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Abstract
The notation of a (non-commutative) regular, graded algebra is introduced

in [AS]. The results of that paper, combined with those in [ATVI], gives a
complete description of the regular graded ring of (global) dimension three.
Further M.Artin [A] defined Quantum Proj for non-commutative graded al-
gebras and studied projective geometry of quautum proj.

In this paper, we shall explain those results.

1 Regular algebras
Let $k$ be an algebraicaUy closed field of characteristic zero. A graded algebra $A$ $wiU$

mean a (connected) N-graded algebra, generated in degree one; thus $A=\oplus_{i\geq 0}A_{j}$ ,
where $A_{0}=k$ is central, $\dim_{k}A_{i}<\infty$ for $aUi$ , and $A$ is generated as an algebra by
$A_{1}$ . M.Artin and W.Schelter defined the regular graded algebra as follows.

Deflnition 1 A graded algebra $A$ is regular of dimension $d$ provided that
(1) $A$ has global dimension $d$; that is every graded (left) $A$ -modules has projective
dimension $\leq d$

(2) $A$ has polynomial growth; that is there exzsts $\rho\in R$ such that $\dim A_{n}\leq n^{\rho}$ for
all $n$ .
$(S)$ $A$ is Gorenstein; that is $Ext_{A}^{q}(k,A)=\delta_{d,q}k$

These conditions put strong restriction on $A$ . For example, if $A$ is commutative,
and regular, then $A$ must be a polynomial ring. If $d=1$ , the only such $A$ is the
polynomial ring $k[x]$ . If $d=2$, then $A$ is of the form $k(x, y)$ (free algebra of rank
two) with a single quadratic relation, which is either yx–xy $=x^{2}$ , or $yx=\lambda xy$

for some $0\neq\lambda\in k$ . In particular, the quantum plane gives a regular algebra. If
$d=3$ , then things begin to get interesting. there are 13 class of regular algebras
(for detailed see [AS],[ATVI]), these algebras are of the forms $k\langle x,y\rangle$ with two cubic
relations, or $k\{x,y,$ $z\rangle$ with three quadratic relations. However two such classes are

数理解析研究所講究録
第 877巻 1994年 41-45



42

of particular interest.

Fix $(a, b, c)\in P^{2}$ , and let $A=C\langle x,$ $y,$ $z$) with defining relations

$ax^{2}+byz+czy=0$

$ay^{2}+bzx+cxz=0$

$az^{2}+bxy+cyx=0$

This algebra is very closely related to the subvariety of $P^{2},$ $E$ say, defied by the
equation $(a^{3}+b^{3}+c^{3})xyz-abc(x^{3}+y^{3}+z^{3})=0$. Usually $E$ is an elliptic curve.
If $(a,b,c)=(0,1, -1)$ , then $E=P^{2}$ and $A$ is the polynomial ring. Suppose that
$(a, b,c)$ is such that $E$ is an elliptic curve. Then $A$ is regular algebra, and noetherian
domain. In general, let $A$ be a graded algebra of the form

$A=k\langle x_{1},$ $\cdots,x_{r}$ ) $/(f_{1}, \cdots,f.)$

where $f_{j}$ are homogeneous elements. Then multilinearization of $\{f_{1}, \cdots, f.\}$ defines
a scheme $E$ in $(P^{-1})^{-1}$ . FMrther projective scheme $E$ define the homogeneous
coordinate ring $B$ . This is isomorphic to $\oplus_{n\geq 0}\Gamma(E,\varphi)$ , where $\varphi$ is the invertible
sheaf vartheta(l). Let $\sigma$ be an automorphism of $E$ and denote the pullback $\sigma^{*}\varphi$ by
$\varphi^{\sigma}$ , then we set

$B_{n}=\Gamma(E,\varphi\otimes\varphi^{\sigma}\otimes\cdots\otimes\varphi^{\sigma^{\mathfrak{n}-1}})$

for $aUn\geq 0$ and $B=\oplus_{n\geq 0}B_{n}$ . Multiplication of section is defined by the rule that
if $a\in B_{m}$ and $b\in B_{n}$ , then

$a\cdot b=a\otimes b^{\sigma^{m}}$

If $E=Spec(R)$ and $\sigma$ is an automorphism of $E$ , then $B=R[t,t^{-1};\sigma]$ , where
$ta=a^{\sigma}t$ . If $A$ is a regular algebra, then the next theorem is proved in [ATVI].

Theorem 1 If $A$ is a regular algebra of dimension 3, then $\dim E=1,2$ . If $\dim E=$

$1$ , then $A/gA\cong B^{\sigma}$ , where $g$ is an element of $A$ such that $gA=Ag$ . If $\dim E=2$ ,
then $A\cong B$ .

Next suppose that $d=4$. Not all the regular algebras are known for $d=4$,
however there is one class that has been studied to some extent. This is a family
of algebras defined by E.Sklyanin [Skl],[Sk2]. Let $(\alpha,\beta, \gamma)\in P^{3}$ lie on the surface
$\alpha+\beta+\gamma+\alpha\beta\gamma=0$ . Let $A=C\langle a, x, y, z\rangle$ with defining relations

ax-xa $=\alpha(yz+zy)$ xy-yx $=az+za$

ay-ya $=\beta(xz+zx)$ yz-zy $=ax+xa$
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az–za $=\gamma(xy+yx)$ zx–xz $=ay+ya$

If $\{\alpha, \beta, \gamma\}\cap\{0, +1, -1\}=\emptyset$, then $A$ is a regular algebra of dimension 4, and has
the same Hilbert series as the polynomial ring. Further if $(\alpha, \beta, \gamma)=(0,\delta, -\delta)$ $(\delta\neq$

$0,$ $-1$ ), then $A$ is a quotient of $U_{q}(sl(2))$ (quantum group of $sl(2)$ ).

2 Quantum Proj
Let $A$ be a finitely generated commutative graded k- algebra which is generated
in degree 1. Let $X=Proj(A)$ , and denote by $C$ the quotient category $(gr-$
$A)/\tau$ , where (gr–A) is the category of finite graded A- modules and $\tau$ is its fun
subcategory of modules of finite length. Serre’s theorem (cf. [Se]) asserts that there
is a natural equivalence of categories

$\tauarrow(mod-\theta)$

between the quotient category $\theta$ and the category $(mod-\theta)$ of coherent sheaves on
Proj $(A)$ . The shift $M(\mu)$ of module $M$ , defined by $M(\mu)_{n}=M_{n+\mu}$ , correspond to
the tensor product by the polarizing invertible sheaf:

$M\sim M(1)=M\otimes\theta(1)$

This shift operation defines an autoequivalence of $C$ . The class of A- modules
which corresponds to a coherent sheaf $M$ on $X$ is represented by the module

$\Gamma(M)$ $:= \bigotimes_{n=0}^{\infty}\Gamma(X, M(n))$

In particular, $\Gamma(\theta)=\otimes_{n}\Gamma(X, \varphi^{\Phi}")$ agree with in a sufficient high degree, where $\varphi$

is a invertible sheaf. Thus Proj $(A)$ can recovered from category $C$ .
M.Artin $(cf.[A],[ATVl],[AV])$ has used this correspondence to define quantum

Proj.

Deflnition 2 Let $A$ be a non-commutative graded algebra, generated in degree 1.
Then Proj$(A)$ is the triple $(C, \theta, s)$ , where $C=(gr-A)/\tau,$ $\theta$ is the object of $C$

which is represented by the right module $A$, and $s$ is the operation $M\sim M(l)$ on
$C$ induced by the shift of degree on an A- modules.

Suppose that $R=C[x_{0}, \cdots, x.]/J$ is a graded quotient ring of the commutative
polynomial ring endowed with its ususal graded structure. Let $V(J)\subset P$“ be the
projective variety cut out by $J$ . To each point $p\in V(J)$ we may associate the



44

graded $R-$ module $M(p)=R/I(p)\cong C[X]$ , where $I(p)$ is the ideal generated
by the homogeneous polynomials vanishing at $p$ . Since $C[X]$ is a domain, every
proper quatient of $M(p)$ is finite dimensional, whence $M(p)$ is an irreducible object
in Proj $(R)$ . This motivates the following definition.

Deflnition 3 $([AJ, [ATV2J)$ A point module is a graded cyclic A- module $M$ with
Hilbert series $(1-t)^{-1}$ .
A line module is a graded cyclic A- module $M$ with Hilbert series $(1-t)^{-2}$

A plane module is a gmded cyclic $A-$ module $M$ with Hilbert series $(1-t)^{-3}$

By using these modules, projective geometry over graded regular algebras of di-
mension 3 (quantum plane) is expanded (cf. [A]). In the case of dimension 4, projec-
tive geometry of regular algebra which obtained by homogenization of $sl(2)$ ([LBS]).

3 Remark and Problem
(1) In the definition of regular algebras, can the Gorenstein condition be changed to
domain ? This is true in the case that gl.dimA $\leq 2$ (cf [K1]) and it is known that
regular algebras of dimension $\leq 4$ are Noetherian domain (cf. [SS]).
(2) In the non-graded case, is it possible to define a quantum algebraic geomerty ?
One direction has suggested by Manin ([MI],[M2]).
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