Margulis Decomposition and Translation Lengths of Discrete Möbius Groups

Katsumi Inoue

井上 克巳（金沢大学医短）

1 Introduction

For any integer $n \geq 2$ ，let R^{n} denote the n－dimensional Euclidean space and $\overline{R^{n}}=R^{n} \cup$ $\{\infty\}$ its one－point compactification．Any point $x \in R^{n}$ is represented as $x=\left(x_{1}, \ldots, x_{n}\right)$ and when matrices act on x, x is treated as a column vector．The subspace $H^{n}=\{x \in$ $\left.R^{n} \mid x_{n}>0\right\}$ of R^{n} with metric $\rho(, \quad)$ induced by the line element $d s^{2}=|d x|^{2} / d x_{n}^{2}$ is a model of the n－dimensional hyperbolic space and we call H^{n} the n－dimensional upper half－space．

A Möbius transformation of $\overline{R^{n}}$ is a finite product of reflections in $(n-1)$－dimensional spheres or hypersurfaces．A group of Möbius transformation of $\overline{R^{n}}$ is denoted by $M\left(\overline{R^{n}}\right)$ and call the（full）Möbius group．Möbius transformtions are classified by their conjugacy class in $M\left(\overline{R^{n}}\right)$ ．The canonical forms are as follows．An element in $M\left(\overline{R^{n}}\right)$ is said to be loxodromic if it is conjugate to a transformation of the form

$$
\gamma(x)=\lambda T x
$$

where $\lambda>0, \lambda \neq 1$ ，and $T \in O(n)$ ，the group of $n \times n$－orthogonal matrices，and parabolic if it is conjugate to the transformation of the form

$$
\gamma(x)=T x+a
$$

where $T \in O(n), a \in R^{n}$ and $T a=a \neq 0$ ．A non－trivial element is said to be elliptic if it is neither loxodromic nor parabolic．

For $\gamma \in M\left(\overline{R^{n}}\right)$ we denote the Jacobian matrix of γ at $x \in R^{n}$ by $\gamma^{\prime}(x)$ ．Then chain rule implies that $\gamma^{\prime}(x)=\nu U x$ with $\nu>0, U \in O(n)$ ．We call the positive number ν the linear magnification of γ at x and denote by $\left|\gamma^{\prime}(x)\right|$ ．If $\gamma \in M\left(\overline{R^{n}}\right)$ does not fix ∞ ，the set $I(\gamma)=\left\{x \in R^{n}| | \gamma^{\prime}(x) \mid=1\right\}$ becomes an $(n-1)$－sphere centered at $\gamma^{-1}(\infty)$ ．We call $I(\gamma)$ the isometric sphere of γ ．The action of γ on $\overline{R^{n}}$ is the composition of an inversion in $I(\gamma)$ ， followed by a Euclidean isometry．For $x \in \overline{R^{n}}$ denote x^{*} by the image of the reflection of x in the unit sphere centered at the origin．Let $\gamma \in M\left(\overline{R^{n}}\right)$ be an arbitrary element which does not fix ∞ ．Then γ can be represented uniquely in the form

$$
\gamma(x)=\lambda T(x-a)^{*}+b
$$

where $\lambda>0, T \in 0(n)$ and $a, b \in R^{n}$. In this expression $\lambda^{1 / 2}$ is the radius of $I(\gamma)$ and $a=\gamma^{-1}(\infty)($ resp. $b=\gamma(\infty))$ is the center of $I(\gamma)\left(\right.$ resp. $\left.I\left(\gamma^{-1}\right)\right)$. If $\gamma \in M\left(\overline{R^{n}}\right)$ fixes ∞, then γ can be written as a similarity in the form

$$
\gamma(x)=\lambda T x+a
$$

where $\lambda>0, T \in O(n)$ and $a \in R^{n}$.
Let denote by $M\left(H^{n}\right)$ the subgroup of $M\left(\overline{R^{n}}\right)$ consisting of elements which keep H^{n} invariant. Then $M\left(H^{n}\right)$ is the full group of hyperbolic isometries of H^{n}. For any subgroup Γ of $M\left(H^{n}\right), \Gamma$ is discrete if and only if Γ acts discontinuously on H^{n}. Also Γ acts on $\partial H^{n}=\overline{R^{n-1}}$ as a group of conformal automorphisms. For a discrete subgroup Γ of $M\left(H^{n}\right)$, the region of discontinuity $\Omega(\Gamma)$ of Γ is the subset of $\overline{R^{n-1}}$ on which Γ acts discontinuously. The limit set $\Lambda(\Gamma)$ of Γ is the complement of $\Omega(\Gamma)$ in $\overline{R^{n-1}}$. A discrete subgroup Γ of $M\left(H^{n}\right)$ whose limit set consists of at most two points is called elementary. If Γ is not elementary, $\Lambda(\Gamma)$ is a perfect, uncountable set.

Let γ be a loxodromic transformation. Then γ has exactly two fixed points on $\overline{R^{n-1}}$. The geodesic A_{γ} joining these two points is called the axis of γ. The axis A_{γ} is kept invariant under the action of γ. For a loxodromic transformation $\gamma \in M\left(H^{n}\right)$ we set

$$
l_{\gamma}=\inf _{x \in H^{n}} \rho(x, \gamma(x))
$$

We know that l_{γ} is positive and attained at any point of A_{γ}. This constant l_{γ} is called the translation length of γ. We denote $L(\Gamma)$ by the set of translation lengths of all loxodromic transformations of Γ.

For a discrete subgroup Γ of $M\left(H^{n}\right)$, let E_{Γ} be the set of all geodesics in H^{n} whose end points belong to $\Lambda(\Gamma)$. The convex hull $H u l l(\Lambda(\Gamma))$ is the intersection of all hyperbolically convex sets in H^{n} which contain E_{Γ}. Let $N_{\Gamma}=H^{n} / \Gamma$ be a quotient orbifold for Γ and $M_{\Gamma}=\left(H^{n} \cup \Omega(\Gamma)\right) / \Gamma$ its closure. The quotient $C_{\Gamma}=\operatorname{Hull}(\Lambda(\Gamma)) / \Gamma$ is a subset of N_{Γ} and is called the Nielsen convex core for Γ.

2 The Margulis decomposition for quotient orbifolds

For a discrete subgroup Γ of $M\left(H^{n}\right)$, let $\tilde{\Gamma}$ be the subset of Γ consisting of all elements of infinite orders. For $\epsilon>0$ and $x \in H^{n}$, we define

$$
I_{\epsilon}(x)=\{\gamma \in \tilde{\Gamma} \mid \rho(x, \gamma(x))<\epsilon\}
$$

and

$$
\Gamma_{\epsilon}(x)=\left\langle\Gamma \cap I_{\epsilon}(x)\right\rangle .
$$

For our argument, the following result is essential (see [1], [3]).

Proposition 1.(Margulis lemma) For each n, there exists a positive number $\epsilon(n)$ such that for any discrete subgroup Γ of $M\left(H^{n}\right), x \in H^{n}$ and $\epsilon \leq \epsilon(n), \quad \Gamma_{\epsilon}(x)$ is a finite extension of an abelian group.

We call $\epsilon(n)$ the Margulis constant in dimension n.
For any $\epsilon \in\left(0, \epsilon(n)\right.$] and a discrete subgroup Γ of $M\left(H^{n}\right)$, we write

$$
R_{\epsilon}(\Gamma)=\left\{x \in H^{n} \quad \mid \rho(x, \gamma(x))<\epsilon \text { for some } \gamma \in \tilde{\Gamma}\right\} .
$$

We can easily see thet $R_{\epsilon}(\Gamma)$ is a Γ-invariant set of H^{n}. The quotient $R_{\epsilon}(\Gamma) / \Gamma \subset N_{\Gamma}$ is called the thin part of N_{Γ} and is denoted by $N_{(0, \epsilon)}$. The complement of $N_{(0, \epsilon)}$ in N_{Γ} is denoted by $N_{[\epsilon, \infty)}$ and is called the thick part of N_{Γ}. The decomposition

$$
N_{\Gamma}=N_{(0, \epsilon)} \cup N_{[\epsilon, \infty)}
$$

is called the Margulis decomposition for N_{Γ}.
A discrete subgroup Γ of $M\left(H^{n}\right)$ is said to be geometrically finite if there exists $\epsilon \in$ $(0, \epsilon(n)]$ so that $C_{\Gamma} \cap N_{[\epsilon, \infty)}$ is compact.

Let Γ^{\prime} be a subgroup of Γ. A set $X \subset H^{n}$ is precisely invariant under Γ^{\prime} in Γ if $\gamma(X)=X$ for any $\gamma \in \Gamma$ and $\gamma(X) \cap X=\emptyset$ for any $\gamma \in \Gamma-\Gamma^{\prime}$. Let $\Lambda_{P}(\Gamma)$ denote the set of parabolic fixed points of Γ. For $p \in \Lambda_{P}(\Gamma)$, we write $\Gamma_{p}=\{\gamma \in \Gamma \mid \gamma(p)=p\}$ and call the stabilizer of p.

The following is an immediate consequence of Margulis lemma.

Proposition 2. ([2], [3]) Let Γ be a discrete subgroup of $M\left(H^{n}\right)$. Then there exists a constant $\epsilon \in(0, \epsilon(n)]$ so that the following holds:
(1) For any $p \in \Lambda_{P}(\Gamma)$ there exists an open region T_{p} in H^{n} which contains a component of $R_{\epsilon}(\Gamma)$ so that T_{p} is precisely invariant under Γ_{p} in Γ.
(2) For any distinct points $p, q \in \Lambda_{P}(\Gamma), T_{p}$ and T_{q} are mutually disjoint to each other.

We say that $T=\bigcup_{p \in \Lambda_{P}(\mathrm{\Gamma})} T_{p}$ is a strictly invariant system of parabolic neighborhoods for Γ.

A parabolic fixed point p of Γ is called a bounded parabolic fixed point if there exists a compact subset of $\overline{R^{n-1}}-\{p\}$ whose translates by $\Gamma_{p} \operatorname{cover} \Lambda(\Gamma)-\{p\}$. We say that a limit point y of Γ is a conical limit point of Γ if for some geodesic ray I in H^{n} ending at y, there is a compact set K in H^{n} so that $\{\gamma \in \Gamma \mid \gamma(I) \cap K \neq \emptyset\}$ is an infinite set.
The following is well known.

Proposition 3. ([3], [4]) Let Γ be a discrete subgroup of $M\left(H^{n}\right)$. Then the following statements are equivalent.
(1) Γ is geometrically finite.
(2) $\Lambda(\Gamma)$ consists of conical limit points or bounded parabolic fixed points.
(3) There exist $p_{1}, \ldots, p_{r} \in \Lambda_{P}(\Gamma)$ with respective horoball neighborhoods B_{1}, \ldots, B_{r} such that the set $B=\bigcup_{\gamma \in \Gamma} \gamma\left(B_{1} \cup \ldots \cup B_{r}\right)$ forms a strictly invariant system of parabolic neighborhoods for Γ and $(H u l l(\Lambda(\Gamma))-B) / \Gamma$ is compact.

3 Translation lengths of discrete Möbius groups

Let Γ be a discrete subgroup of $M\left(H^{n}\right)$ and $\epsilon \in(0, \epsilon(n)]$, be chosen. We define

$$
\begin{gathered}
N_{\epsilon, 1}=\left(R_{\epsilon}(\Gamma) \cap T\right) / \Gamma \\
N_{\epsilon, 2}=N_{(0, \epsilon)}-N_{\epsilon, 1}
\end{gathered}
$$

and call $N_{\epsilon, 1}$ (resp. $N_{\epsilon, 2}$) the parabolic part (resp. the non-parabolic part) of $N_{(0, \epsilon)}$. If Γ is a discrete subgroup of $M\left(H^{3}\right)$ consisting of orientation-preserving transformations (i,e Γ is a Kleinian group), then each component of $N_{(0, \epsilon)}$ is homeomorphic to either $\{D-\{0\}\} \times S^{1},\{D-\{0\}\} \times(0,1)$ or $D \times S^{1}$, where D is a unit disk.
To investigate the structure of $N_{(0, \epsilon)}$, we consider $L(\Gamma)$, the set of translation lengths of loxodromic elements of Γ. First we deal with the geometrically finite case.

Lemma 4. Let Γ be a geometrically finite subgroup of $M\left(H^{n}\right)$. Then $L(\Gamma)$ is a discrete subset of $[0, \infty)$.

Proof. Assume the contrary. Then there exist a sequence $\left\{\gamma_{m}\right\}$ of distinct loxodromic elements of Γ and a constant $\alpha \geq 0$ such that $l_{m} \rightarrow \alpha(m \rightarrow \infty)$, where l_{m} is a translation length of γ_{m}.

Let denote by D_{a} a Dirichlet region for Γ centered at $a \in H^{n}$, with $\Gamma_{a}=\{i d\}$. For any m, choose a point $x_{m} \in A_{m}$, the axis of γ_{m}. Then, for every m, there exists $g_{m} \in \Gamma$ such that $g_{m}\left(x_{m}\right)=y_{m} \in \operatorname{cl}\left(D_{a}\right) \cap H^{n}$, where $\operatorname{cl}\left(D_{a}\right)$ is the closure of D_{a}.

Suppose that $\left\{y_{m}\right\}$ has an accumulation point $y_{0} \in \operatorname{cl}\left(D_{a}\right) \cap H^{n}$. Then there exist a subsequence of $\left\{\gamma_{m}\right\}$ (use the same notation) and $\delta>0$ so that $\left\{x \in H^{n} \mid \rho\left(y_{0}, x\right)<\right.$ $\delta\} \cap \tilde{A}_{m} \neq \emptyset$ for every m, where \tilde{A}_{m} is the axis of $g_{m} \circ \gamma_{m} \circ g_{m}^{-1}$. It follows that there exists a positive integer m_{0} with $\left(g_{m} \circ \gamma_{m} \circ g_{m}^{-1}\right)\left(y_{0}\right) \in\left\{x \in H^{n} \mid \rho\left(y_{0}, x\right)<\delta+2 \alpha\right\} \subset H^{n}$ for $m \geq m_{0}$. Then there exist a subsequence of $\left\{\gamma_{m}\right\}$ (again use the same notation) and a point $y \in\left\{x \in H^{n} \mid \rho\left(y_{0}, x\right) \leq \delta+2 \alpha\right\}$ such that $\left(g_{m} \circ \gamma_{m} \circ g_{m}^{-1}\right)\left(y_{0}\right) \rightarrow y(m \rightarrow \infty)$. This
means $y \in H^{n} \cap \Lambda(\Gamma) \neq \emptyset$. It is a contradiction. So there exist a subsequence of $\left\{y_{m}\right\}$ (use the same notation) and a point $p \in \partial D_{a} \cap \overline{R^{n-1}}$ such that $y_{m} \rightarrow p(m \rightarrow \infty)$.

It is well known that conical limit points can not be contained in the boundary of any Dirichlet region. Since Γ is geometrically finite, we conclude that p is a bounded parabolic fixed point and there exists a horoball neighborhood B_{p} which is precisely invariant under Γ_{p} in Γ.

Note that $y_{m} \in \tilde{A}_{m}$ and the translation length is invariant under the conjugation in $M\left(H^{n}\right)$. So there exists a positive integer m_{1} such that $\left\{x \in \mid \rho\left(x, y_{m_{1}}\right)<2 \alpha\right\} \subset B_{p}$. Hence we deduce that $\left(g_{m_{1}} \circ \gamma_{m_{1}} \circ g_{m_{1}}^{-1}\right)\left(y_{m_{1}}\right) \in\left(g_{m_{1}} \circ \gamma_{m_{1}} \circ g_{m_{1}}^{-1}\right)\left(B_{p}\right) \cap B_{p} \neq \emptyset$. It contradicts the fact that B_{p} is precisely invariant under Γ_{p} in Γ. Therefore we establish this lemma.
q.e.d.

If Γ is geometrically finite, then Lemma 4 yields that the number $l_{\Gamma}=\min L(\Gamma)$ is positive. Hence we have the following :

Theorem 5. Let Γ be a geometrically finite subgroup of $M\left(H^{n}\right)$. Then the non-parabolic part $N_{\epsilon, 2}$ of $N_{(0, \epsilon)}$ is empty for any $\epsilon \in\left(0, \min \left(l_{\Gamma}, \epsilon(n)\right)\right)$.

Proof. Choose a positive number with $\epsilon \in\left(0, \min \left(l_{\Gamma}, \epsilon(n)\right)\right)$. Take an arbitrary point $x \in R_{\epsilon}(\Gamma)$. Then, from the definition of $R_{\epsilon}(\Gamma)$, there exists $\gamma \in \tilde{\Gamma}$ such that $\rho(x, \gamma(x))<\epsilon$.

If γ is loxodromic, then $\rho(x, \gamma(x)) \geq l(\gamma) \geq l_{\Gamma}>\epsilon$ and it is a contradiction. So γ is parabolic and we have $x \in R_{\epsilon}(\Gamma) \cap T$. It implies $N_{\epsilon, 1}=N_{(0, \epsilon)}$ and $N_{\epsilon, 2}=\emptyset$.
q.e.d.

Next we consider the general case. The following lemma is essential for our discussion.

Lemma 6. For any $\alpha \geq 0$ there exist a non-elementary, discrete subgroup Γ of $M\left(H^{n}\right)$ and a sequence $\left\{\gamma_{m}\right\}$ of loxodromic elements of Γ such that $l_{m} \searrow \alpha(m \rightarrow \infty)$.

Proof. Let a sequence $\left\{r_{m}\right\}$ of positive numbers, with $r_{m} \searrow e^{\alpha}(m \rightarrow \infty)$, be given. We take hemispheres $\sigma, \sigma_{1}, \sigma_{2}, \ldots$ in H^{n} as the following:

$$
\begin{gathered}
\sigma=\left\{x \in H^{n}|\quad| x \mid=1\right\} \\
\sigma_{m}=\left\{x \in H^{n}|\quad| x \mid=r_{m}\right\} \quad(m=1,2, \ldots) .
\end{gathered}
$$

For each m we define a Möbius transformation g_{m} as $g_{m}=r_{m} x$. It can be easily seen that g_{m} is loxodromic, $g_{m}(\sigma)=\sigma_{m}$ and λ_{m}, the translation length of g_{m}, is equal to $\log r_{m}$.

Let $\left\{p_{m}\right\}$ be a sequence of points in $\overline{R^{n-1}}\left(=\partial H^{n}\right)$ with $r_{m+1}<\left|p_{m}\right|<r_{m}(m=1,2, \ldots)$. We can take a sequence $\left\{R_{m}\right\}$ of positive numbers which satisfy

$$
r_{m+1}+R_{m}<\left|p_{m}\right|<r_{m}-R_{m} \quad(m=1,2, \ldots)
$$

Here we set

$$
\Sigma_{m}=\left\{x \in H^{n}| | x-p_{m} \mid=R_{m}\right\} .
$$

Then $\left\{\Sigma_{m}\right\}$ is a sequence of hemispheres in H^{n} which are mutually disjoint to each other. Let denote by ψ_{m} the reflection in Σ_{m} and set $\psi_{m}(\sigma)=S_{m}, \psi_{m}\left(\sigma_{m}\right)=S_{m}^{\prime} \quad(m=1,2, \ldots)$. We can easily see that $S_{m}, S_{m}^{\prime} \subset \operatorname{Int}\left(\Sigma_{m}\right)$ and $\operatorname{Int}\left(S_{m}\right) \cap \operatorname{Int}\left(S_{m}^{\prime}\right)=\emptyset(m=1,2, \ldots)$.

We put $\gamma_{m}=\psi_{m} \circ g_{m} \circ \psi_{m}^{-1}$. Then we have that γ_{m} is loxodromic and the translation length of γ_{m} is equal to $\log r_{m}$. Let Γ be the group generated by $\gamma_{1}, \gamma_{2}, \ldots$. We show that Γ is a non-elementary, free, discrete subgroup of $M\left(H^{n}\right)$. Since Γ contains two loxodromic transformations which do not have common fixed points, Γ is a non-elementary group. Let γ be an element of Γ which is represented as a reduced word $\gamma=\gamma_{m_{k}} \circ \cdots \circ \gamma_{m_{1}}, \gamma_{m_{i}} \in$ $\left\{\gamma_{1}^{ \pm 1}, \gamma_{2}^{ \pm 1}, \ldots\right\}(i=1, \ldots, k)$. Note that hemispheres $S_{1}, S_{1}^{\prime}, S_{2}, S_{2}^{\prime}, \ldots$ are mutually disjoint to each other. Take a point $x_{0}=\left(x_{1}, \ldots, x_{n}\right) \in H^{n}$ with x_{n} sufficiently large. We may suppose that $B\left(x_{0}, \delta\right)=\left\{x \in H^{n} \mid \rho\left(x, x_{0}\right)<\delta\right\} \subset \bigcap_{i=1}^{\infty}\left(\operatorname{Ext}\left(S_{i}\right) \cup \operatorname{Ext}\left(S_{i}^{\prime}\right)\right)$. We can easily see $\gamma_{m_{1}}\left(B\left(x_{0}, \delta\right)\right) \subset \operatorname{Int}\left(S_{l}\right)$ or $\operatorname{Int}\left(S_{l}^{\prime}\right)$ for some $l=1,2, \ldots$ and $\gamma_{m_{1}}\left(B\left(x_{0}, \delta\right)\right) \cap B\left(x_{0}, \delta\right)=$ \emptyset. Repeat this procedure. Then we obtain $\gamma\left(B\left(x_{0}, \delta\right)\right) \subset \operatorname{Int}\left(S_{j}\right)$ or $\operatorname{Int}\left(S_{j}^{\prime}\right)$ for some $j=1,2, \ldots$. It follows that $\gamma\left(B\left(x_{0}, \delta\right)\right) \cap B\left(x_{0}, \delta\right)=\emptyset$ and $\gamma \neq i d$. Hence we have that Γ is free and discrete. Furthermore $\left\{\gamma_{m}\right\}$ is the sequence of loxodromic elements and $l_{m}=\log r_{m} \searrow \alpha(m \rightarrow \infty)$. It completes the proof of this lemma.
q.e.d.

By using Lemma 6, we have the following result immediately.

Theorem7. For any positive integer $n \geq 2$ there exists a non-elementary, discrete subgroup Γ of $M\left(H^{n}\right)$ such that $N_{\epsilon, 2} \neq \emptyset$ for any $\epsilon>0$.

Next we apply Lemma 6 to geometrically finite groups. Let $\epsilon \in(0, \epsilon(n)]$ be sufficiently small. Then, by using Lemma 6 , we can take loxodromic transformations $\gamma_{1}, \ldots, \gamma_{r}$, such that $l_{k}<\epsilon \quad(k=1,2, \ldots, r)$ and $\Gamma=\left\langle\gamma_{1}, \ldots, \gamma_{r}\right\rangle$ is a non-elementary, geometrically finite subgroup of $M\left(H^{n}\right)$. Hence we have the following:

Theorem 8. For any positive integer $n \geq 2$ and any $\epsilon>0$, there exists a geometrically finite subgroup Γ of $M\left(H^{n}\right)$ such that $N_{\epsilon, 2} \neq \emptyset$.

References

[1] Apanasov, B. N., Discrete groups in space and uniformization problems. MIA (Soviet Ser.) 40, Kluwer Academic Publishers, 1991.
[2] Beardon, A. F. and B. Maskit, Limit points of Kleinian groups and finite-sided fundamental polyhedra. Acta Math. 132 (1974), 1-12.
[3] Bowditch, B. H., Geometric finiteness for hyperbolic groups. Mathematical Institute, University of Warwick, Coventry, 1988.
[4] Susskind, P. and G. A. Swarup, Limit sets for geometrically finite hyperbolic groups. Amer. J. Math. 114 (1992), 233-250.

Department of liberal arts
School of allied medical profession
Kanazawa university
Kanazawa, 920
Japan

