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Extrapolation Methods for Large Systems
of Ordinary Differential Equations

(常微分方程式の大きなシステムに対する補外法の有効性)
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Department of Applied Science, Yamaguchi University
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Introduction
The finite element approximation of elastic initial-boundary value problems results in

solving initial value problems for very large systems of ordinary differential equations. In
the stepwise integration of these problems, the discretization of the time derivatives has
to be carefully treated, since in the practical computation several hundreds or thousands
steps are necessary to obtain useful information and in such process, the accumulation of
truncation error may have serious influence on the results.

The purpose of the present paper is to propose the use of an extrapolation technique
to improve the accuracy of the time-discretization without adding extra computation time
so much. In particular, it is shown that an extrapolation applied to the one step central
difference (CD) scheme (the so-called $\beta$-scheme [4], choosing $\beta=0$), which is called
the extrapolated central difference (ECD) scheme in this paper, is most practical both in
saving the computing time and in improving the accuracy.

The application of the technique of extrapolation to ODE’s has a long history and
a lot of research papers which indicate its efficiency has been published. We refer, for
example, to D.C.Joice survey paper [5] for details and its references. Nevertheless, as
far as the authors know, it is not so widely utilized in the actual computation of very
large systems in science and engineering. This is probably due to that these research
do not necessarily take the size or special character of the systems into account. As a
consequence, the interest is limited mainly to the accuracy and the discussion has been
directed to the behavior of the extrapolation as the extrapolation step size tends to zero.
However, for very large systems, what is important is the balance between the accuracy
and the computing time.

The idea of the extrapolation is simple. Consider a one step method to solve an initial
value problem. Let $\Delta t$ be the basic step size and $y_{\Delta}$ be the approximate value obtained by
using the step size $\triangle=$ ムオ, ムオ/2, $\triangle t/4,$ $\cdots$ . Assume that the error permit an expansion
of the form

$y_{\Delta}=y_{1}+a_{1}\Delta^{2}+a_{2}\Delta^{4}+\cdots$ .
We seek an approximate value $\overline{y}_{1}$ for $y_{1}$ from the equations

$y_{\Delta t}=\overline{y}_{1}+a_{1}\Delta t^{2}$

$y_{\Delta t/2}= \overline{y}_{1}+a_{1}(\frac{1}{2}\triangle t)^{2}$
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Then, sinoe
$\overline{y}_{1}=\frac{1}{3}(4y_{\Delta t/2}-y_{\Delta t})=y_{1}+O(\Delta t^{4})$

the error reduces to $O(\triangle t^{4})$ . The value $\overline{y}_{1}$ is the approximate value obtained in one
extrapolation.

If we use the approximate value $y_{\Delta t/4}$ and add the $O(\Delta)$ term, then we can get a
higher extrapolation with higher accuracy. As is seen in \S 5, the higher order extrapolation
seems to have no practical use for very large systems due to too much computation time.
However one extrapolation applied to the CD scheme has the same accuracy as the fourth
order Runge-Kutta method and the computing time is about twice that of CD.

In Section 1 we introduce a one-step integration scheme equivalent to the standard
CD scheme, which is known as the $\beta$-scheme. In Section 2 the simplest extrapolation
formula for the CD scheme is derived. Section 3 is devoted to give a difference expression
for the solution of the ECD scheme. In Section 4 we give a sufficient condition to ensure
the stability of the ECD scheme in the sense of energy. Finally in Section 5 we present
some numerical results which show the practical efficiency of the ECD scheme.

In the actual computation the algorithm of ECD is slightly modified, so as to save
the computing time. Thanks to this modffication, the computing time of ECD scheme
becomes 1.3\sim 1.4 times that of CD, since the restriction on the time mesh $\Delta t$ is relaxed
in ECD. The modified version of ECD is called MECD.

In this paper we treat only linear systems to examine the basic properties of the ex-
trapolation in detail. However, this technique is applicable to non-linear problems too
and our results will give useful suggestions for such cases.

\S 1. Derivation of one-step scheme equivalent to the central dif-
ference scheme

Consider an initial value problem for $N$ ordinary differential equations

(1.1) $My”+Ky=f(t)$

derived from a finite element approximation of the equation of motion to describe a linear
elastic vibration. Here $M$ and $K$ are the mass and stiffness matrices, respectively. We
assume that $M$ is diagonal and $K$ is symmetric and positive definite. The right-hand side
of (1.1) is assumed to be zero in this paper, since this term has no essential influence on
the following discussion.

We also assume the inverse inequality [2]

(1.2) $||y||_{K} \leq\frac{C_{0}}{h}\Vert y\Vert_{M}$ $(||y\Vert_{K}^{2}=(Ky,y))$

where $h$ is a parameter to denote the size of the finite element. In order to apply the
extrapolation technique we rewrite the central difference scheme to a one step scheme
known as $\beta$-scheme”. Introduce $A=-M^{-1}K$ to write (1.1) as

(1.3) $y^{n}=Ay$ .

The central difference approximation of this system is

(14) $\frac{y:+1-2y_{i}+y:-1}{\triangle t^{2}}=Ay_{i}$ $(i=1,2, \cdot . )$ .

Introduce $\{z:\}(i=1,2, \cdots)$ by $z_{0}=y’(0)$

(1.5) $z_{i+1}=z;+ \frac{1}{2}\Delta tA(y_{i+1}+y;)$ $(i=0,1,2, \cdot . )$ .
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Theorem 1 The sequence $\{y;\}$ determined by (1.4) satisfies

(1.6) $y;_{+1}=y_{i}+ \Delta tz_{i}+\frac{1}{2}\Delta t^{2}Ay_{i}$ $(i=1,2, \cdots)$ ,

provided $y_{1}$ is given by

(1.7) $y_{1}=y_{0}+ \Delta tz_{0}+\frac{1}{2}\Delta t^{2}Ay_{0}$ . 口

Substitution of (1.6) into (1.5) leads to the equation

$z_{i+1}= \frac{1}{2}\triangle tA(2I+\frac{1}{2}\Delta t^{2}A)y_{i}+(I+\frac{1}{2}\triangle t^{2}A)z_{i}$.

Therefore the central difference equation (1.4) is written in matrix form as

(1.8) $(zy::\ddagger_{1}^{\check{1}})=Q_{\Delta t}(\begin{array}{l}y.\cdot z.\cdot\end{array})$ , $Q_{\Delta t}=(I+ \frac{1}{2}\Delta t^{2}A\frac{1}{2}\triangle tA(2I+\frac{1}{2}\triangle t^{2}A)$ $I+ \frac{1}{2}\Delta t^{2}A\Delta tI)$

provided $y_{1}$ is determined by (1.7). The computation proceeds as follows.

$z_{0}=y’(0)$

$y_{i+1}=(I+ \frac{1}{2}\Delta t^{2}A)y_{i}+\Delta tz_{i}$ $i=0,1,2,$ $\cdots$

$z_{i+1}=z_{i}+ \frac{1}{2}\Delta tA(y_{i+1}+y_{i})$ .

Note that the computation of the type $Ay_{i}$ , which includes the computation of the stiff-
ness matrix $K$ , appears only one time at each step if the vector $Ay_{i}$ is stored.

\S 2. Extrapolation of the central difference scheme.
In order to derive an extrapolation formula we have to know the asymptotic expansion

of the error. In our case, however, the extrapolation formula is easily determined.

Assume that $U_{0}=(\begin{array}{l}y_{0}z_{O}\end{array})$ is given as an initial value of the CD scheme and let

$U_{1}=(\begin{array}{l}\overline{y}_{1}\overline{z}_{1}\end{array})$ and $U_{1}==(\begin{array}{l}\overline{\overline{y}}_{1}\overline{\overline{z}}_{1}\end{array})$ be the values after $\triangle t$ with step-size $\Delta t$ and $\Delta t/2$ ,

respectively, that is,

(2.1) $\overline{U}_{1}=Q_{\Delta t}V_{0}$ , $U_{1}==Q_{\Delta t/2}^{2}V_{0}$ ,

$Q_{\Delta t/2}^{2}=($ $I+ \frac{1}{2}\triangle t^{2}A+_{3}\frac{1}{32,2}\Delta t^{2}\Delta tA+\frac{3}{16}\Delta tA+\frac{4A1}{128}\Delta t^{5}A^{3}$ $\Delta tI+\frac{1}{8,t}\Delta t^{3}AI+\frac{1}{2}\Delta^{2}A+\frac{1}{32}\Delta t^{4}A^{2}$ ) .

Taking the relations $z_{0}=y’(C)$ and $y”=Ay$ into account we have, from equation (2.1),

$\overline{y}_{1}=y_{0}+\frac{1}{2}\Delta t^{2}Ay_{0}+\triangle tz_{0}=y_{0}+\Delta ty’(0)+\frac{1}{2}\Delta t^{2}y’’(0)$

$\overline{\overline{y}}_{1}$ $=$ $y_{0}+ \frac{1}{2}\Delta t^{2}Ay_{0}+\frac{1}{32}\Delta t^{4}A^{2}y_{0}+\triangle tz_{O}+\frac{1}{8}\Delta t^{3}Az_{O}$

$=$ $y_{0}+ \Delta ty_{0}’+\frac{1}{2}\triangle t^{2}y_{0}’’+\frac{1}{8}\triangle t^{3}y_{0}^{(3)}+\frac{1}{32}\Delta t^{4}y_{0}^{(4)}$ ,
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where $y_{0}^{\langle k)}= \frac{d^{k}y(0)}{dt^{k}}$ .
Therefore hold

(2.2) $\{\begin{array}{l}\overline{y}_{1^{-y(\Delta t)-}}=_{\theta^{\Delta t^{3}y_{O}^{(3)}-}2^{1}X^{\Delta t^{4}y_{0}^{\langle 4)}+O(\Delta t^{5})}}^{1}\overline{\overline{y}}_{1^{-y(\Delta t)-}}=_{\pi^{\Delta t^{3}y_{0}-}\pi^{\Delta t^{4}y_{0}^{(4)}+O(\Delta t^{5})}}^{1(3)1}\end{array}$

Similarly we have

$\{\begin{array}{l}\overline{Z}_{1}=Z_{O}+o2T^{\Delta t^{3}y_{O}^{(4)}}\overline{\overline{z}}_{1}=z_{o+\Delta ty_{o+\Delta t^{2}y_{O}+\Delta t^{3}y_{O}^{\{4)}+\triangle t^{4}y_{o+}^{(5)1}}^{/1(3)3}}2W3^{1}2I28^{\Delta t^{5}y_{O}^{(6)}}\end{array}$

Therefore hold

(23) $\{\begin{array}{l}\overline{z}_{1}-y’(\triangle t)=T^{l}2^{\triangle t^{3}y_{O^{4)}}^{t}}-2^{l}Z^{\Delta t^{4}y_{0}^{\langle 5)}+O(\Delta t^{5})}\overline{\overline{z}}_{1}-y’(\triangle t)=Z^{l\langle 4)1}8^{\Delta t^{3}y_{O}-}\pi^{\Delta t^{4}y_{0}^{\langle 5)}+O(\Delta t^{5})}\cdot\end{array}$

If we set
$U_{1}= (\begin{array}{l}y_{1}z_{1}\end{array})=\frac{1}{3}(4U_{1}-\overline{U}_{1})=$,

then by (2.2) and (2.3) the terms of $O(\Delta t^{3})$ and $O(\Delta t^{4})$ vanish, and we have

$U_{1}=(_{y’(\triangle t)}y(\Delta t))+O(\Delta t^{5})$ .

The vector $U_{1}$ is the next approximate value in our extrapolation. The integration scheme
consisting of the process

$U_{0}$ $arrow$ $\overline{U}_{1}=Q_{\Delta t}U_{0}$ , $U_{1}=Q_{\Delta t/2}^{2}U_{0}=$ $arrow$ $U_{1}$

is called the extrapolated centml difference (ECD) scheme in this paper.

\S 3. Finite difference expression of the extrapolated central differ-
ence scheme

The vectors $\{y_{i}\}$ determined by the above process do not satisfy the $central\cdot difference$

equation (1.4). In this section we seek a difference equation which governs the extrapolated
solution. Let $U_{1+1}=(y_{i+1}, z_{i+1})$ be the extrapolated value determined by the starting
value $U;=(y;, z_{i})$ :

$\overline{U}_{i+1}=Q_{\Delta t}U_{1}$ , $U_{i+1}=Q_{\Delta t/2}^{2}U_{i}=$

$U_{i+1}= \frac{1}{3}(4U_{i+1}-\overline{U}:+1)=$ .

Each component is determined as follows.

(3.1) $(\begin{array}{l}y_{i+1}z_{j+1}\end{array})=(I+\frac{1}{2}\triangle t^{2}A+\frac{1}{24,2}\triangle t^{4}A\triangle tA+\frac{1}{6}\triangle t^{3}A+\frac{1}{96}\Delta^{2}t^{5}A^{3}$ $I+ \frac{1}{2}\Delta^{2}A+\frac{1}{24}\triangle t^{4}A^{2}\Delta tI+\frac{1}{6,t}\Delta t^{3}A)(\begin{array}{l}y_{|}\cdot Z_{|}\end{array})$

The extrapolated central difference scheme is expressed in the following form.
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Theorem 2 The vectors $\{y;\}$ determined by (3.1) satisfy the following difference equa-
tions.

(3.2) $\frac{y:+1^{-2y_{i}+y_{*-1}}}{\Delta t^{2}}=(A+\frac{1}{12}\Delta t^{2}A^{2})y;-\frac{1}{12\cdot 24}\Delta t^{4}A^{3}y_{i-1}$ . 口

Since $A=-M^{-1}K$ we have

(3.3) $M \frac{(y_{1+1}-2y_{i}+y_{1-1})}{\Delta t^{2}}+K(I-\frac{1}{12}\Delta t^{2}M^{-1}K)y_{i}-\frac{1}{12\cdot 24}\Delta t^{4}K(M^{-1}K)^{2}y_{i-1}=0$

This is the difference expression of the extrapolated central difference scheme. Note that
a little decreasing of stiffness and a very little damping are caused by the extrapolation.
See also (4.1) below. Equation (3.3) is called the extrapolated central difference equation.

\S 4. Stability of the extrapolated central difference scheme
It is well known that the central difference scheme (1.4) is stable only under a condition

$\frac{\Delta t}{h}\leq C_{1}$

for a certain constant $C_{1}$ which depends on the constant $C_{O}$ in the inverse inequality and
on elastic constants [3]. Is this condition sufficient or relaxed for the extrapolated scheme
? To discuss this problem we introduce a matrix $D$ defined by

$D= \frac{1}{12}\Delta t^{2}M^{-1}K$

and write (3.6) as follows

(4.1) $M \frac{(y_{i+1}-2y.\cdot+y_{1-1})}{\Delta t^{2}}+K(I-D-\frac{1}{2}D^{2})y_{i}+\frac{1}{2}KD^{2}(y_{i}-y_{1-1})=0$.

We first derive an energy inequality for this equation. The inner product of the both sides
of (4.1) and $y_{i+1}-y_{i-1}$ yields

$\Vert\frac{y_{i+1}-y:}{\triangle t}\Vert_{M}^{2}+(K(I-D-\frac{1}{2}D^{2})y:, y_{i+1})+\frac{1}{2}(KD^{2}(y_{i}-y_{i-1}), y_{i+1}-y_{i-1})$

$=$ $|| \frac{y_{*}\cdot-y_{i-1}}{\Delta t}||_{M}^{2}+(K(I-D-\frac{1}{2}D^{2})y_{i-1}, y;)$ .

Summing this equation for $i=1,2,$ $\cdots,$ $n$ , we have

(4.2) $|| \frac{y_{n+1}-y_{n}}{\Delta t}\Vert_{M}^{2}+(K(I-D-\frac{1}{2}D^{2})y_{n},y_{n+1})+\frac{1}{2}\sum_{1=1}^{n}(KD^{2}(y;-y_{i-1}), y_{i+1}-y_{i-1})$

$=$ $|| \frac{y_{1}-y_{0}}{\triangle t}||_{M}^{2}+(K(I-D-\frac{1}{2}D^{2})y_{0},y_{1})$ .

To estimate the third term in the left-hand side we set $e_{i}=y;-y_{i-1}$ and write

$\{e_{i}, e_{j}\rangle=(KD^{2}e_{i}, e_{j}), ||e_{i}\Vert^{2}=(e;, e_{j}\}$ .
Since

$\sum_{i=1}^{n}\{e_{i}, e_{i+1}+e_{i}\}$ $=$ $\sum_{i=1}^{n}||e_{i}||^{2}+\frac{1}{2}\sum_{*=1}^{n}[\Vert e_{i+1}+e;||^{2}-\Vert e_{i+1}||^{2}-||e;||^{2}]$

$=$ $- \frac{1}{2}\Vert e_{n+1}\Vert^{2}+\frac{1}{2}\sum_{=1}^{n}\Vert e_{i+1}+e_{i}||^{2}+\frac{1}{2}||e_{1}||^{2}$ ,
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substituting this into (4.2), we have

(4.3) $|| \frac{y_{n+1}-y_{n}}{\Delta t}\Vert_{M}^{2}+(K(I-D-\frac{1}{2}D^{2})y_{n},y_{n+1})-\frac{1}{4}(KD^{2}(y_{n+1}-y_{n}), y_{n+1}-y_{n})$

$+ \frac{1}{4}\sum_{1=1}^{n}(KD^{2}(y_{i+1}-y_{i-1}),y_{i+1}-y_{i-1})$

$=$ $|| \frac{y_{1}-y_{0}}{\Delta t}\Vert_{M}^{2}+(K(I-D-\frac{1}{2}D^{2})y_{0}, y_{1})-\frac{1}{4}(KD^{2}(y_{1}-y_{0}),y_{1}-y_{0})$ .

Using the identity $ab=$ } $(a^{2}+b^{2})-$ } $(a-b)^{2}$ , the above equation can be written as
follows.

(4.4) $\Vert\frac{y_{n+1}-y_{n}}{\Delta t}\Vert_{M}^{2}+\frac{1}{2}[(K(I-D-\frac{1}{2}D^{2})y_{n}, y_{n})+(K(I-D-\frac{1}{2}D^{2})y_{n+1},y_{n+1})]$

$- \frac{1}{2}(K(I-D)(y_{n+1}-y_{n}),y_{n+1}-y_{n})+\frac{1}{4}\sum_{=:1}^{n}(KD^{2}(y_{i+1}-y_{i}), y_{i+1}-y;)$

$=$ $\Vert\frac{y_{1}-y_{0}}{\Delta t}||_{M}^{2}+\frac{1}{2}[(K(I-D-\frac{1}{2}D^{2})y_{0},y_{0})+(K(I-D-\frac{1}{2}D^{2})y_{1}, y_{1})]$

$- \frac{1}{2}(K(I-D)(y_{1}-y_{0}),y_{1}-y_{0})$ .

Therefore, the extrapolated central difference scheme is stable if the following conditions
are satisfied

$C(1)$ : $K(I-D- \frac{1}{2}D^{2})$ is positive definite.

$C(2)$ : $\Vert\frac{z}{\triangle t}\Vert_{M}^{2}-\frac{1}{2}(K(I-D)z,z)$ is positive for any N–dimensional vector $z$ .

Theorem 3 Let $C_{0}$ be the constant appearing in the inverse inequality (1.2) and set

$\alpha=\frac{C_{0}\triangle t}{h}$

then the following holds.
(1) The central difference scheme is stable in the sense of energy if

(4.5) $\alpha<\sqrt{2}$

is satisfied.
(2) The condition $(4\cdot 5)$ is sufficient for $C(l)$ and $C(2)$ . 口

The condition

(4.6) $\alpha^{2}=(\frac{C_{0}\triangle t}{h})^{2}\leq 12(\sqrt{3}-1)$

is sufficient for $C(1)$ and the condition

(4.7) $1- \frac{1}{2}\alpha^{2}+\frac{1}{24}(\frac{\Delta t}{C_{1}})^{4}>0$

is sufficient for $C(2)$ .
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As is seen in (4.7) the stability limit is relaxed by the extrapolation. Although it is
expected that the admissible time mesh $\Delta t$ becomes twice that of the central difference
scheme, we got negative results in our numerical experience.

To explain this fact, we rewrite (4.7) as follows.

$1- \frac{1}{2}\alpha^{2}+\gamma h^{4}\alpha^{4}>0$ , $\gamma=\frac{1}{24}\frac{1}{(C_{0}C_{1})^{4}}$ .

By solving this inequality we have

$\alpha^{2}<\frac{4}{1+\sqrt{1-16\gamma h^{4}}}$ .

Therefore $\alpha<2$ is the best possible estimate for the extrapolated central difference
scheme, so far as the above analysis shows. Compare this result with (4.5).

\S 5. Modified ECD and Comparisons
The original ECD scheme is written as follows. Let $U_{0}=(y_{0}, z_{0})$ and $U_{1}=(y_{1}, z_{1})$

be the initial vector and the next vector to be obtained in one step of the extrapolation,
respectively. Three intermediate vectors $V_{0},$ $V_{1}$ and $V_{2}$ are introduced as follows:

$V_{0}= (\begin{array}{l}p_{0}q_{0}\end{array})=(z^{0}y_{0}\ddagger^{\Delta tAyo+\triangle tz}\frac{\frac{1}{\#}}{2}\triangle t^{2}Ay0+\frac{1}{2}\Delta tA^{0}p_{O})$

$V_{1}=(\begin{array}{l}p_{1}q_{1}\end{array})=(y_{0}Z_{0}:_{\Delta t^{2}Ay^{y+\frac{1}{2}\Delta tz}}^{\frac{1}{\frac 4\S}\Delta tA_{0^{0_{+\frac{1}{4}\Delta tAp_{1}^{0}}}}})$

$V_{2}= (\begin{array}{l}p_{2}q_{2}\end{array})=(_{q_{1}+\frac\Delta tAp_{1}+\frac{1}{4}\triangle tAp_{2}^{1}}p_{1}+\frac{1}{418}\triangle t^{2}Ap_{1}+\frac{1}{2}\Delta tq)$ .

Then $U_{1}$ is determined by

$U_{1}= (\begin{array}{l}y_{1}z_{1}\end{array})=(\frac{}{3}(4q^{2}-q)^{)}\frac{1}{3}(4p_{2}-p_{0^{0}})\cdot$

If $Ay_{0}$ is stored in the preceding step, the vectors to be calculated in this step are $Ap_{0},$ $Ap_{1}$

and $Ap_{2}$ . Here we note that the vectors $p_{0},p_{1}$ and $p_{2}$ and, therefore also $y_{1}$ are determined
independently of $Ap_{0}$ and $Ap_{2}$ , and that $p_{0}$ and $p_{2}$ are the approximations to $y_{1}$ . We
therefore introduce the following algorithm.

$p_{0}=y_{0}+ \frac{1}{2}\Delta t^{2}Ay_{0}+\Delta tz_{0}$

$p_{1}=y_{0}+ \frac{1}{8}\Delta t^{2}Ay_{0}+\frac{1}{2}\Delta tz_{0}$

$q_{1}=z_{O}+ \frac{1}{4}\Delta tAy_{0}+\frac{1}{4}\Delta tAp_{1}$

$p_{2}=p_{1}+ \frac{1}{8}\Delta t^{2}Ap_{1}+\frac{1}{2}\Delta tq_{1}$

$y_{1}= \frac{1}{3}(4p_{2}-p_{0})$

$q_{0}=z_{0}+ \frac{1}{2}\Delta tAy_{0}+\frac{1}{2}\Delta tAy_{1}$



157

$q_{2}=q_{1}+ \frac{1}{4}\triangle tAp_{1}+\frac{1}{4}\Delta tAy_{1}$

$z_{1}= \frac{1}{3}(4q_{2}-q_{0})$ .

In this modified version the calculation of the stiffness matrix appears only in $Ap_{1}$ and $Ay_{1}$ .
We will call this scheme the Modified Extrapolated Central Difference (MECD) scheme.
The stability analysis of MECD can be treated by the same way as for ECD and the
similar results are obtained. We note only that the MECD scheme is governed by the
following finite difference equation.

(5.1) $M \frac{(y:+1^{-2y:+y:_{-1}})}{\Delta t^{2}}+K(I-D)y;+\frac{1}{6}KD^{2}(y_{i}-y_{i-1})=0$ ,

where $D$ is the matrix defined in the preceding section.
The approximation methods compared here are CD, MECD, Midpoint method (MP),

Extrapolated Midpoint method (EMP) and 4-th order Runge-Kutta method (RK). As
the material we supposed a steel plate in plane stress state. Its configuration and the
finite element idealizations are shown in Fig.1 and the mechanical constants are listed in
Table 1. The plate is assumed to be fixed at the bottom and the response is observed
at the point P. The right-hand side of the differential equations are calculated from the
exact solution which is given in advance.

Case (1) : Fig.2 shows the displacement-time diagrams for the case of the coarse
mesh, that is, for small systems. In this case the used time mesh $\triangle t=2$ , thought the
stability limit for CD is about $\triangle t=8$ . Table 2 shows the maximum relative error and
the computing time for each method.

Case (2) : Fig.3 shows the case of the fine mesh. The used time mesh is $\Delta t=0.5$ ,
where the stability limit for CD is about $\Delta t=1$ . Table 3 shows the maximum relative
error and the computing time.

It is observed that in both cases MECD has the same accuracy as $RK$, but the com-
puting time is about half, and about twice that of $CD$.

$P$ Table 1: The mechanical constans

Table 2: The $\max$ .relative errors and comput.time

Table 3: The $\max$ .relative errors and comput.time

Fig. 1 Finite element idealizations
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MECD
$v\cdot n\cdot i0^{1}$

Fig.2 Displacement-time diagrams
$NS=Numui\propto!SoIut\dot{r}nsES=Bx\cdot ctSoIutiooe$

Fig.3 Displacement-time diagrams
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