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Indices of vectorfields and Nash blowup
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Introduction

The aim of this lecture is to explicit the behaviour of the index of vectorfields through

the Nash procedure. We will consider vectorfields tangent to the strata of a Whitney

stratification of an analytic variety $X$ , imbedded in a smooth one $M$ . They will be

suitable continuous sections of the tangent bundle of $M$ restricted to $X$ and will be

called radial vectorfields. Their construction was given by M.H. Schwartz [S2]. The

main property is a proportionality theorem which is an important step in the proof

of equality of M.H. Schwartz and R. MacPherson classes of singular algebraic complex

varieties. This result was given in [BS] as an intermediary result. Another application,

given in [S2], is the Poincar\’e-Hopf theorem for (real) singular analytic varieties.

1. Stratifled vectorflelds.

Let $X$ denote a real analytic variety of dimension $n$ , stratified with respect to Whitney

conditions. This means that :

(1) $X$ is union of a locally finite collection of disjoint locally closed subsets $V_{\dot{*}}$ , such

that $V_{i}$ 寡 $\overline{V_{j}}\neq\emptyset\Leftrightarrow V_{i}\subset\overline{V_{j}}$ ,

(2) the subsets $V_{i}=V_{*}^{s}$ are smooth manifolds of dimension $s$ , called the strata,

(3) whenever $V_{i}\subset\overline{V_{j}}$ then the pair satisfies the Whitney conditions :

(a) suppose $(x_{n})$ is a sequence of points in $V_{j}$ converging to $y\in V_{i}$ and suppose

that the sequence of tangent spaces $T_{x_{n}}(V_{j})$ converges to some limit $L$ . Then
$T_{y}(V_{i})\subset L$ .

(b) suppose $(x_{n})$ is a sequence of points in $V_{j}$ converging to $y\in V_{\dot{*}}$ and $(y_{n})$ is

a sequence of points in $V_{1}$ also converging to $y$ , suppose that the sequence of

tangent spaces $T_{x_{n}}(V_{j})$ converges to some limit $L$ and that the sequence of

secant lines $\overline{x_{n}y_{n}}$ converges to some limit $\lambda$ . Then $\lambda\subset L$ .
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We will assume that $X$ is imbedded in an analytic manifold $M$ of dimension $m$ .
Then, given a Whitney stratification of $X$ , there is a Whitney stratification of $M$ adding
$M-X$ as supplementary stratum. Let us denote by $T(M)$ the tangent bundle to $M$

and $\pi$ : $T(M)arrow M$ the natural projection. Let $A$ be a subset of $M$, the subspace of
$T(M)|_{A}$ , union of all restrictions $T(V_{*}\cdot\cap A)|_{A}$ will be denoted by

$E(A)= \bigcup_{x\in V:\cap A}T_{x}(V_{1})$

Deflnition. A stratified vectorfield $v$ on a subset $A\subset M$ is a section of $T(M)$ defined
on $A$ and such that if $x\in V_{i}\cap A$ , then $v(x)\in E(x)=T_{x}(V_{i})$ .

Suppose $a$ is an isolated singular point of the stratified vectorfield $v$ defined on a

neighborhood of $a$ in $M$ . There are two well defined indices: the index of $v$ as a section
of $T(V_{i})$ , denoted by $I(v|_{V:}, a)$ and the index of $v$ as a section of $T(M)$ , denoted by
$I(v, a)$ . In general, these indices do not agree.

2. Radial vectorflelds.

In [S2], M.H. Schwartz proved existence of so-called radial vectorfields. They are special

cases of stratified vectorfields with isolated singular points, satisfying the following main
property : If $a\in V_{*}$ is an isolated singular point of a radial vectorfield $v$ , then the index

of $v$ as a section of $T(V_{\dot{*}})$ and the index of $v$ as a section of $T(M)$ agree.

In this section, we recall the construction of radial vectorfields. They will be ob-

tained as a sum of two extensions:

Using the Whitney condition (a) we can extend a stratified vectorfield $v$ , given on

a stratum $V_{1}$ , in suitable neighborhoods $\mathcal{T}_{e}(V_{i})$ as a “parallel extension” of $v$ .

Using the Whitney condition (b), we can define a “transverse” vectorfield to every

stratum $V_{1}$ . This vectorfield is tangent to the geodesic arcs issued from $V_{i}$ (relatively to

a given Riemannian metric).

a) The parallel extension.

Let us denote by $(K)$ a triangulation of $M$ compatible with the stratification and denote

by $\sigma^{q}$ an (open) q-simplex in $(K)$ . Fix $\epsilon>0$ , for every $y\in\sigma^{q}$ , we will denote by $\mathcal{T}_{e}(y)$

the set of points of the (open) star of $\sigma^{q}$ whose barycentric coordinates relatively to

vertices of $\sigma^{q}$ are proportional to those of $y$ with ratio $\geq 1-\epsilon$ . The set $\mathcal{T}_{\epsilon}(y)$ is

$(m-q)$-dimensional and it admits a natural partition in radii.
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If $A$ is a closed subset of $V_{1}^{\theta}$ , we will write
$\mathcal{T}_{e}(A)=\bigcup_{y\in A}\mathcal{T}_{e}(y)$

.

The tube $\mathcal{T}_{e}(A)$ with radti.

Consider a stratified vectorfield $v$ defined on $A$ , we will construct an extension $v’$

of $v$ on $\mathcal{T}_{e}(A)$ as following: Let us denote by $U_{k}$ the open star of the vertex $a_{k}\in V_{i}^{\iota}$

relatively to $(K)$ and by $\{\phi_{k}\}$ a partition of unity associated to the covering of $V_{i}^{\iota}$ by
the subsets $U_{k}\cap V_{i}^{s}$ . The Whitney condition (a) shows that, for every $k$ , there is a
continuous map $\Psi_{k}:U_{k}\cross R^{s}arrow E(U_{k})$ whose restriction to $y\in U_{k}\cap V_{:}$ is a complex
linear isomorphism $\Psi_{k}:\{y\}\cross R^{s}arrow E(y)$ .

Every point $x$ of $\mathcal{T}_{e}(A)-A$ belongs to an unique radius issued from a point $y\in A$ .
For every $k$ , such that $y\in U_{k}\cap A$, there is an unique vector $v^{(k)}(x)$ in $E(x)$ such that
$p_{2}o\Psi_{k}^{-1}(v(y))=p_{2}o\Psi_{k}^{-1}(v^{(k)}(x))$ where $p_{2}$ : $U_{k}\cross R^{s}arrow R$‘ is the second projection.

The parallel extension $v’$ of $v$ is defined by :

$v’(x)= \sum_{k}\phi_{k}(y)v^{(k)}(x)$

It satisfies:

Lemma. [S2] Let $v$ be a section of $E$ over a closed subset $A\subset V_{1}$ , then:

a) for every $e>0$ , the paraUel extension $v$
‘ of $v$ is a section of $E$ on $\mathcal{T}_{\epsilon}(A)$ . If $v$ is

non zero, then $v’$ is also non zero,

b) if two sections of $E$ are homotopic on $A\subset V_{1}$ , then their parallel extensions are
also homotopic on $\mathcal{T}_{\epsilon}(A)$ .
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b) The transversal vectorHeld.

Fix a closed subset $A\subset V_{i}^{s}$ , we choose a Riemannian metric and a function $\mu$ of class
$C^{2}$ on an open neighborhood of $A$ in $M$. Fix $\eta>0$ , for every point $y\in A$ , we call $\Theta_{\eta}(y)$

the $(m-s)$-disc whose radii are the geodesic arcs issued from $y$ , orthogonal to $V_{1}$ and
with common length $\mu(y)=\eta$ . Write

$\Theta_{\eta}(A)=\bigcup_{y\in A}\Theta_{\eta}(y)$
where $\eta$ is so small that all

the discs $\Theta_{\eta}(y)$ are disjoint.

The transversal vectorfield is constructed using the canonical vectorfield $g(x)=$
$gradxarrow$ tangent to the radii of $\Theta_{\eta}(A)$ . This vectorfield is not tangent to the strata and
its projection $g’(x)$ on $E$ does not define a continuous vectorfield.

To obtain a continuous stratified vectorfield $w(x)$ , we proceed by induction on
the dimension of the strata, as following : Let $V_{j}$ be a stratum such that $V_{i}\subset\overline{V}_{j}$ .
Suppose that $w=w^{(j)}$ is already known on $V_{j}$ and suppose $V_{k}$ is a stratum such that
$V_{i}\subset\overline{V}_{j}\subset\overline{V}_{k}$ . We may consider, in $\Theta_{\eta}(A)$ , a neighborhood $P$ of $V_{j}$ in $\overline{V}_{k}$ and whose
radii are those of $\mathcal{T}_{\epsilon}(V_{j})$ in a neighborhood of $V_{i}$ . Fix a radius ] $y,$ $z$ ] of $P$ such that
$y\in V_{j}$ and $z\in V_{k}$ ; for every point $x\in$ ] $y,$ $z$], we define:

$w(x)=(1-\lambda(x))w^{(j)}(x)+\lambda(x)g’(x)$

where $\lambda(x)=\overline{\frac{yx}{\overline{yz}}}$ and $w^{(j)}$ is the field $w$ already built on $V_{j}$ . The vectorfield $w$ is called

transversal vectorfield. Obviously, $w(x)$ is $w^{(j)}(x)$ on $V_{j}$ and $g’(x)$ on $V_{k}-P$ .

The Whitney condition (b) shows that :

Lemma. [S2] If $A$ is a compact subset of $V_{i}^{s}$ , for every fixed $\epsilon>0$ , there are a
riemannian metric $\mu$ on $M$ , a tubular neighborhood $\Theta_{\eta}(A)$ of $A$ such that the transversal
vectorfield $w$ in $\Theta_{\eta}(A)$ satisfies:

(a) for every point $x\in\Theta_{\eta}(A)$ , we have: angle $\{w(x),$ $g(x)\rangle$ $<\epsilon$ ,

(b) the transversal vectorfield $w$ is a section of $E$ defined as an extension of the

zero section on $A$ . It does not have zeroes in $\Theta_{\eta}(A)-A$ and it points outward of $\Theta_{\eta}(A)$

on $\partial\Theta_{\eta}(A)-\Theta_{\eta}(\partial A)$.

c) The loca1 radial extension of a vectorfield.

Let $A$ denote a closed subset of $V_{i}$ and $A’$ a closed neighborhood of $A$ in $V_{i}$ such that,

for $\epsilon>0$ and $\eta’>0$ , we have $\mathcal{T}_{\epsilon}(A)\subset\Theta_{\eta’}(A’)$ . Consider a section $v$ of $T(V_{i})$ over
$A$ , such that $\Vert v\Vert<1$ , relatively to the previous Riemannian metric. We can define a
parallel extension $v$

‘ of $v$ in $T_{\epsilon}(A)$ and a transversal vectorfield $w$ in $\Theta_{\eta’}(A’)$ .
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Following MH Schwartz [S2], we denote by $v^{rad}$ and we call radial vectorfield the
extension $v^{rad}=v’+w$ . The radial vectorfield satisfies the following properties:

Proposition. [S2] If $\eta>0$ and $e>0$ are sufficiently small, the radial vectorfield
$v^{rad}$defined in $\mathcal{T}_{e}(A)$ satisfies :

i) if $B\subset A$ , the vectorfield $v^{rad}$ points outward of every tube $\Theta_{\eta}(B)\subset \mathcal{T}_{e}(A)$ on
$\partial\Theta_{\eta}(B)-\Theta_{\eta}(\partial B)$ ,

ii) if a point $a\in B\subset V_{1}$ is an isolated singularity of $v$ , it is also an isolated
singularity of $v^{\prime\cdot ad}$ and $v^{rad}$ satisfies the “conservation of indices” property :

$I(v^{rad}, a)=I(v^{rad}|_{V:},a)$ with $v^{rad}|_{V:}=v$

iii) if two sections $v_{0}$ and $v_{1}$ of $T(V_{i})|_{B}$ are homotopic, then their radial extensions
$v_{0}^{r\cdot ad}$ and $v_{1}^{rad}$ are also homotopic on $\Theta_{\eta}(B)$ .

3. Poincar\’e-Hopf theorems.

The radial vectorfields are the good ones to recover a Poincar\’e-Hopf theorem for singular
varieties. Let $D$ be a compact subset in $M$ such that $\partial D$ is smooth and transverse to
all strata $V_{i}$ . Let $w$ be a stratified vectorfield pointing outward of $D\cap X$ on $\partial D\cap X$ ,
without singularity on $\partial D\cap X$ and with isolated singularities $a_{k}\in V_{1(a_{k})}\cap D$ , where
$V_{1(a_{k})}$ denotes the stratum containing the point $a_{k}$ . For such a vectorfield, and using
the usual definition of index, the Poincar\’e-Hopf theorem is false in general, i.e.

$\sum_{a_{k}\in X\cap D}I(w|_{V}:(u_{k})a_{k})\neq\chi(X\cap D)$

It is easy to construct such an example on the pinched torus, see also the example in
[S2],6.2.1.

To recover the Poincar\’e-Hopf theorem, one has either to use the radial vectorfields
with the usual definition of index, or to modify the definition of index.

Theorem. [S2] (Generalization of the Poincar\’e-Hopf theorem). Let $X$ be a Whitney

stratified analytic variety imbedded in an analytic manifold $M$ . Let $D$ be a compact

subset of $M$ with smooth boundary, transverse to the strata. Let $v^{rad}$ be a radial
vectorfield pointing outward of $D\cap X$ on $\partial D\cap X$ and with isolated singularities $a_{k}\in$

$V_{*(a_{k})}\cap D$ , then :

$\sum_{a_{k}\in X\cap D}I(v^{r\cdot ad}|_{V_{j(a_{k})}},a_{k})=\chi(X\cap D)$
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where, if $\dim V:\langle a_{k}$ ) $=0$ then $I(v^{rad}|_{V_{j}}\langle a_{k})a_{k})=+1$ .

On the same way, we can construct a radial vectorfield $v^{-rad}$ pointing inward of
$D\cap X$ on $\partial D\cap X$ and with isolated singularities $a_{h}\in V_{:(a_{h})}\cap D$ .
Theorem. [S2] Under the same hypotheses but if $v^{-\prime\cdot ad}$ points inward of $D\cap X$ on
$\partial D\cap X$ then :

$\sum_{a_{h}\in X\cap D}I(v^{-rad}|_{V}:(\alpha_{h})a_{h})=\chi(X\cap intD)$

$=\chi(X\cap D)-\chi(X\cap\partial D)$

We now consider the complex case. The previous constructions of radial vectorfields are
also valid in the complex case, relatively to Whitney complex analytic stratifications
(see [BS] and [S1]). From now on, let us denote by $n,m$ and $s$ the complex dimensions
of $X,$ $M$ and $V_{1}$ respectively. The tangent spaces will be complex tangent spaces.

4. Nash construction.

Let $G_{n}(TM)$ denote the Grassmannian bundle associated to the complex tangent bundle
$\pi$ : $TMarrow M$. The fiber of $G_{n}(TM)$ over $x\in M$ is the set of n-complex planes in
$T_{l}M$ . The projection $\nu$ : $G_{n}(TM)arrow M$ has a canonical section $\sigma$ over the regular
part $X_{reg}$ of $X$ , defined by $\sigma(x)=T_{x}(X_{reg})$ . The Nash blowup of $X$ , denoted by $\tilde{X}$ , is,

by definition, the closure of ${\rm Im}(\sigma)$ in $G.(TM)$ . We denote also by $\nu$ the analytic map
$\tilde{X}arrow X$ , restriction of $\nu$ (see $[McP]$ ).

$\sim\cross$

$\cross$

The Nash blowup of a cone
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The Nash blowup of a cone is a cylinder, but in general the Nash blowup is not a
smooth manifold (see $[McP]$ ).

Consider the tautological bundle $\xi$ over $G_{n}(TM)$ . The fiber $\xi_{P}$ over an n-plane
$P\in G_{n}(TM)$ is the set of vectors $v\in P$ . We will denote by $\xi\sim$ the restriction $\xi|_{\tilde{X}}$ . It is
a subspace of

$\Lambda=\{(v, P) : v\in TM|_{X}, P\in\tilde{X}\subset G_{n}(TM), \pi(v)=\nu(P)\}$ ,

and we will use the symbol $\nu_{*}$ : $\xi\simarrow T(M)|_{X}$ to denote the restriction to $\xi\sim$ of the

canonical projection $\Lambdaarrow T(M)$ .

Proposition. [BS] a) Suppose $x\in V_{1}\subset X$ and $v(x)\in T_{x}(V_{1})$ . For every point bl in
$\nu^{-1}(x)$ , there is an unique vector $v\sim(x\sim)$ in $\xi(x)\sim\sim$ such that $\nu_{*}(v\sim(x\sim))=v(x)$ .

b) If $v$ is a stratified vectorfield on $A\subset X$ , then $\sim v$ defines a section of $\sim\pi:\xi\simarrow\tilde{X}$

over $\tilde{A}=\nu^{-1}(A)$ , called the lifting of $v$ .

Proof. We first consider the case $x\in X_{reg}$ , then $\sim x=T_{x}(X_{reg})$ is the unique point of
$\nu^{-1}(x)$ and the pair $\sim v(x\sim)=(v(x), x\sim)$ is a well defined element of $\xi(x)\sim\sim$ . Suppose now
$x\in V_{i}$ and $v(x)\in T_{x}(V_{i})$ . For every point $x\sim\in\nu^{-1}(x)$ , there exists a sequence $(x_{n}\sim)\in\tilde{X}$

converging to $\sim x$ and such that $\nu(x_{n}\sim)=x_{n}$ is a regular point of $X$ . The sequence $(x_{n})$

converges to $x$ and the limit $L= \lim T_{x_{n}}(X_{reg})$ exists and is identified with $x\sim$. The
Whitney condition (a) implies that $T_{x}(V_{i})\subset L$ and then $v(x)\in T_{x}(V_{i})\subset\sim x$. The pair
$\sim v(x\sim)=(v(x), x\sim)$ is a well defined element of $\xi(x)\sim\sim$ . This proves the part a). The part b)

is obvious.

5. Euler obstruction.

Fix a point $a$ in a stratum $V_{i}$ , we can suppose that the restriction of $M$ to a
neighborhood $U_{a}$ of $a$ is an open subset in $C^{m}$ and $V_{1}\cap U_{a}$ is an open subset in $C^{S}$ . Let
us denote by $b$ the (Euclidean) ball with center $a$ and (sufficiently small) radius $r$ . The
geodesic tube $\Theta=\Theta_{\eta}(b)$ defined above is transverse to all strata $V_{j}$ such that $V_{i}\subset\overline{V_{j}}$ .

Deflnition. $([McP],[BS])$ Let $v_{0}$ be a vectorfield tangent to $V_{\dot{*}}$ , pointing outward on $\partial b$ ,

such that $a$ is an unique isolated singular point of $v$ inside $b$ . Let $v_{0}^{rad}$ be the restriction
to $\partial\Theta(b)$ of the radial extension of $v_{0}$ and $\overline{v_{0}^{rad}}$ the lifting of $v_{0}^{rad}$ as a section of $\xi\sim$ over
$\nu^{-1}(\partial\Theta)$ . The obstruction to the extension of $v_{0}^{rad}$ inside $\nu^{-1}(\Theta)$ as a non zero section
of $\xi is\sim$ called local Euler obstruction of $X$ in $a$ and is denoted $Eu_{a}(X)$ . It is independent

of the choices of $v_{0},$ $b,$
$\eta$ .
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If $a$ is a regular point of $X$ then $Eu_{a}(X)=1$ .

Proposition. [BS] The local Euler obstruction is constant along each stratum of a
Whitney stratification of $X$ . We say that the local Euler obstruction is a constructible
fonction.

Proposition. [BS] (Multiplicativity property) Let $v$ be a radial vectorfield with index
$I(v, a)$ in an isolated singularity $a\in V_{1}$ . Let $b$ be a ball, with center $a$ and radius so
small that $\partial b$ is transverse to all strata $V_{j}$ such that $V_{i}C\overline{V_{j}}$. If $v$ is non zero on $\partial b$,
then the lifting $v\sim$ is a well defined section of $\xi\sim$ on $\nu^{-1}(\partial b\cap X)$ . The obstruction to the
extension of $\sim v$ as a non zero section of $\xi on\sim$ $\nu^{-1}(b\cap X)$ is given by:

$Obs(v\sim,\xi b)\sim,=Eu_{a}(X)\cross I(v,a)$ .

The local Euler obstruction is one of the main tool in the construction of Chern
classes of algebraic varieties (with singularities), due to R. MacPherson $[McP]$ . These
classes are the same, via an Alexander isomorphism, than the classes previously defined
by M.H. Schwartz in 1965, using the obstruction theory [S1]. The multiplicativity
property is one of the main steps for the demonstration of the equality of these classes

(see [BS]).
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