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Abstract: This report describes results from acoustical signal processing
experiments using wavelets.

1. Introduction

Wavelets are “families of functions $h_{a.b}$ ,

$h_{a,b}=|a|^{-1/2}h( \frac{x-b}{o})$ ; $a,$ $b\in R$ $a\neq 0$ ,

generated from a single function $h$ by dilations and translations [D1].“ One
of the applications of the theory is to construct a basis set $\{h_{a,b}\}$ for efficient
and accurate approximation of signals. In signal analysis the parameters
$a$ and $b$ are restricted to a discrete sublattice; the dilation step $Cl_{0}>1$

and translation step $b_{0}\neq 0$ are fixed. The corresponding wavelet family is
$h_{m,n}(x)=|a_{0}|^{-nl/-}h(a_{0}^{-m}x-\cdot nb_{0})$ , where $m,$ $7l\in Z,$ $a=a_{0}^{m}$ and $b=’?,b_{0}a_{0}^{m}$

[D2]. We note that if the translation para.lueter $b_{0}$ is sniall, then the basis
elements lie closer together, and the approximation is of a finer resolution.
In some cases, a small value of $b_{0}$ may lead to overlap or redundancy.

Transforms are used in wavelet methods to encode the.approximation of
a function in much the same way as in Fourier methods. For wavelets with
mother function $h$ , the continuous wavelet transform (WT) for $f\in L^{2}(R)$

is defined as

$(Uf)(a, b)=<h_{a,b},$ $f>=|a|^{-1/2} \int d\tau\cdot\cdot h(\frac{r-b}{c\iota}I\cdot f(x)$

for $a,$ $b\in R,$ $c\iota\neq 0$ , and the discrete WT

$(Tf)_{n\iota}=<h_{7n,77},$ $f>=|a_{0}|^{-n\iota/2} \int a_{0}^{-7)\downarrow}:\iota:-7l..$
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for $a_{0}>1,$ $b_{0}\neq 0$ . Computation of transforms of wavelets with cornpact
support automatically yields the sanle windowing effect as convolution with
a time window function used in short-time spectral analysis and synthesis;
however, wavelet computations are better because of a constant frequency-
bandwidth ratio. Further details on the theory, examples, and a discussion
of the error, as well as practical advice on computing transforms and their
inverses, are given in [DI],[D2], and [D3].

Use of the WT shows promise in a variety of scientific and engineering
applications; however, its advantages over conventional methods have not
been clearly established, and further study is needed.1 There are many types
of wavelets, and it appears that success in using the method depends on the
choice of the family and the associated computational algorithms. Shanon,
Fourier, Gabor, and various WTs and some of their properties are reviewed
in [Hu]. A detailed account of wavelets used in our earlier experiments
is given in [KS]. We present a brief review of related work by others in the
next section before discussing our speech signal processing experinients using
wavelets.

2. Review of Acoutical Signal Studies using Wavelets

Early acoustical signal processing work using wavelets was conducted by
Wickerhauser et al. at Yale [W1] and Kronland-M., Grossman, Morlet, et
al. [KMG] in Marseille. Wickerhauser generalized the wavelet transform to
”produce a library of orthonormal bases of modulated wave packets, where
each basis comes with a fast transform.” The Marseille group used a modu-
lated Gaussian analyzing wavelet

$h(t)=e^{i\omega_{0}t}\cdot e^{-t^{2}/2}$

multiplied by a normalization factor plus some negligible correction ternts to
generate songrams and phase diagrams of five signals: a single $\delta$ -function

spike, two succesive $\delta$ -function spikes, sawtooth spikes, the syllables pap in

1The Japan IEICE established a closed working group in 1994 to issue a report on
wavelet technologies in 1995.
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papy and $tat$ in taty, and notes on a clarinet. The paper concludes that “the
preliminary results (indicate) the combined information on modulus and on
the phase of the $WTs$ is useful for the segmentation of speech sounds [KMG].“

In acoustical analysis experiments, the WT of a signal is calculated for a
different series of wavelet lengths to generate a time-frequency diagram. S-
traightforward computation becomes very intense and perhaps even impossi-
ble, depending on the application and data size. The Algorithme \‘a Trous was
introduced by Holschneider, Kronland-Martinet, Morlet, and Tchamitchian
[Ho] to speed up the process, and may be used on any arbitrary signal. Wick-
erhauser [WI],[W2] has also developed and applied fast wavelet algorithms
for acoustic and multimedia signal processing.

We apologize for the incompleteness of our discussion below of lnore re-
cent acoustical studies using wavelet methods, as it is limited to work by
researchers with whom we have had contact. Dorize, Gram-Hansen, Upton,
and Daimon [DG],[UI] compared the capabilities of the short-tinie Fourier
Transform (FT), Wigner-Ville distribution, and Gabor WT for analyzing
noises such as car door slalns. Isei and Kunimatsu used the WT package
developed by Upton et al. to study blasting noises from underground explo-
sions [U2]. Kikuchi, Nakashizuka, H. Watanabe, S. Watanabe, and Tomiza-
wa calculated Gaussian and Mexican Hat WT and phase space diagrams of
vehicle engine sounds to successfully detect detonations “over some dilation
scales and during a particular period. Detonations create strong pressure
waves and can destroy an engine body if they (occur frequently, particularly
in succession. Detection and control of the phenomena is) $criticalh_{J}$ impor-
tant for ignit\’ion advancement control [Ki].“ Nakashizuka;,‘ Kikuchi, Makino
and Ishii have also studied the compression of ECG data using the wavelet
zero-crossing representation [N]. Lee examined the compression and anal-
ysis of chirp signals. Rapid changes in chirps make them very difficult
to compress, restore, and analyze by means of conventional methods. He
found that “the Gabor transform cannot separate three component signals,
while the adaptive chirplet $transfor7n$ can [L].” Tewfik, Sinha, and Jorgensen,
$[SiT],[TSJ]$ developed an audio synthesis/coding method ba.sed on all opti-
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nlization of the WT of a signal.
A variety of commercial and public domain wavelet software is now avail-

able for specialized uses. Wickerhauser developed a software package for
acoustical signal processing that handles denoising, compression, and pa-
raneter reduction for recognition as well as time-frequency analysis with
the best-basis wavelet and Malvar transforms [W2],[CMW]. Cody presents
an algorithm and code for the Fast WT and compares it with the Fast FT
[Cdl],[Cd2]. AWARE markets the Ultra Wave $E\varphi lorer$. A system by Bruel
and Kjaer analyzes nonstationary signals by using a variety of transforms,
one of which is the Gabor WT [$BIq$ . Donoho [Do] and Sakakibara [Sk] have
made wavelet based, signal de-noising packages that run on a PC.

Work on wavelet analysis of speech signals has become directed towards
more specific applications. Li\’enard and Alessandro [LA] studied wavelets
and the granular analysis of speech events. Irino and Kawahara [I],[Kw]
developed an algorithm to reconstruct a signal from an analyzing wavelet
based on the impulse response of an auditory peripheral niodel. The al-
gorithm was used to study the time-scale modification of speech. Takafu-
mi Sakamoto and Tominaga have been studying speaker recoguition using
wavelets $[SaT]$ . Gram-Hansen and Dorize [DG] compared short-time Fourier
and Gaussian wavelet sonograms of speech signals: “ The $WT$ with $a$ 1/12-
octave wavelet turned out to be favourable for analysis of a speech signal,
since both transients and harmonic components appear clearly in the same
representation [DG].” Cairns [Ca] at Duke University has been investigating
word boundary identification. Tan, Lang, Schroder, Spray and Derlnody [T]
have been studying the identification of the four major categories of speech
– voiced speech, plosives, fricatives, and silence. They propose a segmen-
tation scheme for application to hearing aid devices. $Prelin1iua1^{\backslash }\}^{r}$ results
obtained by using the algorithm are very good.

3. Our Experiments

The development of accurate and reliable speech recognition systems has
been and remains a challenging task. An overview of the associated difficul-
ties and Fourier-based approaches to tackling $t1_{1}em$ is given by Picone [P].
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The WT appears to be a good alternative to the FT, because of a constant
frequency-bandwidth ratio [T]. This section describes our experiments on
speech event analysis, which served as a basis for work in wavelet based
speech recognition [SN]. We note that closely related work by Tan, Lang,
Schroder, Spray, and Dermody [T] came to our attention as we were writing
up our results. Our findings and theirs are consistent, although the data
used by Tan et al. are much cleaner (i.e. noise-free) than ours. The ap-
plication targets, however, have different requirements; we are looking for
an alternative approach to be used in speech command/recognition systelns,

and they are seeking to develop improved hearing aid devices.

In our experiments we considered seven types ofwavelets: the Daubechies
[D1], three types of splines [MH],[Ch2], Gabor $[G],[Ch2]$ , chirp $[I],[L]$ and the
Mexican hat [D3]. WT sonograms were generated for the isolated syllables
$aba,$ $ada,$ $aga,$ $aka,$ $apa$, and $ata$ at a 10-KHz sampling rate, and for the
phrases $ta$ in the words kitami, takefumi, rikuzentakada, takeo, and ohmu $ta$

and $ka$ in the words kazo, gushikawa, rikuzentakada, kamo, and moka at a
2 -KHz sampling rate. We $car_{Cu}1ated$ the transforms for 6 octaves with 12
half-steps per octave, using all types of wavelets except for the Daubechies,
whose fractal nature was not amenable to the half-step calculations. The
locations of the burst signals can clearly be seen for the syllables $aga$ and $aka$,

but less so for $aba,$ $ada,$ $apa$ and $ata$. A finer sampling rate would have given
a more pronounced mark for the latter four. When we doubled the sampling
rate, the bursts for both $ka$ and $ta$ could clearly be seen in the complete words
and phrases listed above. Results from further studies using the English
words stop and call up spoken by a British male $sampled’ at$ a 20-KHz rate
are given in the figures below; clearly they varied depending on the wavelet
type. The wavelet shape is more important than the mathematical definition
in determining the $sonogra\ln$ features. Althouglz many more samples must
be examined before any definite statements can be made, we noticed the
following trends. The coarse nature of the Daubechies diagraln did not
allow for any meaningful analysis. Splines and the Mexican $1\iota at$ appear
to be the best at identifying $t1_{1}e$ locations of bursts. Sonograms for the
simple polynomial and quadratic and cubic cardinal splines, as well as for
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the Mexican hat, show a similar overall pattern. For stop, the transform
values are small for the fricative noise ssss. The Gabor and Chirp sonograms
show markedly different patterns from those of splines and the Mexican hat.
The fricative noise yields high transform values.

We are currently shifting from speech event studies to assessing whether
WT-based speech recognition is a realistic possibility. Very early result-
$s$ from phoneme recogition experiments using 5,240 Japanese words (male

voice) from the ATR database MAU indicate a slightly worse rate for WT
methods; however, the algorithm has been tuned for FT methods [SN]. The
extent of overlap in the error sets from the WT and FT methods must be
determined to assess the usability of WTs in speech $and/or$ phoneme recog-
nition systems. Furthermore, modification of the current algorithm for FT
methods must be made or a WT specific algorithm developed.
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Stop

$\frac{\omega}{>\omega}$

$\geqq^{\varpi}$

$t\overline{DD\varpi 0}$

$\overline{\frac{\omega}{>\omega}}$

$\geqq^{\varpi}$

$.\subseteq\omega$

$\overline{\omega^{\alpha}}$

$\underline{\frac{\underline{\cup}}{\varpi}}$

$O\varpi\varpi\supset$

$\frac{4^{\lrcorner}\omega}{>Qj}$

$\geqq^{\varpi}$

$\dot{\iota^{\varpi}}$

$\subset$

$\varpi$

$\cup$

$\cross\omega$

$\leqq$



9

$\overline{\frac{Q)}{>\omega}}$

aコ

$-\overline{\Omega O}$

俺

$\frac{\neq_{\omega^{\lrcorner}}}{>\omega}$

$\geqq^{\varpi}$

$.\subseteq\omega$

$\overline{\omega^{o}}$

$\overline{\overline{\varpi}}\cup$

$-\circ\varpi$

$O\supset$

$\frac{\sim q}{>v}$

$\geqq^{\varpi}$

oコ

工
$\subset$

Cロ

$\subseteq^{\omega}\cross$


