Remarks on Sakaguchi Functions

Rikuo Yamakawa (芝浦工大·工 山川陸夫)

1. Introduction

Let A denote the class of functions f which are analytic in the unit disc $D=\{z\colon |z|<1\}$, with

(1.1)
$$f(0)=0$$
 and $f'(0)=1$.

We denote some subclasses of A as follows:

(1.2)
$$S^* = \left\{ f \in A : \text{Re } \frac{z f'(z)}{f(z)} > 0, z \in D \right\},$$

(1.3)
$$S = \left\{ f \in A : \text{Re } \frac{z f'(z)}{f(z) - f(-z)} > 0, z \in D \right\}$$

and

(1.4)
$$R(\alpha) = \left\{ f \in A : \operatorname{Re} \frac{f(z)}{z} > \alpha, \ z \in D \right\}$$

where $0 \le \alpha < 1$.

 S^* is the usual class of starlike functions, and S is the class of Sakaguchi functions introduced by Sakaguchi in [2]. For relations between these two classes only the following result is known.

Theorem A (Sakaguchi [2]). $f(z) \in S$ if and only if

$$(1.5) \frac{f(z)-f(-z)}{2} \in S^*.$$

For $R(\alpha)$, Wu posed the following conjecture in [3].

Conjecture

If
$$f(z) \in S$$
, then $f(z) \in R\left(\frac{1}{2}\right)$.

And the present author in [4] showed by the counter example

(1.6)
$$f(z) = z + \frac{3}{5}z^2 + \frac{1}{15}z^3$$

that the conjecture is not true.

In this short paper we give two examples which show that

$$(1.7) s^* \not = s$$

and

$$(1.8) S \not \subset S^*.$$

2. Examples

Example 1. An example which shows the relation (1.7).

(2.1)
$$f(z) = z + \frac{4}{5}z^2 + \frac{1}{5}z^3.$$

If we let

$$\frac{z f'(z)}{f(z)} = \frac{5+8z+3z^2}{5+4z+z^2} = \frac{u+i v}{s+i t}$$

and $z = r e^{i\theta}$, then we have

$$s = 5 + 4r\cos\theta + r^2\cos 2\theta$$
, $t = 4r\sin\theta + r^2\sin 2\theta$

 $u = 5 + 8r\cos\theta + 3r^2\cos 2\theta$, $v = 8r\sin\theta + 3r^2\sin 2\theta$.

and it is evident that $\operatorname{Re}\left[zf'/f\right]>0$ if and only if

$$s u + t v > 0$$
.

Since we easily deduce

$$s u + t v = 40 r^{2} \cos^{2} \theta + 20 r (3 + r^{2}) \cos \theta + 25 + 12 r^{2} + 3 r^{4}$$

$$\geq 25 - 60 r + 52 r^{2} - 20 r^{3} + 3 r^{4} (\cos \theta = -1)$$

$$= (1 - r)(25 - 35 r + 17 r^{2} - 3 r^{3}),$$

where

$$25-35 r + 17 r^2 - 3 r^3 > 0 \quad (0 \le r < 1).$$

we deduce s u + t v > 0, which shows that $f \in S^*$.

On the other hand, if we put $z_0 = -\frac{3}{5} + \frac{4}{5}i$, then we have

Re
$$\frac{z_0 f'(z_0)}{f(z_0) - f(-z_0)} < 0$$
,

which shows that $f \notin S$.

Example 2. An example for the relation (1.8).

(2.2)
$$f(z) = \frac{1}{2}z + z^2 + \log \frac{2+z}{2}$$

To show that the above function f belongs to S, we use the following theorem due to Miller and Mocanu.

Theorem B (Miller and Mocanu [1]). If $f(z) \in A$ satisfies

$$\left| \frac{z f''(z)}{f'(z)} \right| < 2 \quad (z \in D)$$

then f(z) belongs to S^* .

If we let

$$g(z) = \frac{f(z) - f(-z)}{2},$$

then we obtain

$$\left| \frac{z g''(z)}{g'(z)} \right| = \left| \frac{8z^2}{(4-z^2)(8-z^2)} \right| < \frac{8|z|^2}{(4-|z|^2)(8-|z|^2)} < \frac{8}{21} \quad (z \in D).$$

Hence from Theorem B, we deduce $g(z){\in}S^*$. Therefore, by using Theorem A, we have $f(z){\in}S$.

On the other hand, if we put $z_{\rm o} = -5/8 \in D$, then we have

Re
$$\frac{z_0 f'(z_0)}{f(z_0)} = -0.047 \cdots < 0$$
,

which yields $f \notin S^*$.

References

- [1] S.S.Miller and P.T.Mocanu, On some class of first order differential subordinations, Micigan Math. J., 32(1985), 185-195.
- [2] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11(1959), 72-75.
- [3] Z. Wu, On classes of Sakaguchi functions and Hadamard products, Sci. Sinica 30(1987), 128-135.
- [4] R. Yamakawa, Notes for Sakaguchi functions, (1991, preprint).