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Margulis Decomposition and Translation Lengths
of Discrete Mobius Groups

Katsumi Inoue
HE "E (EIRKEEH)
1 Introduction

For any integer n > 2, let R™ denote the n-dimensional Euclidean space and R = R™ U
{oco} its one-point compactification. Any point z € R" is represented as z = (&1,...,5)
and when matrices act on z, = is treated as a column vector. The subspace H" = {z €
R"z, > 0} of R® with metric p( , ) induced by the line element ds* = |dz|*/dz? is
a model of the n -dimensional hyperbolic space and we call H"” the n-dimensional upper
half-space.

A Mobius transformation of B™ is a finite product of reflections in (n — 1)—dimensi0nal
spheres or hypersurfaces. A group of Mobius transformation of R” is denoted by M (R?)
and call the (full) Mdbius group. Mobius transformtions are classified by their conjugacy
class in M(R"). The canonical forms are as follows. An element in M(R") is said to be

loxodromic if it 1s conjugate to a transformation of the form
v(z) = Tz

where A > 0,A # 1, and T' € O(n), the group of n x n -orthogonal matrices, and parabolic
if it is conjugate to the transformation of the form

Y z)=Tz+a

where T' € O(n),a € R" and Ta = a # 0. A non-trivial element is said to be elliptic if it
is neither loxodromic nor parabolic.

For v € M(R™) we denote the Jacobian matrix of ¥ at * € R by 4'(z). Then chain
rule implies that 4'(z) = vUz with v > 0,U € O(n). We call the positive number v the
linear magnification of 4 at z and denote by |y'(z)|. If v € M(R") does not fix oo, the set
I(y) = {z € R*| |¥(z)| =1} becomes an (n — 1)-sphere centered at vy~ '(c0). We call I(~)
the isometric sphere of 4. The action of 4 on R” is the composition of an inversion in I(7),
followed by a Euclidean isométry. For z € R"™ denote z* by the image of the reflection of
z in the unit sphere centered at the origin. Let ¥ € M(R"™) be an arbitrary element which

does not fix co. Then « can be represented uniquely in the form

Y(z)=AT(z—a)"+b
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where A > 0,7 € 0(n) and a,b € R". In this expression A'/? is the radius of I(y) and
a =~"Y(o0) (resp. b= 7(c0)) is the center of I(y) ( resp. I(y7') ). If v € M(R") fixes
00, then 4 can be written as a similarity in the form

y(z)= ANz +a

where A > 0,T € O(n) and a € R".

Let denote by M(H™) the subgroup of M(R") consisting of elements which keep H™
invariant. Then M(H™) is the full group of hyperbolic isometries of H™. For any subgroup
I' of M(H™), T is discrete if and only if T acts discontinuously on H™. Also I' acts on
OH"™ = R"=1 as a group of conformal automorphisms. For a discrete subgroup I' of M(H™),
the region of discontinuity (T') of I is the subset of R"~! on which I' acts discontinuously.
The limit set A(T) of T is the complement of Q(T') in R*~1. A discrete subgroup I' of
M(H™) whose limit set consists of at most two points is called elementary. If T is not
elementary, A(T') is a perfect, uncountable set.

Let v be a loxodromic transformation. Then + has exactly two fixed points on R*~1. The
geodesic A, joining these two points is called the axis of 4. The axis A, is kept invariant

under the action of 4. For a loxodromic transformation v € M(H") we set
by = inf p(z,7(z)).

We know that [, is positive and attained at any point of A,. This constant [, is called the
translation length of v. We denote L(T') by the set of translation lengths of all loxodromic
transformations of T'.

For a discrete subgroup I' of M (H™), let Er be the set of all geodesics in H™ whose end
points belong to A(T"). The convex hull Hull(A(I')) is the intersection of all hyperbolically
convex sets in H™ which contain Er. Let Np = H"/T be a quotient orbifold for I' and
Mr = (H™UQ(T))/T its closure. The quotient Cr = Hull(A(T))/T is a subset of Nr and

is called the Nielsen convex core for T'.

2 The Margulis decomposition for quotient orbifolds

For a discrete subgroup T of M(H™), let T' be the subset of I' consisting of all elements
of infinite orders. For ¢ > 0 and z € H", we define

Lz)={yeTl | p(z,7(z)) < €}

and

T.(z) = (T N L(z)).

For our argument, the following result is essential ( see [1], [3] ).
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PROPOSITION 1.( MARGULIS LEMMA ) For each n, there exists a positive number €(n)
such that for any discrete subgroup I' of M(H"), z € H" and ¢ < ¢(n), I'.(z) is a finite

extension of an abelian group.

We call ¢(n) the Margulis constant.in dimension n.
For any € € (0,¢(n)] and a discrete subgroup I' of M(H™), we write

R(T)={z e H" | p(z,v(z)) < ¢ for some v &T}.

We can easily see thet R.(T') is a -invariant set of H"”. The quotient R (I')/I' C Nr is
called the thin part of Np and is denoted by N.). The complement of N in Nt is
denoted by N ) and is called the thick part of Nr. The decomposition

Nr = Ng,e) U Nic,00)

is called the Margulis decomposition for Np.

A discrete subgroup I' of M(H™) is said to be geometrically finite if there exists € €
(0, €(n)] so that Cr N N,o0) is compact.

Let I be a subgroup of I'. A set X C H™ is precisely invariant under I in I" if y(X) = X
for any v € ' and 4(X)N X = 0 for any v € I' = I"". Let Ap(I') denote the set of parabolic
fixed points of T'. For p € Ap(T'), we write [, ={ye€ [|y(p) = p} and call the stabilizer of
.

The following is an immediate consequence of Margulis lemma.

PROPOSITION 2. ( [2], [3] ) Let ' be a discrete subgroup of M(H™).Then there exists a
constant € € (0,¢(n)] so that the following holds:

(1) For any p € Ap(T') there exists an open region T, in H™ which contains a component
of R(T) so that T, is precisely invariant under I', in T'.

(2) For any distinct points p,q € Ap(T'), T, and T, are mutually disjoint to each other.

We say that T' = U,eapr) T, is @ strictly invariant system of parabolic neighborhoods
for I'.

A parabolic fixed point p of T' is called a bounded parabolic fixed point if there exists
a compact subset of R*~1 — {p} whose translates by ', cover A(T') — {p}. We say that a
limit point y of I is a conical limit point of I' if for some geodesic ray I in H" ending at y,
there is a compact set K in H" so that {y € T'|y(I) N K # 0} is an infinite set.

The following is well known.
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PROPOSITION 3. ([3],[4]) Let T' be a discrete subgroup of M(H™). Then the following
statements are equivalent.

(1) T is geometrically finite.

(2) A(T) consists of conical limit points or bounded parabolic fized points.

(3) There exist pq,...,p, € Ap(T') with respective horoball neighborhoods By, ..., B, such
that the set B = {J,cry(ByU...UB,) forms a strictly invariant system of parabolic neigh-
borhoods for I and (Hull(A(T)) — B)/T is compact.

3 Translation lengths of discrete Mo6bius groups
Let I' be a discrete subgroup of M(H™) and € € (0,¢(n)] , be chosen. We define
Ny = (R(T) n T)/T,

N€,2 - N(O,c) - Ne,l
and call N¢; ( resp. N, ) the parabolic part ( resp. the non-parabolic part ) of N.

If T is a discrete subgroup of M(H?) consisting of orientation-preserving transformations
(i,e T' is a Kleinian group ), then each component of Ny, is homeomorphic to either
{D—{0}} x S'",{D —{0}} x (0,1) or D x S, where D is a unit disk.

To investigate the structure of N), we consider L(I'), the set of translation lengths of

loxodromic elements of I'. First we deal with the geometrically finite case.

LEMMA 4. Let I' be a geometrically finite subgroup of M(H™). Then L(I') is a discrete
subset of [0, 00).

PROOF. Assume the contrary. Then there exist a sequence {v.,} of distinct loxodromic
elements of I' and a constant a > 0 such that /,, - a (m — o0), where [,, is a translation
length of ~,,.

Let denote by D, a Dirichlet region for I' centered at a € H", with I', = {id}. For any
m, choose a point z,, € A, the axis of 7,,. Then, for every m, there exists g,, € I' such
that ¢,,(z,,) = ym € cl(D,) N H", where cl(D,) is the closure of D,.

Suppose that {y,} has an accumulation point yo € cl(D,) N H™. Then there exist a
subsequence of {¥,,} ( use the same notation ) and § > 0 so that {z € H"|p(yo,z) <
8} N A, # 0 for every m, where A, is the axis of g, 0 vm 0 ¢!, It follows that there exists
a positive integer mg with (¢,, © vm 0 g2 (v0) € {z € H™|p(yo,z) < § + 22} C H" for
m > mg. Then there exist a subsequence of {v,,} ( again use the same notation ) and a
point y € {& € H"|p(yo,z) < é 4+ 2a} such that (g, 0 v 097" )(yo) = y (m — o0). This
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means y € H* N A(T') # 0. It is a contradiction. So there exist a subsequence of {y,,} (
use the same notation ) and a point p € 9D, N R*~! such that y,, — p (m — oo).

It is well known that conical limit points can not be contained in the boundary of any
Dirichlet region. Since I' is geometrically finite, we conclude that p is a bounded parabolic
fixed point and there exists a horoball neighborhood B, which is precisely invariant under
I',nT.

Note that y,, € A, and the translation length is invariant under the conjugation in
M(H™). So there exists a positive integer my such that {z € |p(z,ym,) < 2a} C B,. Hence
we deduce that (gm, © Ym, © 95l ) (YUmy) € (Gmy © Ymy © gt )(Bp) N B, # 0. It contradicts the
fact that B, is precisely invariant under I', in I'. Therefore we establish this lemma.

g.e.d.

If T' is geometrically finite, then Lemma 4 yields that the number I = min L(I") is posi-

tive. Hence we have the following :

THEOREM 5. Let I' be a geometrically finite subgroup of M(H™). Then the non-pamb_qlic
part Ney of N is empty for any € € (0, min(lr, e(n))).

PROOF. Choose a positive number with € € (0, min(lr, e(n))). Take an arbitrary point
z € R(T). Then, from the definition of R,(T) , there exists v € T such that p(z,v(z)) < e.

If 4 is loxodromic, then p(z,v(z)) > I(y) > Ir > € and it is a contradiction. So 7 is
parabolic and we have z € R(I') N T. It implies N3 = Ng.) and N, = 0.

q.e.d.

Next we consider the general case. The following lemma is essential for our discussion.

LEMMA 6. For any a > 0 there exist a non-elementary, discrete subgroup I' of M(H")

and a sequence {v,} of lozodromic elements of I' such that I, \, a (m — o0).

PROOF. Let a sequence {r,,} of positive numbers, with r,, \, e* (m — 00), be given.

We take hemispheres o,0,,0,,...1n H" as the following:
o={ze H"| |z| =1},

on={z€H"| |z|=rn} (m=1,2,...).
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For each m we define a Mobius transformation g,, as ¢,, = r,z. It can be easily seen
that g, is loxodromic, ¢,,(0) = 0, and A, the translation length of g,,, is equal to log ry,.
Let {p,} be a sequence of points in R*~1(= 0H") withr,,11 < |pn| <7rm (m=1,2,...).

We can take a sequence {R,,} of positive numbers which satisfy
Pl + B < |pm] <7 — R (m=1,2,...).

Here we set

Y ={z € H"| |z —p.| =R}

Then {X,,} is a sequence of hemispheres in H” which are mutually disjoint to each other.
Let denote by 1, the reflection in ¥,, and set ¥,,(0) = Sp, Y (0om) =S5, (m=1,2,...).
We can easily see that S,,,5! C Int(X,,) and Int(S,)NInt(S.)=0 (m=1,2,...).

We put. ¥ = ¥, 0 gm 091 Then we have that ~,, is loxodromic and the translation
length of v, is equal to logr,,. Let [' be the group generated by 71,7,,.... We show that
' is a non-elementary, free, discrete subgroup of M(H™). Since I' contains two loxodromic
transformations which do not have common fixed points, I" is a non-elementary group. Let
7 be an element of I' which is represented as a reduced word ¥ = vp, 0+ 0 VYimy, ¥m; €
{(vE',¥1,...} (i = 1,...,k). Note that hemispheres S;, S}, Sy, S5, . .. are mutually disjoint
to each other. Take a point zq = (21,...,2,) € H" with z, sufficiently large. We may
suppose that B(zg,8) = {z € H"|p(z,z0) < 6} C N2, (Ezt(S;) U Ext(S!)). We can easily
see Ym, (B(zo,8)) C Int(S)) or Int(S}) for some | = 1,2, . ... and ym, (B(z0,8))N B(zo, ) =
0. Repeat this procedure. Then we obtain v(B(zo,6)) C Int(S;) or Int(S}) for some
J = 1,2,.... Tt follows that y(B(zo,6)) N B(zo,6) = 0 and v # id. Hence we have
that I is free and discrete. Furthermore {v,,} is the sequence of loxodromic elements and

I, =logr, \ya (m — o). It completes the proof of this lemma.

q.e.d.

By using Lemma 6, we have the following result immediately.

THEOREMT. For any positive integer n > 2 there ezxists a non-elementary, discrete sub-
group I' of M(H") such that N.; # 0 for any e >0 .

Next we apply Lemma 6 to geometrically finite groups. Let € € (0, ¢(n)] be sufficiently
small. Then, by using Lemma 6, we can take loxodromic transformations ~4,...,7,, such
that I, <e (k=1,2,...,r)and I' = (41,...,7,) is a non-elementary, geometrically finite
subgroup of M(H"). Hence we have the following:
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THEOREM 8. For any positive integer n > 2 and any ¢ > 0, there exists a geometrically
finite subgroup T of M(H™) such that N, # 0.
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