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ENERGY DISTRIBUTION OF THE SOLUTIONS OF ELASTIC
WAVE PROPAGATION PROBLEMS IN STRATIFIED MEDIA R?

SENJO SHIMIZU (X ®RL)

Institute of Nathematics, University of Tsukuba

§ 1. Introduction

Energy distribution of the solutions of various wave propagation problems has
been studied by C. H. Wilcox ([10], [11], [12], [13]). He constructed asymptotic
wave functions which approximate the solutions in the sense of L? for large times
and calculated asymptotic energy distributions of the solutions in several domain
by making use of these asymptotic wave functions. The construction of asymptotic
wave functions is based on an eigenfunction expansion theorem which is proved by
the same author and on the method of stationary phase. J.C.Guillot [3] studied
a Rayleich surface wave propagating along the free boundary of a transversely
isotropic elastic half space and showed that the energy of the Rayleich component of
every solution with finite energy is asymptotically concentrated along the boundary.

In this paper we shall derive energy distributions of the solutions of elastic wave
propagation problems in plane-stratified media R? using methods due to Wilcox.
We construct asymptotic wave functions by using spectral integral representations
of the solutions and the method of stationary phase. The integral representations
are based on an eigenfunction expansion theory which was proved by the author
[8] using methods due to S. Wakabayashi [9]. We calculate asymptotic energy of
the solutions for large times of the interface problems for elastic waves and show
that the energy of the Stoneley components of the solutions with finite energy is
asymptotically concentrated along the interface.

We start with the mathematical formulation of the elastic wave propagation
problem.

Consider the plane stratified medium R® = {z = (z1,z2,23);2; € R} with the
planar interface 3 = 0, which is defined by

(A(zs), u(ws), p(xs)) = { E;‘\:’Z:,Z:;, zz; g,

Here Ay, A2, p1, po are certain quantities called the Lamé constants and p;, p2 > 0
are the densities.

We shall denote the lower halfspace R® = {z € R®;z3 < 0} by medium I and
the upper halfspace R} = {z € R* z3 > 0} by medium II, respectively, as in

Typeset by ApS-TEX



178

SENJO SHIMIZU

Fi 1.
igure 24

II A H2 P2

Figure 1 Stratified media I and II

The propagation problem of elastic waves in the stratified medium is formulated
as the following mixed initial and interface value problem:

62
(L.1) S (t,2) + Mu(t,2) = 0,
(1.2) (t,:13)|753=_0 = u(t,x)lxsz_l_o,
(1.3) ok3u(t, o)y, o = Tr3u(t, )|, = 0
(14 u0,2) = fz), 5e(0,2) = g(z),
where
(1.5)
_ _Mas) + p(zs) _ plzs) |

Mu=-——rgy "WV u- 554 :cs) Z ’&ckax
(1.6)

orju = Mzs3)(V - u)bi; + 2p(xs)er; v,
(1.7)

erju= s (24 0%
W=\ 0z; " Bar )

(1.2) and (1.3) are called interface conditions, and (1.4) is called an initial condition.
The cfy;» Chig; (i, 3, K, £ = 1,2,3) are the stress-strain tensors given by

Crit; = M16kibe; + p1 (Bkebij + 6x;6ie),

(1.8) ki
Chitj = A26kibes + p2(6kedij + b1 jbie)

with the properties

I _ I _ I _1I

Ckit; = Cikej = Ckije = %’ki,
II ol II

ckzey zkl; - ckzyé - céjkz’
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and 6; is the Kronecker delta. We assume that the constants ciilj, Cifej satisfy
the following stability conditions

(1.9) Ai+pi>0, p; >0, (1=1,2),
which are equivalent to the conditions
3 3
D chigse®m > 36 > sk, 61>0,
ki 2, =1 k,i=1
(1.9") v 3
Y cllysemm =36 ) |kl 62>0,
. k,i,l,j:l kﬂ:l

for all complex symmetric 3 x 3 matrices (sg;), sk; = sir € C (cf. [4]).
We introduce the Hilbert space

(1.10) ' H = L*(R3,C3, p(z3) dz)
with inner product

(u,0) = /R - vp(as) da,

where u - v denotes the usual scalar product in C?® : u-v = Ef___l u;U;. It was
shown in [8 Theorem 1.2] that the operator A on H with domain

D(A)={u€ H*R?,C* @ H*(R3,C?);

u satisfies the interface conditions (1.2) and (1.3)

in the sense of trace on z3 = 0} '
and action defined by
(1.11) ' Au = Mu, u€ D(A)
is a selfadjoint operator on H. Here -

H*(RY,C?) = {u(z); D2u € L2(R ) for 0<a<2}

is a Hilbert space with inner product

(u,v)g = / Z D"‘u(m) D%v(z)dz.

Ri jal<m

Every u € D(A) satisfies the interface conditions (1.2) and (1.3), so the mixed

problem (1.1)-(1.4) may be reformulated as the problem of finding a function u :
R — 'H such that

d2
(1.12) W +Au=0 forVteR,
U
(1.13) u@) =f 0=

The operator A is non-negative [8, Lemma 1.4] and the spectral theorem for selfad-
joint operators (cf. [2]) implies that (1.12) and (1.13) has a (generahzed) solution
given by

(1.14) ult) = (costAf) f+ (A‘f sintAf) g, teR

for every pair f, g € H. u has derivatives %‘- and 4 'J?T and is a strict solution of

(1.12) if and only if f € D(A), g € D(A?).
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§ 2. Eigenfunction Expansions for A

The eigenfunction expansion theorem for A was developed in [8]. In this section
it is applied to give spectral integral representations of the solutions of the elastic
propagation problem. This section begins with a brief review of the structure and
properties of the eigenfunctions and the expansion theorem.

Let o' = (91,m2) € R? be the dual variables of ' = (z;,z2) and let Fy: denote
the partial Fourier transformation with respect to z';

a(n',z3) = (Fpru)(n',z3) = Li.m. L e~ H@imtzanz)y, () dy'
R—oo 2T |z/|<R :

for u in H. Let

D(A) = FD(A) = {4;u € D(A)},
Ai = FyAF;'a, 4 € D(A).

For every o' # 0, let

1 [Mm —m 0
(2.1) U= g n m 0], C= )
| T\ o o [

where U and C are unitary matrices and || = (n? 4+ #2)?. Then we have

OO

0
0
1

O = O

(2.2) Au = F,,",IUC(Al (n') ® Az(n'))(UC)‘le;u for u € D(A),

where A;(n') and A3(n') are non-negative selfadjoint operators (see [8, Proposition
17], (1], [3)-

We can get an explicit representation of the Green function G;(z3,vs,7’;() for
the operator A1 (n')—(¢I (¢ ¢ R) from the expression of the solution for the following

problem:

(23) (41, D) = Ov(n's 23) = £(n'>s),

(2'4) ”(77’,373”:55:—0 = v(nl’w3)|m3=+0 ’ ’
(2.5) Bi(n")v(n', 23)|55=—0 = Br(n)v(n', 23)|s4= 10 -

Here (2.4) and (2.5) are the interface conditions for A, (', D) corresponding to (1.2)
and (1.3). A;(n',D) (D = %a‘i—a) is the differential operators corresponding to the
selfadjoint operator A;(n'). Since the solution v of (2.3) should satisfy the interface

conditions (2.4) and (2.5), the denominator of v has the Lopatinski determinant
A(n',¢) as follows:

A(n',¢) = |n'[* Dis(2),

(2.6)

' 2
, z z :
Dis(z) = (2(111 = p2) - l:; + Z; ) +4(1 — p2)’a1azb1by

81 82
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2 2
z z
—aih (2(H1 — p2) + IZ ) — azb; (Z(Nl p2) — cl )
82 81

“1”2 = (a1bz + azby)7?,
81 83
where
=S
ln'|?’
z z 4 z
a; = 1—-—2—, a9 1——2—, b1= 1 R b2 1-— 5
Cp1 sz Cs1 C's

The squares of propagation speeds of shear(SV, SH) and pressure(P) waves are
given by

(2.7) Cz.- = ﬂ, C?).' = i’i‘_?ﬁi,

Pi Pi
respectively. From the cond1t10ns (1.9), the minimum speed of {cs,,Cp,,Csy,Cp, } 18
either c,, or cg,.

We can see that Dis(z) has the only one real zero when Dis(z) has zeros. Denote
by c%, its real zero. Then the zero of A(n/, C) is cStInll2 and is the origin of the
Stoneley wave propagating along the interface z3 = 0 in the elastic space R3, and
cst is its speed.

By virtue of pr1nc1p1e of the argument, the conditions for the existence of zeros
of the Lopatinski determinant A(n’,() = |n'|® Dis(z) (the existence of the Stoneley
waves) are given as follows:

If ¢, < cq,, then

(i=1,2),

(i) Dis(cfl) >0 = The zero ¢ = c%,|n'|* of A(n',¢) in ¢ exists in
[0, ¢ |n'|?) with order 1. More precisely, we shall
prove in the proof of [8, Theorem 6.5] that cs; # 0.
(ii) |
Dis(c2 ) =0 = cst = ¢y, and we shall consider this case
under some restricted conditions (cf. [8, Lemma 6.4]).
(ii)
Dis(c?) <0 = A(n',¢) has no zero.
If ¢, < cs,, then we must replace Dz.s(c2 ) by Dzs(c
We also obtain an explicit representation of the Green function G2($3, y3,1m';¢)
for the operator Ax(n') — (I ({ ¢ R) by the same method as G, (z3,y3,%';¢). The

Lopatinski determinant corresponding to the operator A;(n’) — ¢I (¢ ¢ R) has no
zero. By using the Green functions G;(z3,ys,7';() and Ga(z3,ys3,7'; (), we define

¥15(23,m;¢) = F . [Ga (@3, ys, s O1€) (A (n) — OPj(m)plas) ™, j € M,

2 ,
t(x3>77, C) %‘%‘/}U(zsm; C)v .7 € M)

Yok (23,75 C) = Fiy' [Ga(zs, us, 05 O)€) (N (n) = Oplzs) ™!, k€N.
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Here = (m,m»€) = (1>€), A;() = c3nl? are the eigenvalues of Ay ('), P;(n) are
mutually orthogonal projections for A;(n'), Ax(n) = ci|n|® are the eigenvalues of
As(n'), M = {s1,p1,82,p2} and N = {31,32} When ¢ = Aj(n) £ 0, { = c&,[nl?,
and ( — Ax(n) £10, the limits ¢’1g (z3,m), ¥7(zs,m), and ¢2k(m3,n) exist and these
limit functions are generalized eigenfunctions for A;(n'), A2(n'), respectively.

Using these generalized eigenfunctions for A;(n'), A2(n'), we define generalized
eigenfunctions for A as follows:

(2.8) 1111,(5” n) = t(xmﬁxmz)UC('ﬁl, (x3,17) ® O1x1), JEM,
(2.9) Pii(z,n) = o 'ulm%zm)UC(fl) H(z3,m) ® O1x1), JE M,
(2.10)

"bzk( z,n) = z(xm1+z2nz)Uc(02x2 ) ¢2k(‘”3’77))’ ke N.

where O,,«, denotes the n x n zero matrix.
Now we define the Founer transform of f € H with respect to these generalized
eigenfunctions: f — ( f1 % fo ] , f2 k),

@) Fw=tim [ e @ GeM
@12 fm)=lim / VSt (a,m)* f@)p(as) dz, § € M,
(213)  Fim=lim /I V) S@par) do, ke N.

Theorem 2.1 corresponds to the Parseval and Plancherel formulas.

Theorem 2.1. We assume that Dis(c2) > 0. Let f, g € H and 0 < a <b < oco.
Then we have

(f.9) = ( / fiEm) - g5 () dn + / FoE(m) - gf}(n)dn)

JEM

+Z/ fzk(n 921 (n) dn

keN

The first half of Theorem 2.2 expresses the Fourier inversion formula with respect
to generalized eigenfunctions. The latter half gives the canonical form for A.

Theorem 2.2. We assume the same assumption as Theorem 2.1.
(1) For f € H,

f@=3him | (w5, m F ) + vt @, £ () dn

In|<R

+) Lim. fl’fﬁ(w,n)fi(n) dn.

keN
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(2) For f € D(A),

ar@ = Yovim [ (v + i st m i) d

JEM

+ o tim [ (e ) dn

kEN In|<R
and
(AfYi5) = M fi50), e M,
(AD5Hm) = Ll P ), Ge M,
(495 (m) = Me(m fzi(n), keN.
Theorem 2.3 gives an explicit expression of the ranges R(%%).

Theorem 2.3. Assume the same assumption as Theorem 2.1. We define the map-
pings by

oL :H > f— fi(n) e L*(RL,CY, jeM
7t H D f— fil(n) e *(R%,C?), jeM
%*k M3 f— fi(n) e L*(RL,CP), keN,

=Y ot ) oo of.

JEM JEM keEN

and put

Then we have ;
R(®%) =) &(P;(n) ® 01,1)[*(RE,C*) @ ) _ &( P'(n)ealel)Lz(R?',Cg')
JEM JEM

® Y ®(0zx; ®1)L*(RE, CY).
keN

This implies that $* are unitary operators in H, and that the systems of generalized
eigenfunctions {¢7 i PPt ’ ¢35} and {¥1; 1&‘19}, ¥} are complete, respectively.

The next theorem shows the utility of the eigenfunction expansion theorem for
the operator A.

Theorem 2.4. Let ¥()) be a complex-valued bounded Lebesgue measurable func-
tion on 0(A) = {A: A > 0} and let ¥(A) be the corresponding operator defined by
means of the spectral theorem.

Then we have

(2(A )f)lg(ﬂ) () fi5(n) € (Pi(n) @ 01x1)L*(RE, C), je M,
(2(4); ))‘)1J (n) = T(cEeln' ") i (n) € (Pi(m) ® 01x1) L* (R, CP), j€ M,
(‘I’(A)f)gk(n) = U(E ) f35(n) € (Ozx2 @ l)LZ(Ri,Cg), keN.

It will be convenient to rewrite the solution (1.12)-(1.13) in the following form.
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Theorem 2.5. Let f and g be real-valued functions such that

(2.14) fEH, geDAH),
and define

(2.15) h=f+iA"igeH.
Then the solution in ‘H defined by (1.14) satisfies
(2.16) u(t,z) = Re{v(t,z)},

where v(t, z) is the complex-valued solution in H defined by
, o
(2.17) v(t,") = e 4% h,

The proof of Theorem 2.5 is due to Wilcox [10, Theorem 2.3]. This theorem
implies that the solution u(t,z) of (1.12) and (1.13) is determined by v(¢, z).
Combining Theorem 2.4 and Theorem 2.5, we have the following:

Theorem 2.6. We assume that
feH, geD(A™%), Dis(c)>0.

Then the solution of the elastic wave propagation problem, defined by (1.12) and
(1.13) has the representation

(2.18) ote)= > vE(tz)+ Y viitz)+ D vi(tz) € X,

JEM JEM kEN .
where
(2.19)
+ —1 —1itc; + I+ .
o) =him | e i (e, mhi;(n) dn, 5 € M,
(2.20)
viH(t,z) = Lim. e~test St (2 MRSt (n) dn, j € M,
R—oo JinI<R
(2.21) ‘,
vE (t,z) =Lim. e~iternlyx (2 AL (n)dy, k € N,
2k 2k 2k
R—oo InlSR
and
(2.22) 1
hE(m) = () + imaﬁ-(n) € (Pj(n) ® 01x1)L*(R3, C%),
(2.23)
- - ' . 1 .
hZi(m) = fF(n) + zmgf}(n) € (Pj(n) ® 01x1) L*(R?, C3),
(2.24)

N N . 1 .
hE () = fE(n) + zmgzik(n) € (022 ® 1) L2 (RY, C3).
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§ 3. The Asymptotic Energy Distributions for Large Times

This section deals with the asymptotic energy distributions for large times.
We define the energy of solution u on a set K C R at time ¢ for the elastic wave
propagation problem by

(3.1) E(u, K,t) = /K (

If u is a solution of (1.1)-(1.4), u satisfies the conservation laws of energy:

3

du|? du du
e p(zs) — Z Mk]% y -5;;) dx.

k,j=1

E(u,R3,t) = E(u,R3,0) = const. for Vt € R,

where the constant may be finite or infinite. If one defines a sesquilinear form B in
H by
D(B)= H'R3,C* CcH

and
Ou
B(u,v M d
( ) %; /Ra * 9z, 3.’1: &Bk

then it is easy to verify that B is closed and non-negative, and that A is the
unique selfadjoint non-negative operator in H associated with B (cf. [5]). Then
D(Az) = HY(R?,C?) and for all u € D(A%) one has

2 5. 3
lA%ul = B(u,u) = Z / Mkj—a—l-tf . —(?a—:t—d:v,

where ||| is the norm in H. It follows that

du

(3.2) | E(u,R%,t) =

2
aba| =l

Here the norm ||u|| ¢ is called the energy norm. If f € D(A%), g € H, then
u(t) € D(A? ), & € H for all t € R and u(2) satisfies

(3.3) lu@))|z = |[u(0)|Z < 0o for V¢ € R.

Therefore a necessary and sufficient condition for u to have this property is that
the initial state f, g has finite energy:

(3.4) f€D(A%), gen.
Hereafter we consider only solutions with finite total energy.
When .
I feEH, ge D(A™?),
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the solution u of the elastic wave propagation problem in H, defined by (1.12) and
(1.13), satisfies

u(t,z) = Re{v(t,z)},
where
U(t, ) = e?itA%hv h=f+ 'iA_%g’
then v(t, ) has the following representation (see Section 2):

v(t,z) = thtm +Zv (t,z) +Zv2k(taz

JEM JEM keN

vU(t z)(j € {p1,p2}) are called Pressure (P) components, vf; £ (t,2)(j € {s1,82}) are
called Shear Vertical (SV) components, vy, St(t,z)(j € M = {s1,p1,82,p2}) are called

Stoneley components and v (t,z)(k € N = {s1,85}) are called Shear Horizontal
(SH) components. We remark that if

(3.5) Dis(c?) > 0,

then the Stoneley components exist. Here c;, = min{cs,, ¢s,} and Dis(z) is defined
by (2.6) (cf. Section 2, [8, Section 3]). This condition is determined by Lamé
constants \;, p; and densities p; (i = 1, 2).

Our main results are the following theorems. Theorem 1.1 shows that the energy

of the Stoneley components v t(t z)(j € M) of v is asymptotically concentrated
along the interface z3 = 0.

Theorem 1.1. We assume that
feD(AN)NH, geHND(A), Dis(c)>0

then

lim E(vf},(C~(6) U C*(6)) N B(t,9(1)), 1) = B}, B,0), j€ M,

where
C~(8) = {z € R%; —6(|2'|) < z3 < 0},
C*T(6) ={z e R%; 0< 23 <6(2])},

B(t,9(t)) = {z € R? cit —9(t) < |2'| < csit + (), z3 € R},
I(t) : Jim J(t) = oo, |9(t)| < 2¢s4t,

9(|:v'|) hm 9(|:c |) = 0o, monotone increasing function,

Cst : propagatlon speed of Stoneley wave.

The next theorem shows that the P, SV, SH components v}; t(t,z)(j € M),
v (t,2)(k € N) behave like free waves.
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Theorem 1.2. We assume that
| fED(AT)NH, geHNDA™?),

then

Jim B(vf5, Say(t,9) U Sp, (t,9) U Siy (2,9) U Sp, (8, 9),) = E(vi, R%,0), j €M,

Jim E(v¥, Ss,(t,9) U Ss,(t,9),t) = E(v,R3,0), k € N,

where
80, (6,0() = {z € RE; cort = 0(2) < o] < cart +9(0)}
S5, (6,9(t)) = {z € R3; ¢,,t — 9(2) < || < cp,t + ()}
Se, (1,9(1)) = {z € RY; ¢yt — 9(2) < 2] < 6t + 9(2)}
Sps(£,9(2)) = {z € R3; cp,t — O(t) < |z| < cpot + 9(2)}
J9(t) : tlirglo I(t) = oo, :
Cp,» Cp, : Propagation speeds of P waves,
Cs,5Cs, : Propagation speeds of SV and SH waves.

These theorems are obtained calculating the energy of the asymptotic wave func-
tions v} (2, z), vibj°° (t,z) (j € M), vE>®(t,z) (k € N) which defined by means of
the stationary phase method.
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