear programming problem of the form mentioned in the beginning of the
introduction, we mainly have to solve a linear system with a $d\cross d$ symmetric matrix $\tilde{A}$ defined by

$\tilde{A}=A^{T}DA$

where $D$ is a diagonal matrix whose diagonal elements are positive. For most interior-point methods
proposed so far, their search direction can be computed relatively easily if the linear system for this
$\tilde{A}$ is solvable by some efficient method.

In the case of network flow, the main part of the matrix $A$ is the incidence matrix of underlying
graph. Suppose $A$ is exactly the incidence matrix. For this $A$ , the nonzero pattem of $\tilde{A}=A^{T}DA$

exactly corresponds to the nonzero pattem of the adjacency matrix of the same graph.
Therefore, when the network is an s(n)-separable graph, the technique of nested dissection can

be applied in the main step of the interior-point method. By elaborating this combination of the
interior-point method with restart procedure by Vaidya [30] and the nested dissection technique in
more detail, for the planar minimum cost flow problem, $O(n^{1.594}\vee\Gamma og\overline{n}\log(n\gamma))$ time and $O(n\log n)$

space [13], where $\gamma$ is the largest absolute value among edges costs and capacities represented by
integers. Parallel results corresponding to this is mentioned at the end of the preceding subsection.

When $\gamma$ is polynomially bounded in $n$ , the sequential time complexity becomes $O(n^{I.6})$ which is
best among existing algorithuns by a factor roughly $O(n^{0.4})$ . These results can be generalized to the
minimum cost flow problem on s(n)-separable networks such as three-dimensional grid networks.
Also, in computational geometry, there arise linear progranuning problems having special structures
(e.g., [10]) which may be used to enhance the efficiency in solving the linear system.

In concluding this subsection, we show results of a computational experiment of using the nested
dissection technique to the minimum cost flow problem on grid networks. In this experiment, as
an interior-point method, the affine-scaling method, which would be the simplest interior-method,
is used, and at each iteration the linear system is solved by the nested dissection technique. Table
3.1 gives the results. Also, to compare its result withe some other method, the running time of
the network simplex code, taken from a book [17], is also shown. In the simplex method, one
iteration corresponds to one pivoting. It should be noted that, in comparing these two methods,
simply comparing the running times listed here is meaningless, since these two methods use different
stopping criteria and both implementations are not best possible at all. Instead, in the table, it
should be observed how the running times of both methods increase as the size of networks increases.
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From this table, it is seen that running times of the affine-scaling interior method increases
more slowly than that for the network simplex method. This indicates that as the size of linear
programming becomes large, the interior-point method becomes relatively more efficient than the
simplex method in this case. It is now widely recognized that this tendency mostly holds for general
cases.

4 Combining Techniques in Computational Geometry and Math-
ematical Programming

At the end of section 2, we have seen how some of computation geometric technique can be coInbined
with pure linear programming theory through randomization. In this section, we mention a result
by Adler and Shamir [1] which combines a randomized algorithm with an interior-point method.
This is really a nice example of combining results in computational geometry and mathematical
programming.

The algorithm is basically similar to Clarkson’s randomized algorithm [3]. Instead of simple
uniform random sampling, it uses self-adjusting weighted random sampling and tries to keep the
number of sampled constraints smaller with respect to $d$ . That is, instead of maintaining all the
violating constraints in the Clarkson’s algorithm, this algorithm increases, for each violating con-
straint, the probability for the constraint to be sampled in later steps. By this strategy, throughout
the algorithm, it simply samples $O(d^{2})$ constraints, not $\Gamma n$ constraints at each stage.

In the original randomized algorithm, a subproblem is solved recursively by the same randomized
algorithm until the size of the subproblem becomes some constant. Instead, any interior-point
method may be used to solve the subproblem. Since the size of this subproblem is relatively
smaller than the whole size (in fact, the nuunber of constraints in subproblems in the process of this
algorithm is bounded by $O(d^{2})$ with $d$ variables as mentioned above), the randomized algorithm
may gain some merit from this. We skip the details and just mention final results in [1]. Based on
the strategy mentioned above, it can be shown that the linear programming problem is solvable in
expected time $O((nd+d^{4}L)d\log n)$ . This improves much the time complexity if $d\ll n$ , which is
quite interesting from the viewpoint of the interior-point method.

This way of combining the interior-point method with a certain computational-geometric tech-
nique is still na’ive. Besides this algorithm, randomization would be useful in some parts of the
interior-point method, and research along this line, combining the continuous approach and discrete
approach, would deserve much attention.

5 Concluding Remarks

We have discussed about linear programming from the standpoints of both computational geometry
and mathematical programming, and have explain some fruitful results obtained through combining
the idea in both fields.

In the introduction, both of discrete and continuous aspects of linear programming are men-
tioned. Since discrete structures are easier to handle by computers, theoretical computer science
has so far pursued discrete side very much. In recent years, there have been proposed many non-
linear approach to discrete optimization problems. As in linear programming, handing nonlinear
phenomena in the theory of discrete algorithms and complexity will be required in future. Even
in the low dimensional space treated in computational geometry, we have not yet fully understood
how to treat the continuous world in a discrete setting, and this type of new problems will deserve
further investigation.
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