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Margulis Decomposition and Translation Lengths
of Discrete M\"obius Groups

Katsumi Inoue

井上 克巳 (金沢大学医短)

1 Introduction

For any integer $n\geq 2$ , let $R^{n}$ denote the n-dimensional Euclidean space and $\overline{R^{n}}=R^{n}\cup$

$\{\infty\}$ its one-point compactification. Any point $x\in R^{n}$ is represented as $x=(x_{1}, \ldots, x_{n})$

and when matrices act on $x,$ $x$ is treated as a column vector. The subspace $H^{n}=\{x\in$

$R^{n}|x$. $>0\}$ of $R^{n}$ with metric $\rho( , )$ induced by the line element $ds^{2}=|dx|^{2}/dx_{n}^{2}$ is
a model of the $n$ -dimensional hyperbolic space and we call $H^{n}$ the n-dimensional upper
half-space.

A M\"obius transformation of $\overline{R^{n}}$ is a finite product of reflections in (n–l)-dimensional
spheres or hypersurfaces. A group of M\"obius transformation of $\overline{R^{n}}$ is denoted by $M(\overline{R^{n}})$

and call the (full) M\"obius group. M\"obius transformtions are classified by their conjugacy
class in $M(\overline{R^{n}})$ . The canonical forms are as follows. An element in $M(\overline{R^{n}})$ is said to be
loxodromic if it is conjugate to a transformation of the form

$\gamma(x)=\lambda Tx$

where $\lambda>0,$ $\lambda\neq 1$ , and $T\in O(n)$ , the group of $n\cross n$ -orthogonal matrices, and parabolic
if it is conjugate to the transformation of the form

$\gamma(x)=Tx+a$

where $T\in O(n),$ $a\in R^{n}$ and $Ta=a\neq 0$ . A non-trivial element is said to be elliptic if it
is neither loxodromic nor parabolic.

For $\gamma\in M(\overline{R^{n}})$ we denote the Jacobian matrix of $\gamma$ at $x\in R^{n}$ by $\gamma’(x)$ . Then chain
rule implies that $\gamma’(x)=\nu Ux$ with $\nu>0,$ $U\in O(n)$ . We call the positive number $\nu$ the
linear magnification of $\gamma$ at $x$ and denote by $|\gamma’(x)|$ . If $\gamma\in M(\overline{R^{n}})$ does not fix $\infty$ , the set
$I(\gamma)=\{x\in R^{n}||\gamma’(x)|=1\}$ becomes an $(n-1)$-sphere centered at $\gamma^{-1}(\infty)$ . We call $I(\gamma)$

the isometric sphere of $\gamma$ . The action of $\gamma$ on $\overline{R^{n}}$ is the composition of an inversion in $I(\gamma)$ ,
followed by a Euclidean isometry. For $x\in\overline{R^{n}}$ denote $x^{*}$ by the image of the reflection of
$x$ in the unit sphere centered at the origin. Let $\gamma\in M(\overline{R^{n}})$ be an arbitrary element which
does not fix $\infty$ . Then $\gamma$ can be represented uniquely in the form

$\gamma(x)=\lambda T(x-a)^{*}+b$
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where $\lambda>0,$ $T\in O(n)$ and $a,$ $b\in R^{n}$ . In this expression $\lambda^{1/2}$ is the radius of $I(\gamma)$ and
$a=\gamma^{-1}(\infty)$ (resp. $b=\gamma(\infty)$ ) is the center of $I(\gamma)$ (resp. $I(\gamma^{-1})$ ). If $\gamma\in M(\overline{R^{n}})$ fixes
$\infty$ , then $\gamma$ can be written as a similarity in the form

$\gamma(x)=\lambda Tx+a$

where $\lambda>0,$ $T\in O(n)$ and $a\in R^{n}$ .
Let denote by $M(H^{n})$ the subgroup of $M(\overline{R^{n}})$ consisting of elements which keep $H^{n}$

invariant. Then $M(H^{n})$ is the full group of hyperbolic isometries of $H^{n}$ . For any subgroup
$\Gamma$ of $M(H^{n}),$ $\Gamma$ is discrete if and only if $\Gamma$ acts discontinuously on $H^{n}$ . Also $\Gamma$ acts on
$\partial H^{n}=\overline{R^{n-1}}$ as a group of conformal automorphisms. For a discrete subgroup $\Gamma$ of $M(H^{n})$ ,
the region of discontinuity $\Omega(\Gamma)$ of $\Gamma$ is the subset $of\overline{R^{n-1}}$ on which $\Gamma$ acts discontinuously.
The limit set $\Lambda(\Gamma)$ of $\Gamma$ is the complement of $\Omega(\Gamma)$ in $\overline{R^{n-1}}$. A discrete subgroup $\Gamma$ of
$M(H^{n})$ whose limit set consists of at most two points is called elementary. If $\Gamma$ is not
elementary, $\Lambda(\Gamma)$ is a perfect, uncountable set.

Let $\gamma$ be a loxodromic transformation. Then $\gamma$ has exactly two fixed points on $\overline{R^{n-1}}$. The
geodesic $A_{\gamma}$ joining these two points is called the axis of $\gamma$ . The axis $A_{\gamma}$ is kept invariant
under the action of $\gamma$ . For a loxodromic transformation $\gamma\in M(H^{n})$ we set

$l_{\gamma}= \inf_{x\in H^{n}}\rho(x, \gamma(x))$ .

We know that $l_{\gamma}$ is positive and attained at any point of $A_{r}$ . This constant $l_{\gamma}$ is called the
translation length of $\gamma$ . We denote $L(\Gamma)$ by the set of translation lengths of all loxodromic
transformations of F.

For a discrete subgroup $\Gamma$ of $M(H^{n})$ , let $E_{\Gamma}$ be the set of all geodesics in $H^{n}$ whose end
points belong to $\Lambda(\Gamma)$ . The convex hull Hull $(\Lambda(\Gamma))$ is the intersection of all hyperbolically
convex sets in $H^{n}$ which contain $E_{\Gamma}$ . Let $N_{\Gamma}=H^{n}/\Gamma$ be a quotient orbifold for $\Gamma$ and
$M_{\Gamma}=(H^{n}\cup\Omega(\Gamma))/\Gamma$ its closure. The quotient $C_{\Gamma}=Hull(\Lambda(\Gamma))/\Gamma$ is a subset of $N_{\Gamma}$ and
is called the Nielsen convex core for $\Gamma$ .

2 The Margulis decomposition for quotient orbifolds

For a discrete subgroup $\Gamma$ of $M(H^{n})$ , let $\tilde{\Gamma}$ be the subset of $\Gamma$ consisting of all elements
of infinite orders. For $\epsilon>0$ and $x\in H^{n}$ , we define

$I_{\epsilon}(x)=\{\gamma\in\tilde{\Gamma}|\rho(x, \gamma(x))<\epsilon\}$

and
$\Gamma_{\epsilon}(x)=\langle\Gamma\cap I_{\epsilon}(x))$ .

For our argument, the following result is essential (see [1], [3]).
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PROPOSITION 1.( MARGULIS LEMMA) For each $n$ , there exists a positive number $\epsilon(n)$

such that for any discrete subgroup $\Gamma$ of $M(H^{n})$ , $x\in H^{n}$ and $\epsilon\leq\epsilon(n)$ , $\Gamma_{\epsilon}(x)$ is a finite
extension of an abelian group.

We call $\epsilon(n)$ the Margulis constant in dimension $n$ .
For any $\epsilon\in(0, \epsilon(n)$ ] and a discrete subgroup $\Gamma$ of $M(H^{n})$ , we write

$R_{\epsilon}(\Gamma)=$ { $x\in H^{n}|\rho(x,\gamma(x))<\epsilon$ for some $\gamma\in\tilde{\Gamma}$ }.

We can easily see thet $R_{\epsilon}(\Gamma)$ is a F-invariant set of $H^{n}$ . The quotient $R_{\epsilon}(\Gamma)/\Gamma\subset N_{\Gamma}$ is
called the thin part of $N_{\Gamma}$ and is denoted by $N_{(0,\epsilon)}$ . The complement of $N_{(0,\epsilon)}$ in $N_{\Gamma}$ is
denoted by $N_{[\epsilon,\infty)}$ and is called the thick part of $N_{\Gamma}$ . The decomposition

$N_{\Gamma}=N_{(0,\epsilon)}\cup N_{[\epsilon,\infty)}$

is called the Margulis decomposition for $N_{\Gamma}$ .
A discrete subgroup $\Gamma$ of $M(H^{n})$ is said to be geometrically finite if there exists $\epsilon\in$

$(0, \epsilon(n)]$ so that $C_{\Gamma}\cap N_{[\epsilon,\infty)}$ is compact.
Let $\Gamma$

‘ be a subgroup of F. A set X C $H^{n}$ is precisely invariant under $\Gamma’$ in $\Gamma$ if $\gamma(X)=X$

for any $\gamma\in\Gamma$ and $\gamma(X)\cap X=\emptyset$ for any $\gamma\in\Gamma-\Gamma’$ . Let $\Lambda_{P}(\Gamma)$ denote the set of parabolic
fixed points of F. For $p\in\Lambda_{P}(\Gamma)$ , we write $\Gamma_{p}=\{\gamma\in\Gamma|\gamma(p)=p\}$ and call the stabilizer of
$p$ .

The following is an immediate consequence of Margulis lemma.

PROPOSITION 2. ([2], [3]) Let $\Gamma$ be a discrete subgroup of $M(H^{n})$ . Then there exists a
constant $\epsilon\in(0, \epsilon(n)$ ] so that the following holds:

(1) For any $p\in\Lambda_{P}(\Gamma)$ there exists an open region $T_{p}$ in $H^{n}$ which contains a component

of $R_{\epsilon}(\Gamma)$ so that $T_{p}$ is precisely invariant under $\Gamma_{p}$ in F.
(2) For any distinct points $p,$ $q\in\Lambda_{P}(\Gamma),$ $T_{p}$ and $T_{q}$ are mutually disjoint to each other.

We say that $T= \bigcup_{p\in\Lambda_{P}(\Gamma)}T_{p}$ is a strictly invariant system of parabolic neighborhoods
for F.

A parabolic fixed point $p$ of $\Gamma$ is called a bounded parabolic fixed point if there exists
a compact subset of $\overline{R^{n-1}}-\{p\}$ whose translates by $\Gamma_{p}$ cover $\Lambda(\Gamma)-\{p\}$ . We say that a
limit point $y$ of $\Gamma$ is a conical limit point of $\Gamma$ if for some geodesic ray $I$ in $H^{n}$ ending at $y$ ,
there is a compact set $K$ in $H^{n}$ so that $\{\gamma\in\Gamma|\gamma(I)\cap K\neq\emptyset\}$ is an infinite set.

The following is well known.
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PROPOSITION 3. ([3], [4]) Let $\Gamma$ be a discrete subgroup of $M(H^{n})$ . Then the following
statements are equivalent.

(1) $\Gamma$ is geometrically finite.
(2) $\Lambda(\Gamma)$ consists of conical limit points or bounded parabolic fixed points.
(3) There exist $p_{1},$ $\ldots,p_{r}\in\Lambda_{P}(\Gamma)$ with respective horoball neighborhoods $B_{1},$

$\ldots,$
$B_{r}$ such

that the set $B= \bigcup_{\gamma\in\Gamma}\gamma(B_{1}\cup\ldots\cup B_{r})$ forms a strictly invariant system of parabolic neigh-
borhoods for $\Gamma$ and (Hull$(\Lambda(\Gamma))-B$) $/\Gamma$ is compact.

3 Translation lengths of discrete Mobius groups
Let $\Gamma$ be a discrete subgroup of $M(H^{n})$ and $\epsilon\in(0, \epsilon(n)$ ], be chosen. We define

$N_{\epsilon,1}=(R_{\epsilon}(\Gamma)\cap T)/\Gamma$ ,

$N_{\epsilon,2}=N_{(0,\epsilon)}-N_{\epsilon,1}$

and call $N_{\epsilon,1}$ (resp. $N_{\epsilon,2}$ ) the parabolic part (resp. the non-parabolic part) of $N_{(0,\epsilon)}$ .
If $\Gamma$ is a discrete subgroup of $M(H^{3})$ consisting of orientation-preserving transformations
( $i,e\Gamma$ is a Kleinian group), then each component of $N_{(0,\epsilon)}$ is homeomorphic to either
$\{D-\{0\}\}\cross S^{1},$ $\{D-\{0\}\}\cross(0,1)$ or $D\cross S^{1}$ , where $D$ is a unit disk.

To investigate the structure of $N_{(0,\epsilon)}$ , we consider $L(\Gamma)$ , the set of translation lengths of
loxodromic elements of $\Gamma$ . First we deal with the geometrically finite case.

LEMMA 4. Let $\Gamma$ be a geometrically finite subgroup of $M(H^{n})$ . Then $L(\Gamma)$ is a discrete
subset of $[0, \infty$ ).

PROOF. Assume the contrary. Then there exist a sequence $\{\gamma_{m}\}$ of distinct loxodromic
elements of $\Gamma$ and a constant $\alpha\geq 0$ such that $l_{m}arrow\alpha(marrow\infty)$ , where $l_{m}$ is a translation
length of $\gamma_{m}$ .

Let denote by $D_{a}$ a Dirichlet region for $\Gamma$ centered at $a\in H^{n}$ , with $\Gamma_{a}=\{id\}$ . For any
$m$ , choose a point $x_{m}\in A_{m}$ , the axis of $\gamma_{m}$ . Then, for every $m$ , there exists $g_{m}\in\Gamma$ such
that $g_{m}(x_{m})=y_{m}\in cl(D_{a})\cap H^{n}$ , where $cl(D_{a})$ is the closure of $D_{a}$ .

Suppose that $\{y_{m}\}$ has an accumulation point $y_{0}\in cl(D_{a})\cap H^{n}$ . Then there exist a
subsequence of $\{\gamma_{m}\}$ (use the same notation) and $\delta>0$ so that $\{x\in H^{n}|\rho(y_{0}, x)<$

$\delta\}\cap\tilde{A}_{m}\neq\emptyset$ for every $m$ , where $\tilde{A}_{m}$ is the axis of $g_{m}o\gamma_{m}og_{m}^{-1}$ . It follows that there exists
a positive integer $m_{0}$ with $(g_{m}o\gamma_{m}og_{m}^{-1})(y_{0})\in\{x\in H^{n}|\rho(y_{0}, x)<\delta+2\alpha\}\subset H^{n}$ for
$m\geq m_{0}$ . Then there exist a subsequence of $\{\gamma_{m}\}$ (again use the same notation) and a
point $y\in\{x\in H^{n}|\rho(y_{0}, x)\leq\delta+2\alpha\}$ such that $(g_{m}o\gamma_{m}og_{m}^{-1})(y_{0})arrow y(marrow\infty)$ . This
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means $y\in H^{n}\cap\Lambda(\Gamma)\neq\emptyset$ . It is a contradiction. So there exist a subsequence of $\{y_{m}\}$ $($

use the same notation) and a point $p\in\partial D_{a}\cap\overline{R^{n-1}}$ such that $y_{m}arrow p(marrow\infty)$ .
It is well known that conical limit points can not be contained in the boundary of any

Dirichlet region. Since $\Gamma$ is geometrically finite, we conclude that $p$ is a bounded parabolic
fixed point and there exists a horoball neighborhood $B_{p}$ which is precisely invariant under
$\Gamma_{p}$ in $\Gamma$ .

Note that $y_{m}\in\tilde{A}_{m}$ and the translation length is invariant under the conjugation in
$M(H^{n})$ . So there exists a positive integer $m_{1}$ such that $\{x\in|\rho(x, y_{m_{1}})<2\alpha\}\subset B_{p}$ . Hence
we deduce that $(g_{m_{1}}o\gamma_{m_{1}}og_{m_{1}}^{-1})(y_{m_{1}})\in(g_{m_{1}}o\gamma_{m_{1}}og_{m_{1}}^{-1})(B_{p})\cap B_{p}\neq\emptyset$. It contradicts the
fact that $B_{p}$ is precisely invariant under $\Gamma_{p}$ in $\Gamma$ . Therefore we establish this lemma.

q.e. $d$ .

If $\Gamma$ is geometrically finite, then Lemma 4 yields that the number $l_{\Gamma}= \min L(\Gamma)$ is posi-
tive. Hence we have the following :

THEOREM 5. Let $\Gamma$ be a geometrically finite subgroup of $M(H^{n})$ . Then the non-parabo$lic$

part $N_{\epsilon,2}$ of $N_{(0,\epsilon)}$ is empty for any $\epsilon\in(0, \min(l_{\Gamma}, \epsilon(n)))$ .

PROOF. Choose a positive number with $\epsilon\in(0, \min(l_{\Gamma}, \epsilon(n)))$ . Take an arbitrary point
$x\in R_{\epsilon}(\Gamma)$ . Then, from the definition of $R_{\epsilon}(\Gamma)$ , there exists $\gamma\in\tilde{\Gamma}$ such that $\rho(x, \gamma(x))<\epsilon$ .

If $\gamma$ is loxodromic, then $\rho(x, \gamma(x))\geq l(\gamma)\geq l_{\Gamma}>\epsilon$ and it is a contradiction. So $\gamma$ is
parabolic and we have $x\in R_{\epsilon}(\Gamma)\cap T$ . It implies $N_{\epsilon,1}=N_{(0,\epsilon)}$ and $N_{\epsilon,2}=\emptyset$ .

q.e. $d$ .

Next we consider the general case. The following lemma is essential for our discussion.

LEMMA 6. For any $\alpha\geq 0$ there exist a non-elementary, discrete subgroup $\Gamma$ of $M(H^{n})$

and a sequence $\{\gamma_{m}\}$ of loxodromic elements of $\Gamma$ such that $l_{m}\backslash \alpha(marrow\infty)$ .

PROOF. Let a sequence $\{r_{m}\}$ of positive numbers, with $r_{m}\lambda e^{\alpha}(marrow\infty)$ , be given.
We take hemispheres $\sigma,$ $\sigma_{1},$ $\sigma_{2},$ $\ldots$ in $H^{n}$ as the following:

$\sigma=\{x\in H^{n}| |x|=1\}$ ,

$\sigma_{m}=\{x\in H^{n}| |x|=r_{m}\}(m=1,2, \ldots)$ .



31

For each $m$ we define a M\"obius transformation $g_{m}$ as $g_{m}=r_{m}x$ . It can be easily seen
that $g_{m}$ is loxodromic, $g_{m}(\sigma)=\sigma_{m}$ and $\lambda_{m}$ , the translation length of $g_{m}$ , is equal to $\log r_{m}$ .

Let $\{p_{m}\}$ be a sequence of points in $\overline{R^{n-1}}(=\partial H^{n})$ with $r_{m+1}<|p_{m}|<r_{m}(m=1,2, \ldots)$ .
We can take a sequence $\{R_{m}\}$ of positive numbers which satisfy

$r_{m+1}+R_{m}<|p_{m}|<r_{m}-R_{m}(m=1,2, \ldots)$ .

Here we set
$\Sigma_{m}=\{x\in H^{n}||x-p_{m}|=R_{m}\}$ .

Then $\{\Sigma_{m}\}$ is a sequence of hemispheres in $H^{n}$ which are mutually disjoint to each other.
Let denote by $\psi_{m}$ the reflection in $\Sigma_{m}$ and set $\psi_{m}(\sigma)=S_{m},$ $\psi_{m}(\sigma_{m})=S_{m}’(m=1,2, \ldots)$ .
We can easily see that $S_{m},$ $S_{m}’\subset Int(\Sigma_{m})$ and Int $(S_{m})\cap Int(S_{m}’)=\emptyset(m=1,2, \ldots)$ .

We put $\gamma_{m}=\psi_{m}og_{m}o\psi_{m}^{-1}$ . Then we have that $\gamma_{m}$ is loxodromic and the translation
length of $\gamma_{m}$ is equal to $\log r_{m}$ . Let $\Gamma$ be the group generated by $\gamma_{1},$ $\gamma_{2},$ $\ldots$ . We show that
$\Gamma$ is a non-elementary, free, discrete subgroup of $M(H^{n})$ . Since $\Gamma$ contains two loxodromic
transformations which do not have common fixed points, $\Gamma$ is a non-elementary group. Let
$\gamma$ be an element of $\Gamma$ which is represented as a reduced word $\gamma=\gamma_{m_{k}}0\cdots 0\gamma_{m_{1}},$ $\gamma_{m_{i}}\in$

$\{\gamma_{1}^{\pm}‘, \gamma_{2}^{\pm 1}, \ldots\}(i=1, \ldots, k)$ . Note that hemispheres $S_{1},$ $S_{1}’,$ $S_{2},$ $S_{2}’,$
$\ldots$ are mutually disjoint

to each other. Take a point $x_{0}=(x_{1}, \ldots, x_{n})\in H^{n}$ with $x_{n}$ sufficiently large. We may
suppose that $B(x_{0}, \delta)=\{x\in H^{n}|\rho(x, x_{0})<\delta\}C\bigcap_{i=1}^{\infty}(Ext(S_{i})\cup Ext(S_{i}’))$. We can easily
see $\gamma_{m_{1}}(B(x_{0}, \delta))\subset Int(S_{l})$ or Int $(S_{l}’)$ for some $1=1,2,$ $\ldots$ . and $\gamma_{m_{1}}(B(x_{0}, \delta))\cap B(x_{0}, \delta)=$

$\emptyset$ . Repeat this procedure. Then we obtain $\gamma(B(x_{0}, \delta))\subset Int(S_{j})$ or Int $(S_{i}’)$ for some
$j=1,2,$ $\ldots$ . It follows that $\gamma(B(x_{0}, \delta))\cap B(x_{0}, \delta)=$ l) and $\gamma\neq id$ . Hence we have
that $\Gamma$ is free and discrete. Furthermore $\{\gamma_{m}\}$ is the sequence of loxodromic elements and
$l_{m}=\log r_{m}\backslash \alpha(marrow\infty)$ . It completes the proof of this lemma.

q.e. $d$ .

By using Lemma 6, we have the following result immediately.

THEOREM7. For any positive integer $n\geq 2$ there exists a non-elementary, discrete sub-
group $\Gamma$ of $M(H^{n})$ such that $N_{\epsilon,2}\neq\emptyset$ for any $\epsilon>0$ .

Next we apply Lemma 6 to geometrically finite groups. Let $\epsilon\in(0, \epsilon(n)$ ] be sufficiently
small. Then, by using Lemma 6, we can take loxodromic transformations $\gamma_{1},$

$\ldots,$
$\gamma_{r}$ , such

that $l_{k}<\epsilon(k=1,2, \ldots, r)$ and $\Gamma=\langle\gamma_{1}, \ldots, \gamma_{r}\rangle$ is a non-elementary, geometrically finite
subgroup of $M(H^{n})$ . Hence we have the following:
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THEOREM 8. For any positive integer $n\geq 2$ and any $\epsilon>0$ , there exists a geometrically

finite subgroup $\Gamma$ of $M(H^{n})$ such that $N_{\epsilon,2}\neq\emptyset$ .
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