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On Asymptotic Solutions of
Nonlinear and Linear Abel-Volterra
Integral Equations

Anatoly A. Kilbas* (~35 1~ vEIK¥)
Megumi Saigo! [ %] (EEAZHESH)

Abstract

The paper is devoted to consider nonlinear Abel-Volterra integral equations of the
form (@) [* ()it
a(z ©
I'(a) Jo (z-1)
with @ > 0,m # 0,—1,—2, ..., which includes the linear case for m = 1. The asymp—v
totic behavior of the solution ¢(z), as . — 0, is obtained, provided that a(z) and f(z)
have the special asymptotic behavior near zero.

+f(z) (0<z<dZ< 0)

1. Introduction

The nonlinear Volterra convolution integral equation

om(e) = [ Ko -t +1(@) (2>0) (1.1)

with m > 1 and more general non-convolution equation

o™(z) = a(z) /0 " k(z — )p(t)dt + f(z) (z > 0) (1.2)

with m > 1 were studied in [1], [4], [6], [14], [17]-[19] and [2], [3], [5], [7], respectively.
The interest to these equations is caused by their applications in nonlinear theory of water
perlocation [8], [19]. The above papers were devoted to investigate existence, uniqueness
and stability of the nontrivial solution ¢(z) and the method of succesive approximation to
the homogeneous and nonhomogeneous equations (1.1) and (1.2). In particular, if k(u) =
u*~! (o > 0) the equations (1.1) and (1.2) are Abel’s type integral equations which have
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applications in nonlinear theory of wave propagation [15], [22] (see [10] and [21] for the theory
and other applications of Abel’s type integral equations).

The problem to find solutions of the equations (1.1) and (1.2) in closed forms or their
asymptotic solutions near zero and infinity, provided that such a solution exists, is also of
importance. The solution in closed form of the homogeneous Abel-Volterra integral equation

o <p(t)dt
(2) = I‘(a)/ (z -

with & > 0,a € R was obtained for m > 1 in [22] (see also [1] and [4]), where R is meant
the real number field. The asymptotic behavior, of the solution ¢(z) as z — 0 and z — oo
of the Abel-Volterra integral equation of the form

_ (z>0) (1.3)

o(o) = oy Jr LOER 4 4) 0> 0 (14

with & > 0 and m > 1 in the cases when f(z) has the general power asymptotics near zero
and infinity was studied in [13] and [20] for & = 1/2 and in [9] for any & > 0 (see also [11] in
this connection), and several first terms of asymptotics of ¢(z) were obtained. It should be
noted that the asymptotic behavior of solutions of nonlinear Volterra equations more general
than (1.2) was considered by many authors (see the results and bibliography in the book [5;
Chapters 15, 17-20]), but most of the results are given only the first asymptotic term of the
solutions. :

~ Our paper deals with the investigation of the asymptotic behavior of a solution ¢(z), as
z — 0, of the Abel-Volterra equations of the form (1.2)

_a(z) = p(t)dt

()= 52 [ g @) (0<z<ds o) (1.5)

with @ > 0,m # 0,—1,—2,- -, provided that a(z) and f(z) have the asymptotics,

a(z) ~ z°P™ f: axz®* (z — 0) (1.6)
k=-1
wiih a—; # 0 and
fe) a3 fia* (2= 0) (17)
k=-—n

with f_, # 0, respectively, where p = —1,0,1,---,l,n € Z being the set of integers. We
show that under certain assumptions on parameters m,p,! and n the solution ¢(z) of the
- equation (1.5) has the asymptotic expansion

o(z) ~ i orz®* (z — 0) (1.8)

with s =2 — 1, where the coefficients ¢, are expressed via ax and f;.
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It should be noted that our method allows us to find the asymptotic solution, as z — 0,
of the linear Abel-Volterra integral equation

a(z) = o(t)dt
[(a) Jo (z —t)l-=

with o > 0, provided that a(z) and f(z) have the asymptotics (1.6) and(1.7) with m = 1.
Such an asymptotic solution in the particular cases p =0, [ =1 and n = 0,1 was obtained
by authors in [16].

In Section 2 we prove two lemmas on an asymptoptic representation of power of a function
being given asymptotics. Sections 3 - 5 deal with the asymptotic solutions of the equations
(1.5). Section 6 is devoted to the nonlinear equation (1.5) with the integer m = 2,3,---. In
section 7 we give asymptotic solutions of the linear equations (1.9).

o(z) = + f(z) (0<z<dZ o0) (1.9)

2. Preliminaries

First we formulate the preliminary assertion.

Lemma 1. Letp € Z,a € R and {px}32, be a sequence of real numbers. If m is a real
number such that m # 1,0,—1,-2,--- and

o(z) ~ 3 oz (z —0), (2.1)
k=p
then - » S
‘ P (z) ~ 2P Y D,z (z — 0), (2.2)
k=0

where the coefficients ®, ) are expressed via the coefficients py:

m

Q0 = (0)<p;";
m m—1

Sop (Pp+1;
m\ . m\ .-
1)"’? ‘sop+2+(2)so,, 202,15

m-—1 m 2 m—2 m m~3 3 .
Pp  Ppi3t 9 l‘Pp Pp+1Ppt2 + 3 Y Pp+1s
my m-1 mYy m-2] 2 2 |
1 )¥#7 Pp+s + 9 |Pp T [Pr2 T | ) Prr1Ppea)

m\ (3\ m-3 2 MY m—4 4
+ 3 1 (pp (pp+1(pp+2+ 4 (pp (pp-l-l;

o
by
w
il
N /—3\ AN TN
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m - m\ (2\ .-
b5 = ( 1 ) ©p 1</9p+5 + (2) (1) Pp 2 [Pp+1Pp+4 + Ppr20p43)

m\ -3 |3\ 2 3 2
+ 3 Pp 1 ‘Pp+190p+3+ 9 Pr+1Pp+2

m\ (4 _ m—
+(4) (l) Py 4‘P2+180p+2 + (5)80,, 5902+1, etc. (2.3)

Proof. Using properties of asymptotic expansions [21, Section 16] we have, as z — 0,

S e W S

k=0 3=0

m m m m-— - a a
~ zapm{(o)% + (1)90,, ! [90p+1+280k+p+1$ k] T

k=1

o0 [ \J
+ z (m) <P,',"-Jm°'J <Z <Pk+p+l$ak) }

m m-— m—
(st ()]

m 1 20
+(1) 1222 Y Opaperz®”

k=2

00 00 2
( )%+1 (Z S0k+p+1-’l?°‘k) + (E <Pk+p+1$°k) ]
k=1 k=1

+,§( ) m=j pal (g‘PkﬂﬁlE *)j}.

Continuing this process we obtain (2.5) - (2.6).

m—2 20

If m is an integer, then (2.2) can be written in another form.

Lemma 2. Letp € Z,a € R and {¢k}§’;p be a sequence of real numbers. If m = 2,3, -
and the asymptotic expansion (2.1) holds, then, as z — 0,

™ (z) ~ 2Py B, 2k, (2.4)

r=0

m-—1 m!

Q0=0y, Ppr= E Z

10=0 1,32,

10, .01 12 i5
— 0 Pl 2.5
. 10'21'22 - g5 P Tp+17p+2 pty (2.5)
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where the summation is taken over all nonnegative integers 1y, 1,,- - -, 1; such that

3. Asymptotic Solutions of Nonlinear Equations in the Space of Locally
Integrable Functions

In this section we obtain the asjrmptotic behavior of the solution ¢(z) of the equation as
z—0

o a@) [+ p(dt .

o"(=) = Ty / gt () (0<z<d < oo) (3.1)
for0<a<lmeRm#0,-1,-2,---, provided that a(z) and f(z) have the asymptotics
a(z) ~ 7™ Y arz** (z — 0) (3.2)

=-

withl € Z,a_; # 0, and

fe) ~ o™ 30 fuat (o —0) (33)

k=~-n

withn€ Z, f_, #0.
First we consider the equation (3.1), where a(z) and f(z) have the asymptotics (3.2) and
(3.3) in the case [ = n = 0. We shall seek an asymptotic solution ¢(z) of (3.1) in the form

00

o)~ Y ™ (z—0). (3.4
fk=—1
Then, by Lemma 1 |
P™(z) ~ 2™ B2 (z — 0), - (3.5)
k=0

where the coefficients ®_, ; are expressed via @i by (2.2) - (2.3) (with p = —1). Applying
(3.4) and Theorem 16.1 of [21], we have, as z — 0,

L edt | Tk 4 Dor o

T'(e) Jo (z—t)-e & T(ak+a+1) (3.6)

Using (3.2) and properties of asymptotic expansioné, we obtain, as ¢ — 0,

a(z) = (t)dt R & g T (i — 2+ )iy ga(k=n—m)
(&) Jo (z—t)—e kz% ('_;zo I(ai+1) )

) k+n .
_ ar—i['(ai — o + )iy X
~ g7 E E ar, (3.7

: k=—n (i=0 I‘(az + 1) ) * ( )
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From here, taking (3.1), (3.3) and (3.5) into account, we arrive at the followmg asymptotic
relation, as ¢ — 0,

00 00 k+n _-I‘(Oti —a+ 1)<P‘—1 |
—am d_ ak ~ pam Af—i i t ) ak pom 3 8
T ké% ?,kz T E (E (@i + 1 Z frzk )

=—n \1=0 k=-—n

where ®_;  are expressed via the coefficients i by (2.2) and (2.3).
If n = 1, then we obtain from (3.8) that if the coefficients ¢, satisfy the relations

kin gl (ad — a + 1)piy :
- - =0 (k=-n,—n+1,---,—1 3.9
i§=0: et 1) +fi=0 ( n,—n+1,-.-,-1) (3.9)
k+n .
ap—iI'(at — a + 1)pi;
_ = k:: eee) .
® 1,k ,'§=0: P((IZ T 1) + fk ( 0) 1) 2’ )) (3 10)

then (3.4) is the asymptotic solution of the equation (3.1). If n = 0, then it follows from
(3.8) that if the coefficients ¢y satisfy the relations
k .
ar— (i — a+ 1)p;_;
() J—
e go T(a+i+1)

4 f (5=0,1,2,--), (3.11)

then (3.4) is also the asymptotic solution of the equation (3.1).
From here we obtain the following result.

Theorem 1. Let n=0,1,2,--- and let functions a(z) and f(z) have asymptotic expan-
sions . -
a(z) ~z7°" Y are®* (z —0) (3.12)
k=—n

with 0 < o < 1,a_, # 0 and (3.3). Let the coefficients ¢ satisfy the relations (3.9) and
(3.10) if n > 0 and the relation (3.11) if n = 0. Then the integral equation (3.1) is asymp-
totically solvable in the space of locally integrable functions on (0,d) with 0 < d £ oo, and
its asymptotic solution ¢(z) has the form (3.4).

Now we consider the case n < ! in the asymptotics of (3.2) and (3.3). We shall seek the
asymptotic solution ¢(z) of (3.1) in the form

o(z) ~ k_?_l oxz®* (z — 0) (3.13)

and come to the asymptotic relation

gelt=n=1m i (Dl—n—l,kzak ~ g i ( % =il (o — s l)%_l) z°k

k=0 k=—n \i=l—n I(ai+1)

o™ Z frz®® (z —0), (3.14)

k=—n
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where ®;_,,_; ; are expressed via the coefficients ¢, by (2.2) and (2 3)
Let now suppose that ¢ = ({—n)m be an integer for m # 0, —1, -2, - - such that g2 —n.
Then (3.14) is equivalent to the relation

k+! :
poam poom ak_.-I‘(ozz —o+ 1)S0i—1 a
Z Ql""“l k‘qm Z ( Z ' I‘(az + 1) z ¢

k=q =—n \t=l-n

4z f: frz®* (z — 0). (3.15)

=—n

From here we obtain that if ¢ > —n and the coefficients ¢, satisfy the equalities

k+1 ;.
ar—il'(o — o+ 1)pig _ B
.-2;.‘" T'(od + 1) +fi=0 (k=-n-n+1,-.-,g-1), (3.16)
K+ .
ax—iT'(ai — a + 1) i
Q—n_ —1 = , k= ’ 1)"’; 3.17
otk .~___§,;n M(ai+1) +fi ( 7,9+ ) ( . )

then (3.13) is the asymptotic solution of the equation (3.1). If ¢ = —n, then it follows from
(3.15) that if the coeflicients ¢y satisfy the relation (3.17), then (3.13) is also the asymptotlc
solution of the equation (3.1). .

Thus we arrive at the followmg statement.

Theorem 2. Let I,n be integers with | > n, ¢ = (I — n)m be an integer for m #
0,—1,—2,:-- such that ¢ 2 —n, and let the functions a(z) and f(z) have the asymptotic
expansions (3.2) and (3.3). Let the coefficients @i satisfy the relations (3.16) and (3.17)
- when ¢ > —n and the relation (3.17) when ¢ = —n. Then the integral equation (3.1) is
asymptotically solvable in the space of locally bounded functions on (0,d) with 0 < d £ oo,
and its asymptotic solution ¢(z) has the form (3.13).

4. Asymptotic Solutions of Nonlinear Equations in the Space of Locally
Bounded Functions

In this section we obtain the asymptotic behavior, as z — 0, of the solution ¢(z) of the
equation ‘
a(z) [z t)dt
o™(z) = (2) () -
I'(a)Jo (z—1t)
with o > 0,m # 0,—1,—2,---, provided that a(z) and f(z) have the asymptotics

+ f(z) (0<z<dL o) (4.1)

a(z) ~ zoP™ kilakx“k (z — 0) | (4.2)
with a_; # 0 and
f(z) ~ = Z fiz®® (z - 0) (4.3)

k=—n
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with f_, # 0, where p=10,1,2,---,[,n € Z.
First we consider the case n =1 — p— 1 2 0. We shall seek an asymptotic solution ¢(z)
of (4.1) in the form

p(z) ~ 3 ez (z—0). (4.4)
k=p
Here (4.3) takes the form
f(z)~z*™ 3 fiz®* (z - 0). (4.5)
k=p+1-1

WIthp= 0)132)"')fp+1—l ?é 0
Making the same arguments as in Section 2, we arrive at the asymptotic relation, as ¢ — 0,
similar to (3.8):

LoPm i B, 5% ~ goPm i k+z§—1 ak-i-p-10(efi + ]+ Dpiny | _a
k=0 ” =p+1-1 =0 T(afi+p+1]+1)

+z2oP™ Y fiz®* (2 - 0), (4.6)
k=p+1-1 ' .

where the coefficients ®,, s are expressed via the coefficients ¢ by (2.2) - (2.3).
If |—p—1 = 1, then we obtain from (4.6) that when the coefficients ¢, satisfy the relations

oy ax—i—p-1L(a[p +1] + 1)pisp
i i =0 (k=p+1—Ilp+2—1---,~1), (47
3, solebt A Do o (e prr-tps ) @)
k+l—-p~-1 - .
_ di—i—p-1T(afp + 1] + Dpisy _ .
QP,k = g I‘((X[p+ i+ 1] + 1) + fk (k = 0) 1’2’ )s (48)

(4.4) is the asymptotic solution of the equation (4.1). If ] — p — 1 = 0, then it follows from
(4.6) that when the coeflicients ¢ satisfy the relations

k »
ak—i—p—1T(a[p + @] + 1)pisp
B, =3 k=012, 4.9
Pk T Tlafp+i+ 1]+ 1) e _0’ 2 ), (4.9)

(4.4) is also the asymptotic solution of the equation (4.1).
Consequently we obtain the following result.

Theorem 3. Let p = 0,1,2,--- and | be an integer such that | =2 p+ 1 and let the
functions a(z) and f(z) have the asymptotic expansions (4.2) and (4.5) withn=1—p— 1.
Let the coeflicients ¢y satisfy the relations (4.7) and (4.8) if | > p+1 and the relation (4.9) if
| = p+ 1. Then the integral equation (4.1) is asymptotically solvable in the space of locally
bounded functions on (0,d) with 0 < d £ oo, and its asymptotic solution ¢(z) has the form
(4.4).



99

Now we consider the case n < [ — p — 1. We shall seek an asymptotic solution ¢(z) of
* (4.1) in the form

[o ]

oz)~ Y @™ (z—0). (4.10)

k=l—-n—1

and come to the asymptotic relation

00 00 k+l—p—-1 ) F(a[z " ] + 1) . ‘
a(l-n—1)m d ak ., .apm Af—i—p—1 D PLitp ak
’ 2y B e 2( 2 T Tak+prirD) )

t=l—n—p—1

+zP™ i frz®* (z —0), (4.11)

k=—n

where ®;_,,_; , are expressed via @i by (2.2) - (2.3).
Let now suppose that ¢ = (I — n — p — 1)m be an integer for m # 0, —1, -2, - - - such that
g = — n. Then (4.11) is equivalent to the relation

® > ko=l Gy T(afi + p] + D)o
papm d 1 ke mak ~ TP k—1—p-1 : t+p :I:ak

k=q k=-n \i=l-n—p-1

+zP™ io: frz®* (z — 0), ‘ ' (4.12)

k=—n

from which we obtain that when ¢ > —n and the coefficients ¢y, satisfy the equalities

k+§)-1 ak—i—p—1T(ai + p] + 1)pitp

: =0 (k=-n,—n+1,---,g—1), 4.13
Tafi+p+1]+1) + f ( n,—n+ ¢-1),  (413)

1=l—n—p—1

I—n—1,k-q T(afi+p+1]+1)

+ fx (kzq’Q+1)"')7 (4‘14)

t=l—n—p—1

(4.10) is the asymptotic solution of the equation (4.1). If ¢ = —n, then it follows from (4.12)

- that when the coeflicients ¢ satisfy the relation (4.14), (4.10) is also the asymptotic solution
of the equation (4.1). , .
Hence we arrive at the following statement.

Theorem 4. Let p = 0,1,2,--- and I,n be integers with [ — p —1 > n and let
q = (l—n—p—1)m be an integer for m # 0,—1,—2,--- such that ¢ = — n. Let the
functions a(z) and f(z) have the asymptotic expansions (4.2) and (4.3) and let the coeffi-
cients ¢y, satisfy the relations (4.13) and (4.14) if ¢ > —n and the relation (4.14) if ¢ = —n.
Then the integral equation (4.1) is asymptotically solvable in the space of locally bounded
functions on (0,d) with 0 < d < oo, and its asymptotic solution ¢(z) has the form (4.10).
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5. Asymptotic Solutions of Nonlinear Equations in More General Case

The results obtained in Sections 2 and 3 allow us to find the asymptotic behavior of
the solutions ¢(z) of the nonlinear integral equations (1.5), as z — 0, provided that a(z)
and f(z) have the asymptotic expansions (1.6) and (1.7) under additional assumptions on
numbers m,l,n and p = —1,0,1,---, when [ —p—-1=n20and whenl—p—-1>n
andg=(—n—-—p—1m, (m+#0,—1,-2,---) is an integer such that ¢ = — n. The case
p = —1 was considered in Theorems 1 and 2 and p=0,1,2,--- in Theorems 3 and 4. They
were caused by our investigations based on the asymptotic relations (3.8), (3.15), (4.6) and
(4.12). Such an approach can be applied in some other cases, however the results will be
more complicated.

In the present section we illustrate this fact for the nonlinear integral equation (1.5):

ey a@) ot
#"(2) = (o) Jo (z—t)1—=

with @ > 0,m # 1,0,—1,—2, - -- in the case when a(z) and f(z) have the asymptotics (1.6)
and (1.7) withn=1-p—-1<0,p=-1,0,1,---,l € Z:

+f(z) 0<z<dS o0) (5.1)

a(z) ~ 2™ 3 axz®* (z — 0) (5.2)
k=-—1
with a_; # 0, and
flz)~z™ 3 fie® (2 0) (5-3)
) k=p—I+1

with f,_;141 # 0. The equation (5.1) does not belong to the equations described by Theorems
1 and 3 becausen=1—-p—1<0.
We shall seek an asymptotic solution ¢(z) of the equation (5.1) in the form

o) ~ i o™ (2 — 0), (5.4)

where ¢ is an unknown integer. If we suppose that m(q — p) is an integer, then applying the
same arguments as in Theorems 1 and 3, we come to the asymptotic relation

2™ 3 Bok-mig-p)z™
k=m(a—»)

~ 0P f: k.H_i—l ak-—i—q—le(a[i + q] + 1)pisq 2ok
= L(afi+g+1]+1)

k=q~-1+1
+z™ Y 2% fi (z—0). (55)
k=p—I+1
If we suppose that m > 0 and (p — {4+ 1)/m is an integer and take ¢ as

-1+1
9=P+Em—, (5.6)
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then m(q — p) = p— {1+ 1> 0is a positive integer, and ¢ > p and ¢ = 0. Hence from (5.5)
we obtain that if the coefficients ¢} satisfy the equalities

@q,k+l—p—1=fk (k=P_1+1;P_la’:q_l)) (57)
k+l—g—1 . '
_ a—i—g-1L(0fi + ¢] + 1)Pisq —g— _ .
Qq,k+l-—p-—1 -_ ‘Z:(:) 1_\(0[['z + q + 1] + 1) + fk (k - ‘] l+ 1) q l + 21 )’ (5’8)

then the equation (5.1) is asymptotically solvable in the space of locally bounded functions
on (0,00) and its asymptotic solution has the form (5.4).
Thus we obtain the following result.

Theorem 5. Let m > 0,p = —1,0,1,---,1 be an integer such that p — {4+ 1 > 0 and
(p—1+1)/m is integer and let ¢ = p+ (p— 1+ 1)/m. Let a(z) and f(z) have the asymptotic
expansions (5.2) and (5.3). If the coefficients oy satisfy the relations (5.7) and (5.8), then
the equation (5.1) is asymptotically solvable in the space of locally bounded functions on
(0,d) with 0 < d < oo, and its asymptotic solution ¢(z) has the form (5.4).

Letting p = —1, and ! be —! in Theorem 5, we have

Corollary 5.1. Let m > 0 and | be a positive integer such that [/m is an integer and
setq=—1+1/m. Letl=1,2,---

a(z) ~ ™™ iakx"‘k (z —0) (5.9)
k=l
with q; # 0, and _
f(@) ~z7*™ Y friz™* (z —0) (5.10)
k=l

with f; # 0, and let the coefficients ¢y satisfy the relations

Do =fi (k=04LIl+1,---,1+9q), (5.11)
Floa G i—eaD(afi + g + 1o
—t—g—1 q (pH-q
= ) ~ k=g+!l+1,q+1+2,---). (5.12
Dy k1 5 T(afi + g+ 1] +1) +fi (k=q+1+1,g+14+2,--). (512)

Then the equation (5.1) is asymptotically solvable in the space of locally bounded functions
on (0,d) with 0 < d £ oo, and its asymptotic solution ¢(z) has the form (5.4).

If we suppose that m < 1 and (p — !+ 1)/(1 — m) is an integer and take ¢ as

p—1+1

: 5.13
— (5.13)

q=p—
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then m(q — p) = ¢ — [ + 1 is a negative integer and ¢ < p. Hence from (5.5) we obtain that
if the coefficients ¢, satisfy the equalities

k+l-g-1 ak—i—g—1T (o[t + q] + 1)pitq

LiiJ —g—1 = - 5.14
st = 2 TR g 15 1) (5.14)
(k=q—l+1,q—-l+2,~",p—l),
k+l—g—1 .
. Ok—i—g—11 (|t + q} + 1)¢;
By py1oge1 = Z k—i—g—1 ( [ Q] )e +g

= Tlitetr+l) T | (5.15)

(k=p-Il+1,p—-1+2,---),

then (5.4) is also the asymptotic solution of the equation (5.1). When p = 0,1,2,--- and
m = l/(p + 1), then ¢ = —1 and (5.4) is the locally integrable solution on (0,c0). When

p=1,2,--- and pm £ | — 1 then ¢ = 0 and (5.4) is the locally bounded solution on (0, co).
Therefore we arrive at the following result.

Theorem 6. Let m < 1,p=0,1,2,---,1 be a integer such that (p+1—1)/(1—m) is
integer and let g = p—(p—1+1)/(1—m). If m =1/(p+1) and the coeflicients ¢} satisfy the
relations (5.14) and (5.15), then the equation (5.1) is asymptotically solvable in the space of
locally integrable functions on (0,d) with 0 < d £ oo, and its asymptotic solution has the
form (5.4) with ¢ = —1. If p=1,2,---,pm £ 1 — 1 and ¢y satisfy the relations (5.14) and
(5.15), then the equation (5.1) is asymptotically solvable in the space of locally bounded
functions on (0,d) with 0 < d £ oo, and its asymptotic solution ¢(z) has the form (5.4).

Remark 1. In Sections 3 - 5 we found the power asymptotic solutions (1.8) of the equa-
tion (1.5) in the spaces of locally integrable and locally bounded functions on (0,d) with
0 < d £ 0. However, the existence of the solution ¢(z) itself of the integral equation (1.5)
does not follow from the existence of its asymptotic solution.

6. Asymptotic Solution of Nonlinear Equations with Integral Exponent
Nonlinearity

In this section we pick out the asymptotic solutions ¢(z) of the equations (1.5) with the
integer m = 2,3,--- which are met in applications [8], [17], [19]. First we consider this
equation in the case 0 < < 1:

a(z) (= p(t)dt
I'(@) Jo (z—t)t-=

o™(z) = + f(z) (0<z<dZg ), (6.1)
provided that a(z) and f(z) have the asymptotics (3.2) and (3.3). We note that when [ > n,
q = (I — n)m is an integer and, if additionally n 2 — m, the condition ¢ = — n is satisfied.
Therefore from Theorems 1 and 2 and Lemma 2 we obtain the following assertion.



103

Theorem 7. Let m = 2,3,---,] and n be integers with n £ [ such thatn 2 0ifl =n
andn = —m ifl > n. Let a(z) and f(z) have the asymptotic expansions (3.2) and (3.3).
Let the coefficients ¢y, satisfy the relations

MU geiT(ai — a + 1)p;_;
= = - — [P —_ -1 .
ig—:n T(os + 1) +fe=0 (k n,—n+1,---,(l—n)m ), (6.2)
Mg T(ai — a+ 1)g;_ _
Bl hml(n—m) = D k=il ( )pi-1 +fi (k=({=n)m,(I=n)m+1,---), (6.3)

I'(ai+1)

if (I = n)m + n > 0 and the relation (6.3) if ({ — n)m + n = 0. Then the nonlinear integral
equation (6.1) is asymptotically solvable in the space of locally integrable functions on (0, d)
with 0 < d £ 0o when | = n and in the space of locally bounded functions on (0,d) with
0 < d £ oo, when [ > n. Its the asymptotic solution ¢(z) has the form

1=l—-n

o0

o(z)~ Y @2 (z—0). (6.4)

k=l-n-1

Now we consider the equation in the case a > 0:

a(z) (= o(t)dt
I(a) Jo (z—t)t==

with m = 2,3, -, provided that a(z) and f(z) have the asymptotics (4.2) and (4.3). As
earlier we see that if/—p—1> n, then ¢ = (I —n—p— 1)m is an integer and if additionally
n 2 — m, then the condition ¢ =2 — n is satisfied. Therefore from Theorems 3 and 4 and
Lemma 2 we obtain the statement similar to Theorem 7.

+f(z) (0<z<d< o) (6.5)

¢"(2) =

Theorem 8. Letm=2,3,---,p=0,1,2---,1 and n be integers withn <l —p—1 such
that n 2 0 whenl —p—1=nandn 2 —m when!—p—1> n. Let a(z) and f(z) have
the asymptotic expansions (4.2) and (4.3). Let the coefficients ¢y satisfy the relations

k+§—l ar—i—p—1L(afi + p] + )iy

Tafi+pri+y T4+ =0 (6:6)

t=[—n—p-—1
(k=-n,—n+1,---,(l—-n—p—1m-—1),

k+l—p—1
Bt hm(mnptym = D

t=l—n—p—1

(k=(-n-p=1m(-n-p-Dm+1,--),

ak;i-p—lr(a[i + P] + 1)905+p
Flofi+p+1]+1)

+ fx (6-7)

if(l—n—p—1)m+n > 0 and the relation (6.7) if ! —n—p—1)m + n = 0. Then the
nonlinear integral equation (6.5) is asymptotically solvable in the space of locally bounded
functions on (0, d) with 0 < d £ oo, and its asymptotic solution ¢(z) has the form (6.4).
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The statements of Theorem 5 and Corollary 5.1 are also valld for the integral equation
(6.5).

Theorem 9. Letm =2,3,---,p=—1,0,1,--- and [ be an integer such that (p+1—1)/m
is a positive integer and let ¢ = p+ (p+ 1 —1)/m. Let a(z) and f(z) have the asymptotic
expansions (5.2) and (5.3) and let the coefficients ¢, satisfy the relations (5.7) and (5.8).
Then the equation (6.5) is asymptotically solvable in the space of locally bounded functions
on (0,d) with 0 < d £ oo, and its asymptotic solution ¢(z) has the form

o(z) ~ i oxz®* (z — 0). (6.8)

Corollary 9.1. Let m = 2,3,--- and | be a positive integer such that l/m is an integer
and ¢ = —1+4 [/m. Let a(z) and f(z) have the asymptotic expansions (5.9) and (5.10)
and let the coeflicients ¢j satisfy the relations (5.11) - (5.12). Then the equation (6.5) is
asymptotically solvable in the space of locally bounded functions on (0,d) with 0 < d £ oo,
and its asymptotic solution ¢(z) has the form (6.8).

We also note a useful result which follows from Corollary 9.1 if we take [ =m = 2,3, ---.

Theorem 10. Let m = 2,3,--- and

a(z) ~ ki_o: axz®* (z — 0) (6.9)
with ag # 0 and
f(z) ~ kZ_: frz®* (z —0) (6.10)

with fo # 0, and let the coeflicients @y satisfy the relations

k-1 .
ar—i—1T'(ai + 1),
Doo=fo, @ =§ - k=1,2,--). 6.11

Then the equation (6.5) is asymptotically solvable in the space of locally bounded functions
on (0,d) with 0 < d £ oo, and its asymptotic solution ¢(z) has the form

o(z) ~ i opz®* (z — 0). (6.12)
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7. Asymptotic Solution of Linear Equation

- Let us now discuss the asymptotic behavior of the solution ¢(z) of the linear equatlon
(1.9), as z — 0. First we consider this equation in the case 0 < & < 1:

_a(z) = p(t)dt
o(z) = T(a) Jo (z —t)1-

+f(z) (0<s<d< o), (7.1)

provided that a(z) and f(z) have the asyinptotic expansions

a(z) ~z™ i axz®* (z — 0) (7.2)
k=-1
with [ € Z,a_; # 0, and
| f@)~z™ Y fiz®® (2 —0) (7.3)
k=-n

with n € Z, f_,, # 0, respectively. In this case the asymptotic relation (3.14) is simplified:

o ) k+1 .
—a ak —a ak-—ir(az —a+ 1)(P.‘_1 ak
D DT L E ) ('Z e z

k=l—n k=—n \u=l-n

£ 3 fiz™ (¢ = 0). (7.4)

k=—n

We thus obtain the following assertions:
a) Ifl = 0 and | = n and the coefficients ¢, satisfy the relations

k+l .
ap—il(0i — o+ iy 3 B
2T Ty =0 =t lelon—1), (75)
k+l .
ax—iT'(o — o+ 1) iy
-1= =l-n,l- 1.--- 7.
o i=zz—:n [(oi+1) + i (k nl-n+t1,--), (7.6)

when [ > 0 and (7.6) when [ = 0, then the asymptotic solution ¢(z) of the equation (7.1)
has the form

o(z) ~ f: opz®* (z — 0). (7.7)

k=l-n—1

b) If 0 > [ = n and the coefficients ¢ satisfy the relations

(pk-—1=fk (k=_n’_n+11"'1_nv_l_l)a (78)
1k ak_‘I‘(ozz' —a+ 1)<p'_1 ’
1 = ! M s (k=—n—=1].—n — —_n — 2 ... .
Pr-1 ,'=2__:n F(Olt-l-l) +fk ( n l’ n l+1) n l+ ) )’ (7 9)
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then the asymptotic solution ¢(z) of the equation (7.1) has the form

oo

plz)~ > <pk¢“k (z — 0). (7.10)

k=—n-1

Therefore we arrive at the following statement.

Theorem 11. Let and n and | be integers such that | 2 n and let a(z) and f(z) have
the asymptotic expansions (7.2) and (7.3).

a) Let! Z 0 and! = n and the coeflicients ¢y, satisfy the relations (7.5) and (7.6) when ! >
0 and the relation (7.6) when [ = 0. Then the linear integral equation (7.1) is asymptotically
solvable in the space of locally integrable functions on (0,d) with 0 < d £ oo when ! = n
and in the space of locally bounded functions on (0,d) with 0 < d £ co when [ > n, and its
asymptotic solution ¢(z) has the form (7.7).

b) Let 0 > | 2 n and the coeflicients ¢ satisfy the relations (7.8) and (7.9). Then
the linear integral equation (7.1) is asymptotically solvable in the space of functions locally
bounded on (0,d) with 0 < d £ oo, and its asymptotic solution ¢(z) has the form (7.10).

Corollary 11.1. Let 0 < @ < 1, a(z) and f(z) have the asymptotic expansions

a(z) ~ 2= 3 axa™ (¢ — 0) (7.11)
k=0
with ag # 0, and
f(z) ~ x-aé iz (2 = 0) (7.12)
with f, # 0 and let )
Tk — o + 1)ag £ T(ak +1) (F=0,1,2,-). (7.13)

Then the linear integral equation (7.1) is asymptotically solvable in the space of locally
integrable functions on (0,d) with 0 < d < oo, and its asymptotic solution ¢(z) has the
form

e(z) ~ k—f; opz®* (z — 0), (7.14)

where the coefficients @) are given by the recurrent equalities

p-1=[1—ael'(1 — )] fo,

on = (1 _ T(ek +1)a )-1 (Zk: ar41-iL(0t — o+ 1)

T(ak + a+ 1) pard T(ai+ 1) + fk+1) (7.15)

(k=0,1,2,--").
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Corollary 11.2. Let a(z) and f(z) have the asymptotic expansions (7.11) and (7.12),
respectively. Let there exists an integer j € {0,1,2,---} such that

M(aj — a+1)ag =T(aj +1). (7.16)

Let the coefficients f; (k = 0,1,---,7) in (7.12) satisfy the relations

—~I'(ai — 1) ;-
fo=0 when j =0 z:aJ (at — a+ )iy

=0 when j=1,2,--- 7.17

where ¢;_1 (1 =0,1,---,j — 1) are expressed via f; (i=10,1,---,7 — 1) by means of (7.15).
Then the equation (7.1) is asymptotically solvable in the space of locally integrable function
on (0,d) with 0 < d £ co and its solution ¢(z) is given by the formula

p(z) ~cz¥ + Y gz (z—0). (7.18)
k=—1k#;

Here c is an arbitrary constant and oy for k # j are found from the recurrent relations (7.15).
If the conditions (7.17) are not satisfied, the equation (7.1) does not have any asymptotic
solution of the form (7.14).

Remark 2. Corollaries 11.1 and 11.2 coincide with Theorems 2.1 and 2.2 in [16].

Now we consider the equation (1.9) in the case & > 0:

a) / (z _t)l_a +f(z) (0<z<dz ), (7.19)

provided that a(z) and f(z) have the asymptotic expansions

a(z) ~ z°P kil axz®* (z — 0) (7.20)

with a_; # 0, and
f(z) ~ 2 Y frz® (2 —0) (7.21)

k=—n
with f_, # 0, where p=10,1,2,---,{,n € Z. The asymptotic relation (4.11) is simplified:

0o

ap ak
z Z Pr+4+pT
k=l-n—-p-—1

0o k+l—p—1 .
~ 1°P Z ( +Ep ' ak—i—l’-lr(a[z +p] + l)ﬁoi-!'p) :L‘ak

Flafi+p+1]+1)

k=-n \t=l-n-p-1

+2°% ) frz®k. < (7.22)

k=—n
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Thus we obtain the following assertions:
c) fl—p—120and!—p—12 n and the coefficients ¢ satisfy the relations
U3 skmismllofi+pl +1)

iml g1 T(afi+p+1]+1)

sy g (72
(k=-n,—n+1,---l—n—p—2),
kHl=p=1 . (ol B
k—i—p— aolt+p]+ Dep;
Ortp = E p—1 ( [ ] ) +p

T(ofi+p+1]+1) + /i (7.24)

t=|l—n—p—1
(k=l—n—p— l’l_n—p,"'))
when {—p—1> 0, and (7.24) when | — p— 1 = 0, then the asymptotic solution ¢(z) of the

equation (7.19) has the form (7.7).
d) f0>!—p—12 n and the coeflicients ¢, satisfy the relations

(;ok+p=fk (k:_n,_n+l’...’pfn—l), (725)

k=t i o Dali + p] + 1)
¢k+P=Z kpl([ P] )+p

i Tll+p+1]+1)

+ fx (7.26)

(k=p—-n—-l+lp—n—-1+2,-),

then the asymptotic solution @(z) of the equation (7.19) has the form

o(z) ~ i orz®* (z — 0). (7.27)

k=p—n

Therefore we arrive at the following statement.

Theorem 12. Let p=0,1,2,--- and | and n be integers such that | —p—1 = n and let
a(z) and f(z) have the asymptotic expansions (7.20) and (7.21).

c) Letl—p—120and!—p—1 2 n and the coefficients y, satisfy the relations (7.23)
and (7.24) when | — p — 1 > 0 and the relations (7.24) when | — p — 1 = 0. Then the linear
integral equation (7.19) is asymptotically solvable in the space of locally bounded functions
on (0,d) with 0 < d £ oo, and its asymptotic solution ¢(z) has the form (7.7).

d) Let 0 >1—p—12 n and the coefficients ¢; satisfy the relations (7.25) and (7.26).
Then the linear integral equation (7.19) is asymptotically solvable in the space of locally

bounded functions on (0,d) with 0 < d £ oo, and its asymptotic solution ¢(z) has the form
(7.27). ‘

Corollary 12.1. Let! = 1,2,---,& > 0, and a(z) and f(z) have the asymptotic
expansions

a(z) ~ 20D ¥ g2 (2 — 0) (7.28)
k==l
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with a_; # 0, and

f(2) ~ 20D 3 fiz®* (2 = 0) (7.29)
) k=0 .
‘with fo # 0 and let
| T(ofk+1—1]+ 1)aci £ T(afk +1]+1) (k=0,1,2,---). (7.30)

Then the linear integral equation (7.19) is asymptotically solvable in the space of locally
bounded functions on (0,d) with 0 < d < oo, and its asymptotic solution ¢(z) has the form

o(z)~ Y ez (z —0), (7.31)
k=1-1
where the coefficients ¢j are given by the recurrent equalities
T(ofl — 1]+ 1)a_;\ !
o = (1= Hell= Tt Do) =
T(ad + 1)

_ T(afk + 1]+ 1ay )“
ok +1+1]+1)

Pr41 = (1

« (zk: ap—t—it1l(afi + 1 = 1] + 1) ;11

=0 T(afi +1]+1) + fk+1) (k=0,1,2,---). (7.32)

. Corollary 12.2. Let ! = 1,2,---, and a(z) and f(z) have the asymptotic expansions
(7.28) and (7.29). Let there exists an integer j € {0,1,2,---} such that

Tlofj+1—-1]+Day=T(afj +1] +1). (7.33)
Let the coefficients fi (k= 0,1,---,7) in (7.29) satisfy the relations

12 g l(afi + 1 — 1] + Vi
=0 wh =0 g —l—12 1+1-1
fo=Owhen =0 2 == G A+ 1)

+fj=0whenj= L2---, (7~34)

where ¢i1—1 (1 =0,1,---,j— 1) are expressed via f; (i =0,1,---, 7 — 1) by means of (7.32).
Then the equation (7.19) is asymptotically solvable in the space of locally bounded functions
on (0,d) with 0 < d £ oo, and its solution ¢(z) is given by the formula

p(@) ~ecz¥ + > gzt (z—0). (7.35)
k=l—1k#j : .

Here c is an arbitrary constant and ¢, for k # j are found from the recurrent relations
(7.32). If the conditions (7.34) are not satisfied, then the equation (7.19) does not have any
asymptotic solution of the form (7.31).
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Remark 3. If /=1and 0 < a < 1, Corollaries 12.1 and 12.2 coincide with Theorems
3.1 and 3.2 in [16].

Remark 4. Theorems 11 and 12 allow us to find the asymptotic solutions ¢(z) of the
linear integral equations (7.1) and (7.19) provided that a(z) and f(z) have the asymptotic
expansions (7.2), (7.3) and (7.20), (7.21) when [ 2 nand | —p — 1 = n, respectively. More-
over, unlike the nonlinear integral equations (see Sections 3 - 5), we consider all connections
between the parameters [, n and p.
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