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Entropy in Derived Towers of Subfactors
日合文雄 (F. Hiai)
茨城大理 (Ibaraki Univ.)

Introduction

Jones’ index theory [16] for type $II_{1}$ subfactors was extended by Kosaki [20] to that
for conditional expectations between arbitrary factors. Let $N\subset M$ be an inclusion of
factors with finite index. Unless $N’\cap M=C$ , there are many faithful normal conditional
expectations $E:Marrow N$ . But there exists a unique conditional expectations $E_{0}$ : $Marrow N$

which minimizes $IndE[10,11,23]$ . This $E_{0}$ is called the minimal conditional expectation
and $[M : N]_{0}=IndE_{0}$ is the minimal index of $N\subset M$ . The notion of minimal index is
quite important particularly in type III index theory.

Pimsner and Popa [27] extensively developed the relative entropy $H(M|N)$ for type $II_{1}$

factors $N\subset M$ in connection with the Jones index $[M : N]$ . They showed the inequality
$H(M|N)\leq\log[M : N]$ and obtained several characterizations for the equality. Note
in particular that $H(M|N)=\log[M : N]$ if and only if $[M : N]=[M : N]_{0}$ (i.e. the
trace-preserving conditional expectation $Marrow N$ is minimal). In this case $N\subset M$ is
called extremal [31]. The relative entropy $K_{\varphi}(M|N)$ of this kind was defined in $[12, 17]$

in more general setups and its relation with the minimal index was obtained in $[12, 13]$ .
The multiplicative chain rule of minimal index for subfactors was established in $[21, 25]$ .
See [18] for the most general form of indical chain rule as well as the additive chain rule
of relative entropy.

Choda $[5, 6]$ investigated the $Connes- S\emptyset rmer$ dynamical entropy $H(\sigma)$ and $H(M|\sigma(M))$

for an endomorphism $\sigma$ of a finite von Neumann algebra $M$ . In $[6, 7]$ , when $\Gamma$ is the
canonical shift introduced by Ocneanu [26] on $R$ generated by the derived tower of factors
$N\subset M$ , the entropies $H(\Gamma)$ and $H(R|\Gamma(R))$ were related with $[M : N]$ or $[M : N]_{0}$ . In
fact, we have $H(\Gamma)\leq H(R|\Gamma(R))\leq 2H(\Gamma)\leq 2\log[M:N]0$ .

As we already mentioned, many close relations between index theory and entropy theory
are known so far. In this paper let us further investigate the canonical shift from entropic
point of view. We discuss only the case of $II_{1}$ factors. But this is not a true restriction
whenever we consider the canonical shift on the derived tower induced from the minimal
conditional expectation (see the final section).

First in Section 1, following $[29, 31]$ we recall the standard invariants (i.e. the principal
graph and the standard eigenvectors) of an inclusion $N\subset M$ of type $II_{1}$ factors. In Section
2, we continue [7] and characterize the equality cases $H(R|\Gamma(R))=2H(\Gamma)$ and $H(\Gamma)=$

$\log[M : N]$ in terms of the standard invariants. It is shown that the standard invariant of
$N\subset M$ is strongly amenable [31] if and only if $\frac{1}{2}H(R|\Gamma(R))=H(\Gamma)=\log[M : N]$ , and
this is the case when $N\subset M$ has subexponential growth.

In Section 3, let $A$ denote the quasilocal C’-algebra $\overline{\bigcup_{n}(M_{-n}’\cap M_{n})}$ where.. . $M_{-2}\subset$

$M_{-1}=N\subset M_{0}=M\subset M_{1}\subset\cdots$ is the tower of basic constructions. We regard $(A, \Gamma)$ as
a generalization of one-dimensional quantum spin system. Setting a suitable interaction,
we discuss the variational principle, the Gibbs condition, and the KMS condition with
respect to the generated time evolution.
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Contents of Sections 2 and 3 are somewhat independent, and full details and further
development will be separately presented elsewhere.

1. Preliminaries
Let $N\subset M$ be an inclusion of $II_{1}$ factors with $[M : N]<+\infty$ . Let

. $\subset M_{-3}\subset M_{-2}\subset M_{-1}=N\subset M_{0}=M\subset M_{1}\subset M_{2}\subset\cdots$ (1.1)

be the Jones tower of tunnel and basic constructions [16]. The derived tower of relative
commutants for $N\subset M$ is

$C=M’\cap M\subset M’\cap M_{1}\subset M’\cap M_{2}\subset\cdots$ , (1.2)

which is an increasing sequence of finite dimensional algebras. (The derived tower is usually
defined as $\{N’\cap M_{n}\}$ , but we prefer the dual one $\{M’\cap M_{n}\}$ in accordance with $[29, 31]$ .)

Let $\tau$ denote the unique normalized trace, i.e. the $\lambda$-Markov trace on $\bigcup_{n}M_{n}$ where $\lambda=$

$[M : N]^{-1}$ . We denote by $\overline{R}$ the type $II_{1}$ von Neumann algebra generated by $\bigcup_{n}(M_{-n}’\cap M_{n})$

via the GNS representation with respect to $\tau$ . The normal trace on $\overline{R}$ extending $\tau$ is
denoted by the same $\tau$ . Define the von Neumann subalgebras $R=R_{0}\supset R_{1}\supset R_{2}\supset\cdots$

of $\overline{R}$ by $R_{j}=( \bigcup_{n}(M_{j}’\cap M_{n}))’’$ . On the other hand, the core (or the standard part) [30,
31] of $N\subset M$ is $( \bigcup_{n}(M_{-n}’\cap N))’’\subset(\bigcup_{n}(M_{-n}’\cap M))’’$ .

The mirrorings and the canonical shift on the derived tower were introduced in [26].
Since the basic construction of $M\subset M_{n}$ is $M_{2n}[28]$ , the mirroring (antiautomorphism)
$\gamma_{n}$ of $M’\cap M_{2n}$ is defined by

$\gamma_{n}(x)=J_{n}x^{*}J_{n}$ , $x\in M’\cap M_{2n}$ ,

where $J_{n}$ is the modular conjugation on $L^{2}(M_{n}, \tau)$ . Then we have $\gamma_{n+1}0\gamma_{n}=\gamma_{n}0\gamma_{n-1}$ on
$M’\cap M_{2n-2}$ (see [7] for details). Hence we can define the canonical shift $\Gamma$ on $\bigcup_{n}(M’\cap M_{n})$

by
$\Gamma(x)=\gamma_{n+1}(\gamma_{n}(x))$ , $x\in M’\cap M_{2n}$ ,

which is an endomorphism of $\bigcup_{n}(M’\cap M_{n})$ . Since $\tau 0\Gamma=\tau,$ $\Gamma$ can extend to an endo-
morphism of $R$ . Then $\Gamma$ is a 2-shift on the tower (1.2) in the sense of [6] and $\Gamma(R)=R_{2}$ .
Starting from $M_{-k}\subset M_{-k+1}$ , we can extend $\Gamma$ to the canonical shift on $( \bigcup_{n}(M_{-k}’\cap M_{n}))’’$

for any $k\geq 1$ . Thus $\Gamma$ extends to an automorphism of $\overline{R}$ , which is denoted by the same F.
We may call $\Gamma$ on $R$ and $\overline{R}$ the unilateral and bilateral canonical shifts, respectively.

Following $[29, 31]$ let us now introduce the standard matrix (or the principal graph)
and the standard eigenvectors of $N\subset M$ . The standard matrix $\Lambda=\Lambda_{N,M}=[a_{kl}]_{k\in K,l\in L}$

is defined so that $[a_{kl}]_{k\in K_{n},l\in L_{n}}$ is the inclusion matrix of $M’\cap M_{2n}\subset M’\cap M_{2n+1}$ and
$[a_{kl}]_{k\in K_{n+1},l\in L_{n}}^{t}$ is that of $M’\cap M_{2n+1}\subset M’\cap M_{2n+2}$ , where $K_{0}=\{k_{0}=*\}\subset K_{1}\subset K_{2}\subset$

.. . , $K= \bigcup_{n}K_{n}$ , and $L_{0}\subset L_{1}\subset L_{2}\subset\cdots$ , $L= \bigcup_{n}L_{n}$ . We denote by $\vec{d}_{n}=(d_{n,k})_{k\in K_{n}}$

and $r_{n}arrow=(r_{n,k})_{k\in K_{n}}$ the dimension vector and the trace vector of $M’\cap M_{2n}$ , and by
$\vec{d’}_{n}=(d_{n,l}’)_{l\in L_{n}}$ and $r_{n}^{arrow}/=(r_{n,l}’)_{l\in L_{n}}$ those of $M’\cap M_{2n+1}$ . We have for $n\geq 0$

$d_{n,l}’= \sum_{k\in K_{n}}d_{n,k}a_{k,l}$
, $l\in L_{n}$ , (1.3)
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$r_{n,k}= \sum_{1\in L_{n}}a_{kl}r_{n,l}’$
, $k\in K_{n}$ , (1.4)

$r_{n+1,k}=\lambda r_{n,k}$ , $k\in K_{n}$ ,

$r_{n+1,l}’=\lambda r_{n,l}’$ , $l\in L_{n}$ .

The standard eigenvectors $sarrow=(s_{k})_{k\in K}$ and $t^{\sim}=(t_{l})_{l\in L}$ are defined so that $r_{n}arrow=(\lambda^{n}s_{k})_{k\in K_{n}}$

and $r_{n}^{arrow}/=(\lambda^{n}t_{l})_{l\in L_{n}}$ for all $n\geq 0$ . Then

$At^{\sim}=sarrow$, $\Lambda_{S}^{tarrow}=\lambda^{-1}t^{arrow}$,

$\Lambda\Lambda_{S}^{tarrow}=\lambda^{-1}s^{arrow}$, $\Lambda^{t}\Lambda t^{arrow}=\lambda^{-1}t^{arrow}$. (1.5)

It follows from (1.5) that

$\sum_{l}a_{k1}^{2}\leq\lambda^{-1}$
,

$\sum_{k}a_{kl}^{2}\leq\lambda^{-1}$
, (1.6)

Furthermore we denote by $(f_{n,k})_{k\in K_{n}}$ and $(f_{n,l}’)_{l\in L_{\mathfrak{n}}}$ the sets of minimal central pro-
jections of $M’\cap M_{2n}$ and $M’\cap M_{2n+1}$ , respectively, so that $\tau(f_{n,k})=d_{n,k}r_{n,k}$ and
$\tau(f_{n,l}’)=d_{n,l}’r_{n,l}’$ .

When $N\subset M$ is extremal, we have [31]

$s_{k}=\lceil p_{k}M_{2n}p_{k}$ : $Mp_{k}]^{1/2}$ , $k\in K_{n}$ ,

$t_{l}=\lambda^{1/2}[y_{l}’M_{2n+1}p_{l}’ : Mp_{l}’]^{1/2}$ , $l\in L_{n}$ ,

where $p_{k}$ and $p_{l}’$ are minimal projections in the kth summand of $M’\cap M_{2n}$ and in the lth
summand of $M’\cap M_{2n+1}$ , respectively. These imply that $s_{k}\geq 1$ and $t_{l}\geq\lambda^{1/2}$ for extremal
$N\subset M$ .

2. Entropy of canonical shifts and strong amenability
Let $H(\Gamma)$ be the dynamical entropy of $\Gamma$ with respect to $\tau[8]$ . By [6, Theorem 14] we

have
$H( \Gamma)=\lim_{narrow\infty}\frac{1}{n}H(M’\cap M_{2n})=\lim_{narrow\infty}\frac{2}{n}H(M’\cap M_{n})$ , (2.1)

where $H(M’\cap M_{n})$ denotes the von Neumann entropy of $\tau$ I $M’\cap M_{n}$ . For $j\geq 11etH(R|R_{j})$

be the relative entropy of $R$ relative to $R;[8,27]$ , which is given as

$H(R|R_{j})= \lim_{narrow\infty}H(M’\cap M_{n}|M_{i}’\cap M_{n})$

by [27, Proposition 3.4]. The following relations were shown in [6, Theorem 14] under the
assumption of $N\subset M$ being extremal:

$H(\Gamma)\leq H(R|R_{2})\leq 2H(\Gamma)\leq 2\log[M:N]$ .
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But these hold without the extremality assumption; in fact we have [7]

$H(\Gamma)\leq H(R|R_{2})\leq 2H(\Gamma)\leq 2\log[M : N]_{0}$ . (2.2)

In the following let us completely characterize, in terms of the standard invariants, when
the equalities $H(R|R_{2})=2H(\Gamma)$ and $H(\Gamma)=\log[M:N]$ occur, respectively.

Let $Z(M’\cap M_{n})$ be the center of $M’\cap M_{n}$ . Then

$H(Z(M’ \cap M_{2n}))=-\sum_{k\in K_{n}}d_{n,k}r_{n,k}\log d_{n,k}r_{n,k}$
,

$H(Z(M’ \cap M_{2n+1}))=-\sum_{l\in L_{n}}d_{n,l}’r_{n,l}’\log d_{n,l}’r_{n,l}’$
.

Since by (1.3), (1.4), and (1.6)

$\sum_{k\in K_{\hslash}}d_{n,k}a_{k,l}r_{n,l}’=d_{n,\mathfrak{l}}’r_{n,l}’$
,

$\sum_{l\in L_{\hslash}}d_{n,k}a_{k,l}r_{n,l}’=d_{n,k}r_{n,k}$
,

$\#\{k\in K:a_{kl}\neq 0\}\leq\lambda^{-1}$ , $\#\{l\in L:a_{k1}\neq 0\}\leq\lambda^{-1}$ ,

it is easy to check that

$|H(Z(M’\cap M_{2n}))-H(Z(M’\cap M_{2n+1}))|\leq\log\lambda^{-1}$ . (2.3)

Setting

$I(M’ \cap M_{2n})=\sum_{k\in K_{n}}d_{n,k}r_{n,k}\log\frac{d_{n,k}}{r_{n,k}}$ ,

we immediately have

$I(M’\cap M_{2n})=2H(M’\cap M_{2n})-H(Z(M’\cap M_{2n}))$ . (2.4)

Furthermore we can show that

$H(R|R_{2})= \lim_{narrow\infty}\{I(M’\cap M_{2n})-I(M’\cap M_{2n-2})\}$. (2.5)

Now (2.1) and $(2.3)-(2.5)$ altogether imply the following:

Theorem 2.1. The limit $\lim_{narrow\infty}\frac{1}{n}H(Z(M’\cap M_{n}))$ exists and

$\frac{1}{2}H(R|R_{2})+\lim_{narrow\infty}\frac{1}{n}H(Z(M’\cap M_{n}))=H(\Gamma)$.

Hence $H(R|R_{2})=2H(\Gamma)$ if and only if $\lim_{narrow\infty}\frac{1}{n}H(Z(M’\cap M_{n}))=0$ .
We say that the principal graph of $N\subset M$ has subexponential growth if

$\lim_{narrow\infty}\frac{1}{n}\log|K_{n}|=0$ ,

or equivalently
$\lim_{narrow\infty}\frac{1}{n}\log|L_{n}|=0$ ,

where $|K_{n}|$ denotes the cardinal number of $K_{n}$ .
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Corollary 2.2. If the principal graph of $N\subset M$ has subexponen tial growth, then
$H(R|R_{2})=2H(\Gamma)$ .

Since
$\frac{1}{n}H(M’\cap M_{2n})=\log\lambda^{-1}-\frac{1}{n}\sum_{k\in K_{n}}\tau(f_{n,k})\log s_{k}$,

$\frac{1}{n}H(M’\cap M_{2n+1})=\log\lambda^{-1}-\frac{1}{n}\sum_{l\in L_{n}}\tau(f_{n,l}’)\log t_{l}$,

we have:

Theorem 2.3. The following equal limits

$\lim_{narrow\infty}\frac{1}{n}\sum_{k\in K_{n}}\tau(f_{n,k})\log s_{k}=\lim_{narrow\infty}\frac{1}{n}\sum_{l\in L_{n}}\tau(f_{n,l}’)\log t_{l}$

exist and
$H( \Gamma)+\lim_{narrow\infty}\frac{1}{n}\sum_{k\in K_{n}}\tau(f_{n,k})\log s_{k}=\log[M:N]$.

Hence
$\lim_{narrow\infty}\frac{1}{n}\sum_{k\in K_{n}}\tau(f_{n,k})\log s_{k}\geq 0$,

and $H(\Gamma)=\log[M : N]$ if an$d$ only if $\lim_{narrow\infty}\sum_{k\in K_{n}}\tau(f_{n,k})\log s_{k}=0$ .

We say that the standard eigenvector of $N\subset M$ has subexponential growth if

$\lim_{narrow\infty}\frac{1}{n}\log(\max_{n}s_{k})=0$ ,

or equivalently
$\lim_{narrow\infty}\frac{1}{n}\log(\max_{n}t_{1})=0$ .

Corollary 2.4. If the standard eigenvector of $N\subset MI_{J}$ as $su$ bexponential growth, then
$H(\Gamma)=\log[M:N]$ and hence N C $M$ is extremal.

In particular, when $sarrow$ is bounded, we have the above conclusion. So Corollary 2.4
improves [31, Corollary 1.3.6(ii)].

Since

$\log\lambda^{-1}-\frac{1}{n}\sum\tau(f_{n,k})\log d_{n,k}=\frac{1}{n}H(Z(M’\cap M_{2n}))+\frac{1}{n}\sum\tau(f_{n,k})\log s_{k}$ ,
$k\in K_{\hslash}$ $k\in K_{\hslash}$

$\log\lambda^{-1}-\frac{1}{n}\sum_{\iota\in L_{n}}\tau(f_{n,l}’)\log d_{n,l}’=\frac{1}{n}H(Z(M’\cap M_{2n+1}))+\frac{1}{n}\sum_{1\in L_{\mathfrak{n}}}\tau(f_{n,l}’)\log t_{l}$,

the next theorem can be shown from Theorems 2.1 and 2.3.
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Theorem 2.5. The following equal limits

$\lim_{narrow\infty}\frac{1}{n}\sum_{k\in K_{n}}\tau(f_{n,k})\log d_{n,k}=\lim_{narrow\infty}\frac{1}{n}\sum_{l\in L_{n}}\tau(f_{n,l}’)\log d_{n,l}’$

exist and
$H( \Gamma)+\lim_{narrow\infty}\frac{1}{n}\sum_{k\in K_{n}}\tau(f_{n,k})\log d_{n,k}=H(R|R_{2})$ .

Moreover the following conditions are $eq$uivalent:
(i) $H(R|R_{2})=2\log[M : N]$ ;
(ii) $H(R|R_{1})=H(R_{1}|R_{2})=\log[M:N]$ ;
(iii) $\frac{1}{2}H(R|R_{2})=H(\Gamma)=\log[M:N]$ ;
(iv) $hm_{narrow\infty}\frac{1}{n}\sum_{k\epsilon K_{\mathfrak{n}}}\tau(f_{n,k})\log d_{n,k}=\log[M:N]$;
(v) $\lim_{narrow\infty}\frac{1}{n}\sum_{l\in L_{n}}\tau(f_{n,l}’)\log d_{n,l}’=\log[M : N]$ .

It is seen that the above equivalent conditions hold if and only if $N\subset M$ is extremal
and

$H(M|N)= \lim_{narrow\infty}H(M_{-n}’\cap M|M_{-n}’\cap N)$ .

This last condition is one of the caracterizations in [31, Theorem 5.3.1] for extremal $N\subset M$

whose standard invariant is strongly amenable. When $M$ is hyperfinite, this implies [31,
Theorem 4.1.2] that $N\subset M$ itself is strongly amenable, equivalently $N\subset M$ has the
generating property. Thus we obtain the combinatorial characterization (iv) or (v) above
for strongly amenable extremal $II_{1}$ inclusions N $CM$ . Also it is easy to check that
$||\Lambda||^{2}=[M : N]$ follows from (iv).

When both the principal graph and the standard eigenvector of $N\subset M$ have subexpo-
nential growth, $N\subset M$ is said to have subexponential growth. This is equivalent to the
condition [31]

$\lim_{narrow\infty}(\sum_{k\in K_{n}}s_{k})^{1/n}=1$ ,

because

$\sum_{k\in K_{\mathfrak{n}}}s_{k}\leq|K_{n}|\max_{\mathfrak{n}}s_{k}k\in K$ $k \in K\max_{n}s_{k}\leq\sum_{k\in K_{\mathfrak{n}}}s_{k}$
,

$|K_{n}| \leq\sum_{k\in K_{n}}s_{k}$
.

So we have the following which affirmatively solves [31, Problem 5.4.6].

Corollary 2.6. If $N\subset Mh$as $su$ bexponential growth, then $N\subset M$ is extremal and the
standard invariant of $N\subset M$ is strongly amenable.

We end this section with some examples.

Example 2.7. Let $N$ be the Jones subfactor [16] of the hyperfinite $II_{1}$ factor $M$ with
$[M : N]=\lambda^{-1}$ . Then $M’\cap M_{n}=Alg\{1, e_{2}, \ldots, e_{n}\}$ and $R=\{e_{n} : n\geq 2\}’’$ where $e_{n}$ are
the Jones projections. Let $\theta_{\lambda}$ be the shift on $R$ given by $\theta_{\lambda}(e_{n})=e_{n+1}$ . Then $\Gamma=\theta_{\lambda}^{2}$ and



112

hence $H(\Gamma)=2H(\theta_{\lambda})$ . Note that $N\subset M$ has finite depth if $\lambda>1/4$ , it has graph $A_{\infty}$ and
$s=arrow(1,3,5, \ldots)$ if $\lambda=1/4$ , and it has graph $A_{\infty,\infty}$ but is not exremal with $[M : N]_{0}=4$

if $\lambda<1/4$ . It is known (see [7, Example 6.1] for instance) that when $\lambda\geq 1/4$

$\frac{1}{2}H(R|R_{2})=2H(\theta_{\lambda})=H(M|N)=\log\lambda^{-1}$ ,

and when $\lambda<1/4$

$\frac{1}{2}H(R|R_{2})=2H(\theta_{\lambda})=H(M|N)=2\eta(t)+2\eta(1-t)<\log 4$,

where $t(1-t)=\lambda,$ $t>0$ , and $\eta(t)=-t\log t$ . The computation of $H(\theta_{\lambda})$ was done in [27]
and $[5, 32]$ .

Example 2.8. Consider the following inclusions:

$N=\{\alpha(x)$ : $x\in A\}\subset M=A\otimes M_{m+1}(C)$ ,

where $A$ is a type $II_{1}$ factor and $\theta_{0}=id,$ $\theta_{1},$

$\ldots,$
$\theta_{m}\in$ Aut $A$ . Then $N\subset M$ is extremal

and $[M : N]=(m+1)^{2}$ . The derived tower of $N\subset M$ was presented in $[3, 31]$ . Let
$G\subset$ Aut $A/Int$ $A$ be the group generated by $[\theta_{i}]=\theta_{i}/IntA,$ $0\leq i\leq m$ . Then the
standard invariants of N $CM$ are parametrized by the elements of $G$ and the growth of
the principal graph is the same as that of $G$ with a generating set $\{[\theta_{i}], [\theta_{i}^{-1}] : 0\leq i\leq m\}$

[22]. Moreover $s_{g}=1$ and $t_{h}=1/(m+1)$ for all $g,$ $h\in G$ . Define the initial distribution
$\mu$ on $G$ by $\mu(g)=d_{1,g}/(m+1)^{2}$ for $g\in K_{1}$ and $\mu(g)=0$ for $g\in G\backslash K_{1}$ . Let $h(G, \mu)$

be the entropy of $(G, \mu)$ given by $h(G, \mu)=\lim_{narrow\infty}\frac{1}{n}H(\mu^{n})$ where $\mu^{n}$ denotes the nth
convolution of $\mu[22]$ . Then we have

$\frac{1}{2}H(R|R_{2})+h(G, \mu)=H(\Gamma)=\log[M : N]$ ,

$\lim_{narrow\infty}\{H(M’\cap M_{2n+2})-H(M’\cap M_{2n})\}=\log[M:N]$ .

In particular, let N C $M$ be determined by $2m+1$ automorphisms $\theta_{0}=id,$ $\theta_{i},$ $\theta_{i}^{-1}\in AutA$ ,
$1\leq i\leq m$ , and define $\mu_{0}$ on $G$ by $\mu_{0}(h)=d_{0,h}’/(2m+1)^{2}$ for $h\in L_{0}$ and $\mu_{0}(h)=0$ for
$h\in G\backslash L_{0}$ . Then

$H(R|R_{1})+h(G, \mu_{0})=\log[M : N]$ ,

which was proved in [3, Theorem 1.9]. Also

$\lim_{narrow\infty}\{H(M’\cap M_{n+1})-H(M’\cap M_{n})\}=\log[M : N]$ .

When $G$ becomes the free group $F_{m}$ on $m$ generators, [3, Proposition 2.11] says that

$h(F_{m}, \mu_{0})=\frac{2m-2}{2m+1}\log(2m-1)$ .
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Since
$H(R|R_{2})-H(\Gamma)=2\{\log(2m+1)-h(F_{m}, \mu_{0})\}$

tends to $0$ as $marrow\infty,$ $H(R|R_{2})$ can be arbitrarily close to $H(\Gamma)$ in (2.2).

3. Quantum systems arising from subfactors
As before let $N\subset M$ be an inclusion of $II_{1}$ factors with $\lambda^{-1}=[M : N]<+\infty$ and

the Jones tower (1.1). Set $A_{(i,j]}=M_{:}’\cap M_{j}$ for $i<j$ and in particular $A_{n}=A_{(0,n]}$

$(=M’\cap M_{n})$ for $n\geq 1$ . Let $A$ be a quasilocal $C^{*}$ -algebra defined as the C’-completion
of $\bigcup_{n=1}^{\infty}A_{(-n,n]}$ . In fact, we may define $A$ as the norm closure of $\bigcup_{n=1}^{\infty}A_{(-n,n]}$ in $\overline{R}$ ,
and set the canonical trace $\tau$ and the canonical shift $\Gamma$ on $A$ as the restrictions of $\tau$ and
$\Gamma$ on $\overline{R}$ (see Section 1). Then $\Gamma$ is an automorphism of $A$ and satisfies $\tau 0\Gamma=\tau$ and
$\Gamma(A_{(i,j]})=A_{(i+2,j+2]}$ . Thus a quantum system $(A, \tau, \Gamma)$ is obtained from $N\subset M$ , which
generalizes one-dimensional quantum spin systems. The aim of this section is to develop
quantum statistical mechanics on this system.

Let $S_{\Gamma}(A)$ denote the set of all F-invariant states on $A$ . Since $(A, \Gamma)$ is asymptotically
abelian in the norm sense, i.e.

$\lim||[a, \Gamma^{n}(b)]||=0$
$|n|arrow\infty$

for all $a,$ $b\in A$ , we know [4, 4.3.11] that $S_{\Gamma}(A)$ forms a simplex. Put $\tau_{n}=\tau|A_{n}$ and
$\omega_{n}=\omega|A_{n}$ for $\omega\in S_{\Gamma}(A)$ and $n\geq 1$ . Let $S(\omega_{n}, \tau_{n})$ be the relative entropy of $\omega_{n}$ with
respect to $\tau_{n}$ , which is written as

$S( \omega_{n)}\tau_{n})=\omega(\log\frac{d\omega_{n}}{d\tau_{n}})$ .

We then have the monotonicity $S(\omega_{n}, \tau_{n})\leq S(\omega_{n+1}, \tau_{n+1})$ and the superadditivity

$S(\omega_{2m+2n}, \tau_{2m+2n})\geq S(\omega_{2m}, \tau_{2m})+S(\omega_{2n}, \tau_{2n})$ .

These imply the following:
Proposition 3.1. For every $\omega\in S_{\Gamma}(A)$ , the $\lim$it $\lim_{narrow\infty}\frac{1}{n}S(\omega_{n}, \tau_{n})$ exists and

$\lim_{narrow\infty}\frac{1}{n}S(\omega_{n}, \tau_{n})=\sup_{n\geq 1}\frac{1}{2n}S(\omega_{2n}, \tau_{2n})$ .

For $\omega\in S_{\Gamma}(A)$ define the mean relative entropy

$S_{M}( \omega, \tau)=\lim_{narrow\infty}\frac{1}{n}S(\omega_{n}, \tau_{n})$ ,

and the mean entropy $s(\omega)$ of $\omega$ (with respect to $\tau$ ) by

$s(\omega)=\log\lambda^{-1/2}-S_{M}(\omega, \tau)$ .

Note that $s(\omega)\leq\log\lambda^{-1/2}=s(\tau)$ , and $s(\omega)=\log\lambda^{-1/2}$ if and only if $\omega=\tau$ . In fact,
if $s(\omega)=\log\lambda^{-1/2}$ then $S(\omega_{2n}, \tau_{2n})=0$ for all $n\geq 1$ by Proposition 3.1, which implies
$\omega=\tau$ .

The next proposition shows that the mean entropy defined above is identical to the
usual one under the subexponential growth of standard eigenvector.
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Proposition 3.2. If the standard eigenvector of $N\subset M$ has $su$ bexponential growth (in
particuiar, if $N\subset M$ has finite depth), then for every $\omega\in S_{\Gamma}(A)$

$s( \omega)=\lim_{narrow\infty}\frac{1}{n}S(\omega_{n})$ ,

where $S(\omega_{n})$ is the von Neuman$n$ entropy of $\omega_{n}$ .

It can be easily shown that $s(\omega)$ is affine and $weakly^{*}$ upper semicontinuous on $S_{\Gamma}(A)$ .
In the following the symbol $X$ means a finite interval $(i, j$] $(i<j)$ in $Z$ and let $|X|=j-i$ .

We say that $\Phi$ is an interaction if a selfadjoint element $\Phi(X)$ in $A_{X}$ is given for each $X$ .
Here the interaction energy $\Phi(X)$ is given only for finite intervals in $Z$ , while it is for all
finite subsets in the case of usual quantum spin systems. But this restriction is not essential
(interactions in quantum spin systems can be redefined into this form). We always assume
the following:

(1) $\Phi$ is translation-invariant: for any $X$ and $n\in Z$

$\Gamma^{n}(\Phi(X))=\Phi(X+2n)$ ,

(2) $\Phi$ has relatively short range:

$\sum_{X\ni 0}\frac{||\Phi(X)||}{|X|}<+\infty$.

Note that (1) and (2) imply $\sum_{X\ni-1}||\Phi(X)||/|X|<+\infty$ as well. Let $B$ denote the set of
all interactions satisfying (1) and (2) above. Define the norm $|||\Phi|||$ of $\Phi\in \mathcal{B}$ by

$||| \Phi|||=\frac{1}{2}(\sum_{X\ni-1}\frac{||\Phi(X)||}{|X|}+\sum_{X\ni 0}\frac{||\Phi(X)||}{|X|})$ .

Given $\Phi\in B$ and an interval $\Lambda\subset Z$ , the local Hamiltonian $H(\Lambda)$ is given as

$H( \Lambda)=\sum_{X\subset\Lambda}\Phi(X)$
.

For simplicity we write $H_{n}=H((0, n$]). Furthermore define $A_{\Phi}\in A$ by

$A_{\Phi}= \frac{1}{2}(\sum_{X\ni-1}\frac{\Phi(X)}{|X|}+\sum_{X\ni 0}\frac{\Phi(X)}{|X|})$ .

Obviously $||A_{\Phi}||\leq|||\Phi|||$ .
Proposition 3.3. For $e$very $\Phi\in B$ and $\omega\in S_{\Gamma}(A)$ , the limit $\lim_{narrow\infty}\frac{1}{n}\omega(H_{n})$ exists and

$\lim\underline{1}\omega(H_{n})=\omega(A_{\Phi})$.
$narrow\infty n$
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Theorem 3.4. For every $\Phi\in \mathcal{B}$ , the limit $\lim_{narrow\infty}\frac{1}{n}\log\tau(e^{-H_{n}})$ exists and

$\log\lambda^{-1/2}+\lim_{narrow\infty}\frac{1}{n}\log\tau(e^{-H_{n}})=$ $\sup$ $\{s(\omega)-\omega(A_{\Phi})\}$ .
$\omega\in S_{\Gamma}(A)$

Define the thermodynamic free energy (or the pressure) $p(\Phi)$ of $\Phi\in \mathcal{B}$ by

$p( \Phi)=\log\lambda^{-1/2}+\lim_{narrow\infty}\frac{1}{n}\log\tau(e^{-H_{n}})$ .

The above theorem gives the variational equality:

$p(\Phi)=$ $\sup$ $\{s(\omega)-\omega(A_{\Phi})\}$ .
$\omega\in S_{\Gamma}(A)$

Since $\omega-s(\omega)-\omega(A_{\Phi})$ is $weakly^{*}$ upper semicontinuous and affine, it follows that

$S_{\Phi}(A)=\{\omega\in S_{\Gamma}(A) : p(\Phi)=s(\omega)-\omega(A_{\Phi})\}$

is nonempty and becomes a face of $S_{\Gamma}(A)$ . So $S_{\Phi}(A)$ is a simplex. When $\omega\in S_{\Phi}(A)$ ,
we say that $\omega$ satisfies the variational principle (or it is thermodynamically stable) with
respect to $\Phi$ . From the above variational equality we can easily show as [4, 6.2.40] that
$p(\Phi)$ is convex in $\Phi\in B$ and

$|p(\Phi)-p(\Psi)|\leq|||\Phi-\Psi|||$ , $\Phi,$ $\Psi\in \mathcal{B}$ .

The next proposition says that when $N\subset M$ has finite depth, the above $p(\Phi)$ is identical
to the usual one defined by using $Tr_{n}$ instead of $\tau_{n}$ . Here $Tr_{n}$ denotes the canonical trace
on $A_{n}$ in the sense that $rrp_{n}(e)=1$ for any minimal projections $e\in A_{n}$ .

Proposition 3.5. If $N\subset M$ has finite depth, then for every $\Phi\in B$

$p( \Phi)=\lim_{narrow\infty}\frac{1}{n}\log Tr_{n}(e^{-H_{\mathfrak{n}}})$ .

We use the notion of the inner perturbation of a state on $A$ to introduce the Gibbs
condition. Let $\omega$ be a state on $A$ and $h=h^{*}\in A$ . Note that $\psi\mapsto\succ S(\psi, \omega)+\psi(h)$

is weakly* lower semicontinuous and strictly convex on the state space of $A$ . So the
perturbed state $[\omega^{h}]$ is defined as the unique minimizer of this functional. We know (see
$[2, 9])$ that for selfadjoint $h,$ $k\in A$ the chain rule $[[\omega^{h}]^{k}]=[\omega^{h+k}]$ holds and

$S([\omega^{h}], [\omega^{k}])\leq 2||h-k||$ . (3.1)

Given $\Phi\in \mathcal{B}$ and $n\geq 1$ , the surface energy $W_{n}$ is defined as

$W_{n}= \sum\{\Phi(X) : X\cap(0, n]\neq\emptyset, X\cap(0, n]^{c}\neq\emptyset\}$ ,
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whenever the sum in the right-hand side converges in norm. The canonical state (or the
local Gibbs state) $\varphi_{n}^{c}$ on $A_{n}$ is defined by

$\varphi_{n}^{c}(a)=\frac{\tau(e^{-H_{n}}a)}{\tau(e^{-H_{n}})}$ , $a\in A_{n}$ .

Definition 3.6. Let $\Phi\in B$ and assume that $W_{n}$ is defined for any $n\geq 1$ . Let $\omega\in S_{\Gamma}(A)$

and $\pi_{\omega}$ be the GNS representation of $A$ with the cyclic vector $\Omega_{\omega}$ .
(1) We say that $\omega$ satisfies the Gibbs condition with respect to $\Phi$ if $\Omega_{\omega}$ is separating for

$\pi_{\omega}(A)’’$ and the following holds for any $n\geq 1$ :

$[\omega^{-W}](ab)=\varphi_{n}^{c}(a)\psi_{n}(b)$ , $a\in A_{n},$ $b\in A_{(0,n]^{c}}$ ,

where $A_{(0,n]^{c}}$ is the C’-subalgebra of $A$ generated by $A_{(-m,0]}$ and $A_{(n,n+m]}(m\geq 1)$ ,
and $\psi_{n}$ is some state on $A_{(0,n]^{c}}$ .

(2) Also $\omega$ is said to satisfy the Gibbs condition in the weak sense with respect to $\Phi$ if
$[\omega^{-W_{\hslash}}]|A_{n}=\varphi_{n}^{c}$ holds for any $n\geq 1$ .

The monotonicity of relative entropy and (3.1) show the following:

Proposition3.7. $Let\Phi\in \mathcal{B}besuchthatW_{n}$ is deRned for everyn $\geq 1and\frac{1}{n}||W_{n}||arrow 0$ .
If $\omega\in S_{\Gamma}(A)$ satisfies the Gibbs condition in th$e$ weak sense with respect to $\Phi$ , then it
satisfies the variational principle with respect to $\Phi$ .

The following example gives Gibbs states of a special type, which generalize translation-
invariant product states in quantum spin systems.

Example 3.8. Suppose that $N’\cap M\neq$ C. For each (not necessarily trace-preserving)
conditional expectation $E$ : $Marrow N$ let $E_{n}$ : $M_{n}arrow M_{n-1}(n\in Z)$ be the iterated
conditional expectations from $E[20]$ . We can define a state $\omega$ on $A$ by

$\omega|A_{(i,j]}=E_{i+1:+2}oEo\cdots oE_{j}|A_{(i,j]}$ ,

which is $\Gamma$-invariant because the canonical shift as well as the Jones tower is defined apart
from the choice of conditional expectation (see [7]). Put

$h_{n}= \frac{d(E_{n}|A_{(n-1,n]})}{d(\tau|A_{(n-1,n]})}$ , $n\in$ Z.

We then have $\Gamma^{n}(h_{-1})=h_{2n-1},$ $\Gamma^{n}(h_{0})=h_{2n}$ , and

$\frac{d(\omega|A_{n})}{d(\tau|A_{n})}=h_{1}h_{2}\cdots h_{n}$ .

Now define an interaction $\Phi$ by $\Phi((n-1, n$]) $=-\log h_{n}(n\in Z)$ and $\Phi(X)=0$ for other
X. Then it is immediate that $\omega$ satisfies the Gibbs condition with respect to $\Phi$ where
$\varphi_{n}^{c}=\omega|A_{n},$ $e^{-H_{n}}=h_{1}\cdots h_{n}$ , and $W_{n}=0$ .
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We say that an interaction $\Phi$ has finite range if there exists $N\geq 1$ such that $\Phi(X)=0$

whenever $|X|>N$ . A weaker condition of finite body is also used in the case of quantum
spin systems, but there is no difference in our setup where $\Phi(X)$ are restricted to finite
intervals $X$ . We set another useful condition of $\Phi$ as follows: for some $r>0$

$|| \Phi||_{f}=\sum_{X\ni 0}e$

‘ $|X|||\Phi(X)||<+\infty$ . (3.2)

This is satisfied if $\Phi$ has finite range. Also note that (3.2) implies the assumption of
Proposition 3.7.

The next proposition shows the existence of the time evolution associated with an
interaction $\Phi$ .
Proposition 3.9. Assume either that $\Phi\in \mathcal{B}$ satisfies (3.2) for some $r>0$ or that
$\sum_{X\ni 0}||\Phi(X)||<+\infty$ and $\sup_{n\geq 1}||W_{n}||<+\infty$ (i.e. the surface energies are uniformly
bounded). Then there exists a strongly continuous one-parameter automorphism $gro$up
$\alpha_{t}^{\Phi}(t\in R)$ such that

$\lim_{m,narrow\infty}$
$||\alpha_{t}^{\Phi}(a)-e^{itH((-m,n])}ae^{-itH((-m,n])}||=0$ , $a\in A,$ $t\in$ R.

The proof is the same as in the case of quantum spin systems (see [19], [4, 6.2.4, 6.2.6]).
Here note that (3.2) implies $\sum_{X\ni-1}e$

‘ $|X|||\Phi(X)||<+\infty$ as well from the $\Gamma$-invariance of
$\Phi$ . We have $\alpha_{t}^{\Phi}0\Gamma=\Gamma 0\alpha_{t}^{\Phi}$ .

Now we consider the KMS condition for a state on $\mathcal{A}$ with respect $\alpha^{\Phi}$ . Our main result
is stated as follows.

Theorem 3.10. Assume that $A$ is induced by $N\subset M$ having finite $dep$ th and $\Phi$ satisfies
the same as Proposition 3.9. Then the following condition$s$ for $\omega\in S_{\Gamma}(A)$ are equivalent:

(i) $\omega$ satisfies the $KMS$ condition with respect to $\alpha^{\Phi}$ ;
(ii) $\omega$ satisfies the Gibbs condition with respect to $\Phi$ ;
(iii) $\omega$ satisfies th$e$ Gibbs condition in the weak sense with respect to $\Phi$ ;
(iv) $\omega$ satisfies th$e$ variational principle with respect to $\Phi$ .

As in the case of quantum spin systems, we have the uniqueness of $\alpha^{\Phi}$-KMS states when
$\Phi$ has uniformly bounded surface energies. The proof can be done in the same way as [1]
by using Theorem 3.10 and a method of relative entropy (in particular (3.1)).

Theorem 3.11. Assume that $N\subset Mh$as finite depth an$d\Phi$ satisfies $\sum_{X\ni 0}||\Phi(X)||<$

$+\infty$ and $\sup_{n\geq 1}||W_{n}||<+\infty$ (this is the case if $\Phi$ has finite range.) Then there exists a
unique $KMS$ state with respect to $\alpha^{\Phi}$ .

Note that the KMS condition (i) of Theorem 3.10 does not depend on the canonical
trace $\tau$ , while other $(ii)-(iv)$ do so. In particular when $\Phi=0,$ $(i)$ means that $\omega$ is tracial,
while each of $(ii)-(iv)$ is nothing but $\omega=\tau$ . It is seen that when $N\subset M$ has graph $A_{\infty}$

or $A_{\infty,\infty}$ , there are uncountable many extremal tracial states on $A$ . So we know that
the assumption of $N\subset M$ having finite depth is essential in Theorems 3.10 and 3.11.
Indeed in the proof of Theorem 3.10 we use the fact that $\tau$ is a unique tracial state on $A$
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if $N\subset M$ has finite depth. However we have $(ii)\Rightarrow(iii)\Rightarrow(iv)\Rightarrow(i)$ without the finite
depth assumption.

4. Remarks on the type III case
Let $N\subset M$ be an inclusion of arbitrary factors with finite index, and $E_{0}$ : $Marrow N$ be

the minimal conditional expectation. Iterating upward and downward on the Jones tower
from $E_{0}$ we set conditional expectations $E_{n}$ : $M_{n}arrow M_{n-1}(n\in Z)$ . We have the faithful
trace $\phi$ on $\bigcup_{n}(M_{-n}’\cap M_{n})$ defined by

$\phi|M_{-n}’\cap M_{n}=E_{-n+1}o\cdots oE_{n-1}oE_{n}|M_{-n}’\cap M_{n}$ , $n\geq 1$ .

(The traciality of $\phi$ follows from [21].) Then all the material (e.g. $R,$ $\Gamma,$ $\Lambda,$ $sarrow,$
$t^{arrow}$) in Section

1 can be analogously obtained with use of the trace $\phi$ in place of $\tau$ .
Let $N\subset M$ be infinite factors and $J_{M},$ $J_{N}$ be the modular conjugations associated with

a common cyclic and separating vector for $M,$ $N$ . Then Longo’s canonical endomorphism is
$\gamma=Ad(J_{N}J_{M})$ : $Marrow N$ , and the Jones tower is identified as follows [24]: $M_{2n}=\gamma^{n}(M)$

and $M_{2n-1}=\gamma^{n}(N)$ for $n\in Z$ . Moreover $\Gamma$ on $R$ is given by $\Gamma=\gamma^{-1}|R=Ad(J_{M}J_{N})|R$ .
The sector theory plays a crucial role in theory of type III subfactors (see [24], [14]).

When we consider $(R, \Gamma)$ or $(A, \Gamma)$ obtained from a type III inclusion $N\subset M$ , all discus-
sions in Sections 2 and 3 are valid with the trace $\phi$ coming from the minimal conditional
expectation in place of $\tau$ . But the next proposition says that as far as we consider the
canonical shift, all things can be reduced to the type $II_{1}$ case. This is the reason why we
restrict to type $II_{1}$ inclusions in this paper.

Proposition 4.1. Let N $CM$ be any inclusion of facators with finite index and define
the standard invariants $\Lambda=[a_{kl}]_{k\in K,l\in L}$ and the standard $vec$ tors $sarrow,$

$tarrow$ via the minimal
conditional expectation. Then there exists an extremal incl$u$sion of type $Ih$ factors $B\subset A$

with $[A : B]=[M : N]_{0}$ such that $\Lambda,$
$st^{arrow}arearrow$, the standard invariants of $B\subset A$ . $Fu$rthermore

the $c$anonical shift $(R, \Gamma)$ for $N\subset M$ coincides with that of $B\subset A$ .
This can be proved by using [15], which was suggested by M. Izumi.
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